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Chapter 1

Introduction

The study of complexity focuses on classifying problems by their difficulty. Why are some problems inher-
ently harder to solve than others? In complexity theory, there are standard ways of classifying problems by
the time or space required by an algorithm that solves a specific problem, such as sorting a list of numbers
or multiplying two matrices. Other measures of complexity involve different models and measures in order
to classify the difficulty of problems.

1.1 Communication Complexity

One such measure of a problem is communication complexity, in which an input is distributed among
different parties who wish to compute a specific function of those inputs. Since each party is missing
a part of the input, they must communicate in order to compute the function. The most basic model of
communication complexity was introduced by Yao in 1979 (see [2] for a thorough introduction). There
are two parties (traditionally called Alice and Bob), each with a specific part of the problem’s input. Both
Alice and Bob are assumed to have unlimited computation power, and the goal is to minimize the amount
of communication between them, as a function of the input size, to solve the problem.

Some examples of interesting functions in this model are the following, where Alice starts with input x
and Bob starts with input y:

• The equality function EQ(x, y), where x, y ∈ {0, 1}n , and EQ(x, y) = 1 iff x = y.

• The disjointness function DISJ(x, y), where x, y ⊆ {1, . . . , n}, and DISJ(x, y) = 1 iff x ∩ y = ∅.

• The inner product function IP(x, y), where x, y ∈ {0, 1}n , and IP(x, y) = Σn
i=1xiyi mod 2.

To evaluate each of these functions, some communication must take place between Alice and Bob. Their
communication follows a fixed protocol, a sequence of steps taken by both parties that depends on the input
each has and any earlier communication. At the end of the protocol, at least one of the parties must have
evaluated the function f(x, y).

The simplest way to solve a problem in this model is to send all the inputs to a single party who calculates
the result. This protocol requires n bits of communication for an input of size n bits and this protocol
can be applied to any function. So this is the trivial upper bound for all problems in this model. For
some functions, such as EQ, this bound cannot be improved without altering the model—if there are not n
bits communicated, then not all n bits of the inputs can be tested for equality and the function cannot be
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Figure 1.1: The basic model for analyzing communication complexity.

computed (in fact, both DISJ and IP share this Θ(n) bound on communication in this model). However,
there are communication models where the complexity of EQ is less than O(n). Allowing randomized
computation by the parties allows them to compute a different value for a function over multiple trials. If we
bind the acceptable error rate close enough to zero, we can create a protocol that gives us a “good enough”
approximation of the function with much less communication. In the case of EQ the randomized bound
becomes O(1).

Another variation on the standard communication model is to add a third player—a referee—and allow
only a single round of communication from Alice and Bob to the referee. In the simultaneous model for
computing a function f , the referee does not have initial access to any of the input and computes the value
of f only from the information he receives from Alice and Bob. This is also known as the “Number on the
Forehead” model because in the extensions of this model, each player sees all but one of the inputs. That
is, for k inputs x0, . . . , xk−1, player i sees inputs x0, . . . , xi−1, xi+1, . . . , xk−1. The almost simultaneous
model is similar, but the referee is given access to some of the inputs (i.e. the referee is one of the players who
can see all but 1 input). If one input is significantly larger than the others, the communication complexity of
the simultaneous and almost simultaneous models will be asymptotically equal, since everyone could send
the small inputs to the referee without affecting the order of the complexity. In the three-player version of
this model, a function f : X × Y × Z → {0, 1} with three inputs x ∈ X, y ∈ Y, z ∈ Z is evaluated. Alice
knows x and z, Bob knows y and z, and the referee knows x and y, and communication proceeds as before.

1.2 Circuit Complexity

One fundamental measure of complexity is the complexity of a circuit that computes a certain function,
measured in terms of the size and depth of the circuit. A circuit is defined to be a directed acyclic graph,
where the source nodes are associated with input bits, and all other nodes are associated with Boolean gates.
The gates are divided into levels, which connect the set of input nodes to an output node, or multiple output
nodes. The gates in the first level can only have incoming edges from the input nodes. All subsequent levels
can have incoming edges from the input nodes or from gates that came in earlier levels. We call the number
of levels in a circuit its depth, and the number of edges between gates in a circuit its size. For our purposes,
we limit the gate-types to AND, OR, and NOT gates, and limit the number of inputs for each gate to two.

