

Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering

M. ZwickerUniv. of Bern

W. Jarosz
Disney Research

J. Lehtinen
Aalto Univ.

B. Moon KAIST R. Ramamoorthi UC San Diego

F. Rousselle Disney Research

P. Sen UC Santa Barbara C. Soler INRIA

S.-E. Yoon KAIST

Introduction

- Monte Carlo path tracing
 - Physically based
 - Very general
 - Guaranteed convergence (except pathological cases)
- Disadvantages
 - Noise, slow convergence

32000 samples per pixel, 12h

Introduction

- Monte Carlo path tracing
 - Physically based
 - Very general
 - Guaranteed convergence (except pathological cases)
- Disadvantages
 - Noise, slow convergence

32 samples per pixel, 42s

→ Anti-aliasing – 2D

- → Anti-aliasing 2D
- → Area-lighting 2D

- → Anti-aliasing 2D
- → Area-lighting 2D
- → Single-bounce indirect illumination 2D

- → Anti-aliasing 2D
- → Area-lighting 2D
- → Single-bounce indirect illumination 2D
- → Depth-of-field 2D

- → Anti-aliasing 2D
- → Area-lighting 2D
- → Single-bounce indirect illumination 2D
- → Depth-of-field 2D
- → Single-scattering participating media 1D

Total: 9D

Early approaches

Sample map

Output image

[Mitchell 1987]

Recent advances

Path tracing, 55s

Rousselle et al. 2013, 57s

Adaptive sampling and reconstruction

Locally analyze error (variance)

- 1. Adapt sampling density to error
- 2. Reconstruct image by aggregating data over several pixels

Outline

A priori

- Analyze light transport equations around individual samples
- Estimate sampling rates, reconstruction filters based on analysis

A posteriori

- **Ignorant** of light transport effects
- Estimate sampling rates, reconstruction based on empirical statistics from sets of acquired samples

Outline

A priori

- Frequency analysis (Cyril)
- Light field structure (Matthias)
- Derivatives (Wojciech)

A posteriori

• Fabrice