The motivation for using circuits to measure complexity is their relative simplicity when compared
to computers, Turing machines, or other models of computation. Information flows in one direction in a
circuit, from the input to the output through a fixed number of intermediate levels. But circuits in this simple
model, even when restricted to the three gate types above with limited inputs, are still capable of computing
all Boolean functions. With that in mind, functions are not interesting in this model because they can be
computed by a circuit, it is the scale of such a circuit that concerns us.

It is a well-known fact of circuit complexity that there must exist functions whose computation requires
large circuits (i.e. circuits with large size or depth). Simply counting the number of functions of n input
bits, which is 22n

, and comparing this to the number of possible polynomial-sized circuits shows that the
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Figure 1.2: An example of a circuit to compute the truth value of the Boolean expression: (¬x0 ∨ (x1 ∧
x2)) ∧ ((x2 ∨ x3) ∧ (x3 ∨ (x4 ∧ x5)))).

ratio of functions computable by polynomial-size circuits to total functions of an n-bit input goes to zero as
n gets large. However, despite this evidence that such hard functions exist (in fact, that almost all Boolean
functions are hard), no explicit function has been found that has strong lower bounds on the circuit size, or
even less strict bounds on the depth and size. It is a major open problem to find a function that has no circuit
with a simultaneous O(n) bound on size and O(log(n)) bound on depth.

1.3 Communication Complexity and Size-Depth Bounds

An interesting quality of these two measures of complexity is that the complexity of a function in one can
often be related to the complexity of a function in the other. In fact, despite their dissimilar structure, both
communication complexity and circuit complexity focus on the paths information must take from input to
output, with the major difference being that the actual computation is abstracted out of the communication
model. The approach of translating problems from circuits to communication, and the other way around,
has been applied in various ways, for different models within the realm of communication complexity and
circuit complexity. Also, the function being analyzed in one model may not be the same as the function it
relates to in the other model.

The best-known connection between these two types of complexity equates the circuit depth of a func-
tion to the communication complexity of a relation that derives from that function. This property is very
useful, since most functions are easier to classify in one model than the other. The communication model
of this relation is known as the Karchmer-Wigderson game, and creates a particularly nice isomorphism
between Boolean circuits and communication protocols because the depth of the circuit exactly equals the
number of bits sent in the protocol.

For our purposes, the important connection between communication complexity and circuit complexity
derives from a graph-theoretic fact originally proved by L. G. Valiant in 1977 (see [8]). The application of
this theorem to circuits would allow lower bounds for certain communication complexity problems to prove
the existence of a hard function (i.e. one for which there is no circuit of size O(n) and depth O(log n) simul-
taneously). More specifically, bounds in the almost-simultaneous three-player communication model (with
certain constraints) translate into circuit size and depth bounds, and vice-versa. We make these relationships
explicit in the next chapter.
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Chapter 2

Complexity of Shifting

We begin exploring the connections between different models of complexity with the following precise
formulation of how bounds in communication complexity and circuit size and depth can be related.

Theorem 2.1 Let C be a circuit with depth O(log n) and size O(n). Let f(i, j, x) be the corresponding
three argument function, so that f(i, j, x) = yi, the ith output bit of the circuit on input (j, x) (where i, j,
and x are proportionally sized as before: 0 ≤ i < n, 0 ≤ j < n, x ∈ {0, 1}n). Then f can be computed
using a restricted, almost simultaneous protocol in which:

• Alice (holding x, j) sends O(n/ log log n) bits;

• Bob (holding x, i) sends O(nε) bits, for a fixed constant ε;

• Referee (holding i, j) computes f(i, j, x).

The importance of this connection will become clear as we introduce an intermediate model and formally
relate bounds in all three.

2.1 The Sum-Index Problem

Let’s examine a communication problem in the almost simultaneous model. For this problem, Alice has
an n-bit Boolean array x and a positive integer i < n; Bob has the same array x and a different positive
integer j < n; and the referee has the pair of indices i and j. There is no direct communication between
Alice and Bob, they can only send a single message each to the referee, who wants to compute the function
f(i, j, x) = xi+j mod n. (For simplicity, we will omit the mod n from now on, and assume all indices are
computed this way.)

At first glance, it seems doubtful that sending fewer than n bits will be enough to evaluate the function.
In the case that Alice does not send any bits, all of the referee’s information about the array must come from
Bob. Since any of the n elements of the array could be the desired one, Bob has no choice but to send n bits
on to the referee (since the values of x must map one-to-one onto the messages Bob sends). The difficulty
in finding an efficient protocol is dealing with the shared information of the three parties.

If Alice sends just a single bit, it is not at all obvious that this can reduce Bob’s message significantly
(by any more than one bit). The sum i + j could take any value from 0 to n, so Alice and Bob must each
send messages which take into account all n of these possibilities. If Alice and Bob together send fewer
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Figure 2.1: The three player communication model, computing the Sum-Index function.

than n bits, it seems unlikely that xi+j will always be among them. Since they are sending fewer than n bits,
there are cases when they send the exact same messages, even for different inputs. One way to approach the
problem is to explore how to reconcile these overlapping messages.

It turns out that there is a protocol in which Alice sends a single bit, and Bob sends n/2 bits. It was
introduced by Pavel Pudlak, Vojtech Rodl, and Jiri Sgall in 1997, and follows the approach outlined above
to determine the wanted bit of the original array [6]. The messages sent in the protocol are as follows:

- Alice sends the bit x−i

- Bob sends the bits x0 ⊕ xj, x1 ⊕ xj−1, x2 ⊕ xj−2, . . .. There will be n/2 distinct pairs whose indices
sum to j, so Bob sends n/2 bits.

- The Referee computes x−i ⊕ (x−i ⊕ xi+j) = xi+j .

The crux of the protocol is the pairing scheme—the pairing has to depend solely on j but must send the
parity of xi+j with another bit for every possibly value of i. (Note: to achieve the bn/2c bit message for
Bob, he omits sending the bit xk ⊕ xj−k when k = j − k, since this parity is always 0.) Seeing that one bit
from Alice can halve the necessary bits from Bob provokes an interesting question: Can we reduce Bob’s
message size further?

2.2 An Initial Lower Bound

The best-known lower bound for the overall communication complexity of the Sum-Index function is Ω(
√

n)
bits, much lower than the upper bound shown above of bn/2c+1 bits. This is proved generally for k players
in [6], by comparing the number of unique messages generated by the players to the number of input strings.
For two players, take any protocol P , for the Sum-Index function. We restrict the inputs of Alice and Bob so
that Alice’s index ranges over 0,

√
n, 2

√
n, . . . , n−√

n, and Bob’s index ranges over 0, 1, . . . ,
√

n−1. Each
index can only take

√
n values, but their sum can still be any number in the original range 0, 1, . . . , n. Now,

for every combination of indices i and j in this restricted range, we can write down the messages that Alice
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and Bob would send. If we express the communication complexity of the Sum-Index problem by CC(SI),
the total size of all these messages is at most nCC(SI). Since there are n combinations of indices, and each
player has only

√
n possible indices, each player repeats his or her message for

√
n combinations. So only

n√
n

CC(SI) =
√

nCC(SI) bits of these messages are unique and not sent for earlier combinations of indices.

Thus the entire input x can be reconstructed from these
√

nCC(SI) bits. So there is a one-to-one mapping
from values of x to the

√
nCC(SI)-bit list of messages, for any protocol P for the Sum-Index function.

Therefore CC(SI) ≥ Ω(
√

n)
We would like to prove a stronger lower bound, so we introduce the following model to simplify the

analysis of our problem.

2.3 Valiant’s Graph Model

One approach to resolve questions of both circuit complexity and communication complexity uses a model
orginally proposed by L. G. Valiant [9]. Valiant examines the properties of circuits in terms of graphs that
mirror their structure. By proving a graph-theoretic fact about the number of paths in a graph, he shows that
lower-bounds in the following model imply lower bounds for a general circuit.

Definition 2.2 A graph is an ordered pair G = (V,E) where V is a set of vertices or nodes, and E is a set
of edges between vertices. In a directed graph, the edges are ordered pairs, while an undirected graph has
edges made up of unordered pairs of vertices.

Consider a graph G which consists of vertices X ∪ Y where X = {x0, x1, . . . , xn−1} corresponds to n
inputs and Y = {y0, y1, . . . , yn−1} corresponds to n outputs. The edges of G are defined implicitly by the
function τ : Y → 2X where τ(yi) ⊆ X is the set of input vertices which are adjacent to yi in the graph.
Now we define two sets of Boolean functions: m Boolean functions r0(x), . . . , rm−1(x), which we will call
the graph’s common bits; and n further Boolean functions f0(. . .), . . . , fn−1(. . .). There are m + |τ(yi)|
Boolean arguments for each fi, namely the values of all the functions r0(x), . . . rm−1(x) and the values of
the inputs in the set τ(yi). In other words, we have m functions of the inputs, and each output yi can be an
arbitrary function of these m common bits and of the inputs τ(yi) to which it is connected directly in G.

Definition 2.3 We say that G realizes or computes function F : {0, 1}n → {0, 1}n with m common bits if
there exist r0, . . . , rm−1, and f0, . . . , fn−1 such that for all i, 0 ≤ i ≤ n − 1:

Fi(x) = fi(r0(x), . . . , rm−1(x), τ(yi)) (where Fi denotes bit i of F (x))

By the degree of G, we mean maxy∈Y |τ(y)|. By the common bits we mean the values of the functions
r0, . . . , rm−1.

This is a slight abuse of notation, since the final argument τ(yi) is actually a set of input nodes. The
intended meaning is that fi is a function of all the common bits in addition to exactly those inputs that it is
connected to in G. So not all input bits are directly available to each output function fi, all other significant
input values must be communicated via the common bits. Thus a graph with n common bits can realize any
function, since the common bits can simply mirror the input bits (e.g. ri = xi), leaving each output function
with direct access to all of the input. Similarly, a graph with degree n and 0 common bits computes any
function, since each output node is connected to each input. Thus, the important properties of graphs in this
model are the number of common bits and the degree of the graph. We are interested in minimizing both
these quantities in order to classify the complexity of functions in this model.

6



1 x2 x3

y0 y1 y2 y3

x

0

x0

r1r

Figure 2.2: Computation of a shift, where yi = x(i+2) mod 4.

Figure 2.2 illustrates a small graph that computes a shift function. The common bits r1, r2, and the
dotted edges connected to them are not technically part of the graph, but are shown here to illustrate the
passage of information from the input nodes to the output nodes. The significance of the shift function will
become clear in the next sections, but for now we define it as a function that shifts the input bits, in this case
by 2 bits so that yi = x(i+2) mod 4. The common bits and output nodes are assigned the XOR function (⊕),
which is evaluated on the values of adjacent input nodes and selected common bits. In a manner similar to
the protocol of Section 2.1, the output values are correctly assigned the values of the corresponding inputs.

As we will see, this graph model is especially useful for analyzing functions that permute the input.
Computing a single permutation would be extremely simple: connect each input to the output that is to take
its value. This graph, of degree 1, realizes the given permutation without the need for any common bits.
The non-trivial power of a graph is to compute multiple functions. Unlike a circuit, graphs in this model
can compute multiple functions, since the only fixed component of the model is the graph itself, not the
functions at the nodes.

2.4 Connection to Circuit Size and Depth

In particular, the following reduction gives a specific bound to aim for in the graph model, and was the
primary motivation for its original development.

Theorem 2.4 ([6], [9]) For every ε > 0, c, and d there exists K such that if a function F can be computed
by a circuit of size cn and depth d log n, then it can be computed by a graph G of degree at most nε with
Kn/ log log n common bits.

The proof proceeds from a graph-theoretic property proved earlier by Valiant. Namely that for any ε > 0
and circuit C with size O(n) and depth O(log n), there is a set S of O(n/ log log n) edges such that every
path of length ε log n in C contains an edge from S. To convert a circuit of this form into a graph G, first
assign values of the edges in S to the common bits of G. Since each output bit is a function of the values at
these o(n/ log log n) edges and any other input bits reachable by a path avoiding S (and hence shorter than
ε log n), we connect each output in G to the corresponding inputs. The maximum number of these inputs
(i.e. the degree of G) is then 2ε log n = nε. Thus, if we have a circuit of this form that computes a specific
function, the function can also be computed by a graph with these properties.
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The reverse of Theorem 2.4 is what we are most interested in. If there is a function such that no graph
G with degree nε and o(n) common bits can compute it, the only circuits that can compute the function are
simultaneously large and deep (that is, size = Ω(n), depth = Ω(log n)). If we can find functions which
are easy to analyze using this model, we should be able to find strong lower bounds on that function’s
complexity.

2.5 Connection to Communication Complexity

Valiant’s graph model can also be expressed in terms of a problem in communication complexity, a reduction
established in [6].

Theorem 2.5 A function F (p, x) can be computed by a graph of maximal degree d with r common bits if
and only if there exists a restricted protocol for computing bitF (i, p, x) in which Alice sends r bits and Bob
sends d bits.

For a function of two variables, F (p, x), to be computed by a graph, we mean that a single graph can
be used to compute F (p, x) for any given value of p. The functions that calculate the common bits and the
output values may change, but the graph itself must be the same in each case. The function bitF (i, p, x)
computes bit i of F (p, x).

By restricted protocol, we mean a protocol in which one of the parties is restricted to sending a de-
termined subset of the bits in his available inputs. Although this restriction limits slightly the power of
the communication model, it enhances the connection between the graph model and circuits if you follow
Valiant’s line of reasoning.

The proof of Theorem 2.5 is purely constructive. If we have a graph G that computes F (p, x), we
generate a restricted protocol for the three-party model that computes a function bitF (i, p, x) as follows:
Alice sends the value of all inputs xk connected to output yi in G, Bob sends the values of all the common
bits for the given input (p, x), and the referee computes the output using the function associated with y i (that
is, fi(r0(x), . . . , rm−1(x), τ(yi))), for which he has all the input values.

On the other hand, we can construct a graph that computes a function F (p, x) from a restricted protocol
that computes it as well. Without loss of generality, assume Alice is the restricted party, sending only bits
that appear in the input x. There is an edge (xk, yi) for all xk such that Alice sends xk on input i. Now
assign functions to the common bits so that they take on the values transmitted by Bob for all inputs (p, x).

Both constructions introduce bijections between Alice’s communication and the degree of the graph, and
Bob’s communication and the number of common bits, so clearly these quantities are maintained throughout
the construction. We have now shown how to translate complexity of functions in the 3-player communica-
tion model to the complexity of related functions in our graph model. In a manner similar to the previous
section, we can now relate bounds in one model to bounds in the other.

2.6 Sum-Index Problem, Revisited

Following Theorem 2.5, we can translate the Sum-Index function into a function of two variables that is
computed by a graph. Instead of f(i, j, x) = xi+j , we have a function that shifts the array x by j bits:
shift(j, x). If we let y represent the array that the function outputs, then yi = xi+j .

Now that we have a function to compute, we can translate our protocol for the Sum-Index problem into a
structure for a graph that computes the shift function. The corresponding graph G that computes shift(j, x)
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has bn/2c common bits and degree 1. Each output bit yi is adjacent to input bit x−i, which corresponds
to the bit sent by Alice. Common bit ri computes the function xi ⊕ xj−i. And output bit l computes the
function x−i ⊕ r−i. The graph in Figure 2.2 illustrates this type of graph structure in the simple 4-bit case,
and could compute the other 3 shifts, also with 2 common bits. This general structure gives us an upper
bound on the number of common bits required to compute all shifts in a degree 1 graph.

From the time that Valiant introduced the model of the graph and common bits until Pudlak, Rodl, and
Sgall proved otherwise, several researchers, including Valiant, believed that super-linear lower bounds for
O(n) depth circuits could be established by proving that all n shift functions cannot be computed by a graph
with an o(n) limit on the degree and common bits. It turns out that this approach to finding an explicit, hard
function would not work out, since in 1997, Pudlak, Rodl, and Sgall derived a surprising and complex graph
structure with simultaneous bounds of O(n log log n/ log n) on both the degree and number of common
bits. Their construction of such a graph (and concurrently a protocol for the Sum-Index function) follows
similar principles to the graph defined above, in that elements are grouped and the parity of each group is
computed as a single common bit, while all but one of each group’s values are connected to specific outputs.
The groupings are generated this way using properties of arithmetic progressions, and for a graph of degree
O(n/ log n), it turns out that O(n log log n/ log n) common bits are required to compute all n cyclic shifts.
The bound does not imply this model will be unable to prove the existence of explicitly hard functions.
Since the O(n log log n/ log n) degree of the graph is still significantly larger than the O(nε) lower bound
we would need for such a proof, it instead suggests that we look at graphs (or protocols) in which the
numbers of common bits and edges differ considerably (or the parties send messages of disparate size). It is
these types of graphs and protocols that are relevant to Valiant’s circuit reduction, and we examine them in
the next chapter.

Now that we have introduced the graph model, we have a framework to prove a much stronger lower
bound than the general bound of Ω(

√
n) presented above.
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Chapter 3

A Lower Bound for Shifts

After seeing that a degree 1 graph does, in fact, significantly decrease the necessary number of common bits
in computing shift permutations, it is reasonable to suspect we may be able to reduce the graph complexity
further. However, we cannot.

Theorem 3.1 (Main Theorem) For a graph of degree 1 to realize shift(p, x) for all n values of p, G must
have at least bn/2c common bits.

In this proof, we show that there is a tight bound on the number of common bits needed to compute shift
functions in degree 1 graphs. This implies a similar tight bound on the communication complexity of the
restricted Sum-Index function.

The following definitions will be helpful in proving our theorem.

Definition 3.2 A permutation is a bijection that maps a set onto itself. Let Sn represent the set of all
permutations of the set {0, . . . , n−1}. We define a special class of permutations, sp to be shift permutations,
such that sp(i) = i + p.

Permutations are an important concept in numerous sections of this proof. The shift functions introduced
in the previous chapter are simply permutations of the input. Of course, shift permutations are only a subset
of all permutations, and graphs can compute families of permutations other than shifts. However, shifts
provide simpler analysis, and unless it is found that shifts are not hard functions to build circuits for, shifts
seem to be a better tool with which to analyze our problem.

Definition 3.3 Given a function F : A → A, a cycle is a subset C ⊆ A, where C = {c1, . . . cm}, and
F (c1) = c2, F (c2) = c3, . . . , F (cm) = c1. The length of the cycle is the number of steps in the path of the
cycle, m.

As we shall see, cycles and their relationship with permutations allow us to convert seemingly com-
plex and unwieldy associations between paths of information in a graph into much cleaner combinatorial
problems that facilitate simpler counting arguments.

Now we begin our proof. Since we want to determine the minimum number of common bits necessary
to compute a function, we must argue that there are at least a certain number of different common bit strings
that will be generated by a specific graph for a specific function (in our case, a shift). For any graph with
fewer than n common bits, there must be multiple input values that map to the same values of the common
bits. In the communication model, this is equivalent to Bob sending fewer than n bits, which implies that
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Figure 3.1: The consequence graph corresponding to a specific graph and a shift by one bit.

he sends the same message for more than one value of the input array. To further simplify the analysis of
inputs that share an assignment of the common bits, we introduce the following construction:

Definition 3.4 Given a graph G and a permutation π ∈ Sn that the graph is to compute, define the conse-
quence graph Gπ to be the composition of the permutation and G’s τ function. That is, Gπ is a graph with
vertices labeled {0, . . . , n − 1} and there is an edge (a, b) in Gπ iff xb ∈ τ(yπ(a)).

Our goal is to find the maximum number of input strings that can share an assignment of the common
bits. The consequence graph’s utility in approaching this goal stems from one important property, expressed
in Lemma 3.5. This property will allow us to give a combinatorial argument about the number of common
bits required to realize a specific permutation. In essence, the consequence graph helps us significantly by
directly representing the connections between inputs that share common bit assignments.

Figure 3.1 shows an arbitrary graph G, overlayed with a shift permutation. We want to determine
how many common bits are required to compute these types of functions on a graph. On the right is the
consequence graph determined by G and the 2-bit shift. Let’s examine what happens if we want two inputs x
and x′ to share an assignment of the common bits, if x0 is flipped between them (x0 6= x′

0). Since the graph
is computing a one-bit shift, a change in x0 must be reflected by a change in y5. Since the only non-common
bit input to y5 is x2, x2 must also change to allow this (x2 6= x′

2). Similarly, if x2 is to change, y1 must
reflect this change, so x3 must change. To reflect these chains of consequence, we add edges between the
corresponding nodes in the consequence graph. Lemma 3.5 formalizes this characteristic of consequence
graphs.

Lemma 3.5 Let x and x′ be two different input vectors to a graph G that realizes permutation π, and further
suppose x and x′ result in the same values of the common bits. Then, if xi 6= x′

i there is a j such that xj 6= x′
j

where j ∈ {b|(i, b) is an edge in Gπ}.

The proof of this lemma is based on an attribute of our graph, namely that each output bit is a function
of the common bits and a specific subset of input bits. So for an output bit to change when the common bits
do not, at least one of the bits in that subset must change.

Proof: Suppose x differs from x′ at bit i, but both x and x′ generate the same assignment to the common
bits, r. Then, for G to realize the permutation π, the output bit yπ(i) must change (to yπ(i), let’s say). Since
yπ(i) 6= y′

π(i), we have that fπ(i)(r, τ(yπ(i))) 6= fπ(i)(r, τ(yπ(i))). Recall that τ(yπ(i) represents the values
of the input nodes connected to yπ(i), and since this is the only variable in the inequality that is not exactly
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the same on both sides, the value of one of these bits must change. And these bits are exactly the bits
corresponding to the neighborhood of i in Gπ.

In the following lemmas, we first consider a graph G which is a perfect matching of the inputs and
outputs, before proving the general statement. That is, we assume the edges of G form a bijection between
the input bits and output bits. Of all degree 1 graphs, we expect the perfect matchings to be the most
powerful at computation, since any graph that is not a matching has at least one input bit without any out-
edges. Input bits without out-edges have no direct connection to the outputs and must transmit all their
information through the common bits. So we expect non-matching graphs to require more common bits
than matching graphs.

A well-known property of permutations, including the shift permutations we have explored, is that they
divide a set into disjoint cycles. When a matching graph is computing a permutation of the input bits, the
consequence graph will represent the composition of two permutations, and will therefore be a permutation
itself. Since each node in a cycle can be reached by following a path from any other node in the cycle, a
minor extension of Lemma 3.5 implies that all bits corresponding to nodes in a cycle must flip if two inputs
are to share assignments of the common bits. For a given cycle, it appears that only two input substrings
can share common bit assignments out of the 2l possible input substrings (where the length of the cycle
and corresponding input substring have length l). This would imply that at least 2l/2 = 2l−1 common bit
assignments are needed for each cycle, an intuition that is formalized in the following Lemma.

Lemma 3.6 For a degree 1 graph G to realize a given permutation π, the number of common bits must be
greater than or equal to the difference n − c(Gπ), where c(Gπ) is the number of connected components in
the corresponding consequence graph.

There are 2n possible input vectors, so in order to have fewer than n common bits, some of the inputs
must result in the same common bits. We need to determine which of these vectors can generate identical
common bits to find a lower bound.

Proof: For a degree 1 graph G, the graph Gπ has out-degree 1 at all vertices. So for an input xi to
change, the input corresponding to the vertex j in edge (i, j) must also change, by Lemma 3.5. The con-
sequence graph for the general degree 1 case takes the form of disjoint connected components, such that
paths from any node in a connected component arrive in that connected component’s cycle (every path must
end in a cycle, since all nodes have out-degree 1). In fact, by following the edges in Gπ , each input bit in
an entire cycle must flip if any one bit in a connected component does, in order to leave the common bits
unchanged. Let z1, . . . , zm be a set of vertices in Gπ , which are each in separate cycles (and therefore in
separate connected components). Take x and x′ to be assignments of the input bits such that the bits cor-
responding to vertices z1, . . . , zm, are the same for both assignments. Since no bit in any of the connected
components containing the m vectors z1, . . . , zm can change without a change in the common bits, x = x′.
Thus, for any assignment of these bits, there is a one-to-one mapping from the other n−m input bits to the
common bits. Therefore, G must have at least n − m common bits.

Lemma 3.7 Given a permutation σ ∈ Sn, there exists a p < n, such that the composition of the two
permutations sp ◦ σ (call this permutation σp) has at most n+1

2 cycles. More generally, the same is true
given a function κ : {1, . . . , n} → {1, . . . , n}, and the composition sp ◦ κ (call this function κp).

Proof: Let cp be the number of cycles in a permutation σp. Now, suppose that every shift of the original
permutation does result in a large number of cycles, in this case cp > n+1

2 . Since each permutation σp takes
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on n values, the total length of the cycles is limited to n. In fact, fewer than n−1
2 of the cycles can have a

length greater than 1, leaving at least two of the cycles as loops, i.e. cycles of length 1. A cycle is a loop at
i when σp(i) = i. That is, there is one loop at index i for exactly one shift, when p = i − π(i). This would
imply that there are n total loops over all shifts, but this contradicts the earlier conclusion that each of the n
shifts has at least 2 loops. Therefore, there must be at least one shift such that cp ≤ n+1

2 .
Similarly, the more general case is true for the same reasons. There is a loop at each vertex for exactly

one shift, so n total loops. Also, as above, if there were more than n−1
2 connected components of more than

1 vertex, these would account for n − 1 vertices, leaving only one vertex to comprise the final 2 or more
cycles. Thus the lemma holds in this case as well.

Theorem 3.8 (Restatement of Theorem 3.1) For a graph of degree 1 to realize all n shift permutations, G
must have at least bn/2c common bits.

Proof of Theorem 3.1: First we prove the case where the edges of G comprise a permutation. Take a
graph G that realizes all cyclic shifts. For a shift by p, the consequence graph Gπ will have a single edge out
from each vertex: (a, τ(ya+p)). Let σp(a) = τ(ya+p). Then, σp is a permutation, since we are assuming
the edges of G comprise a permutation, and so there is only one edge out of each vertex in X . Applying
Lemma 3.7, we know that there is a p such that σp has no more than n+1

2 cycles. Then, applying Lemma
3.6, to realize this shift requires n − n+1

2 = n−1
2 = bn

2 c.
Since both Lemma 3.6 and Lemma 3.7 hold for all graphs of degree 1, not only those whose edges form

a permutation, the proof of the Theorem proceeds in the same way for graphs of that type. Simply replacing
the permutation σp(a) with κp(a) gives us a function describing the edges of a general consequence graph
that requires n−c(Gπ) common bits, and Lemma 3.7 proves the existence of a shift such that c(Gπ) ≤ n+1

2 ,
and the same result.

We have now proved that the bound on common bits in the degree 1 graph is tight. In fact, it turns
out that only the graphs defined in 2.6 and their offset counterparts are able to compute all shifts using
only bn/2c common bits. Although this proof does not introduce new or more powerful protocols or graph
structures, we have determined the precise amount of complexity that n edges provide in computing shifts.
The communication complexity corollary to this theorem shows us the exact amount that a single bit from
one player improves the communication complexity in the restricted Sum-Index problem.
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Chapter 4

Conclusions and Open Problems

The most obvious candidate for future work is the application of the consequence graph structure to graphs
with higher degree. It may seem likely that extending the structure of the consequence graph to analyze
such graphs would lead quickly to more lower bounds. However, our use of the consequence graph was
driven by the fact that for a given input bit, Lemma 3.5 gave us a single bit to which it was strongly tied.
In higher degree graphs, this relationship breaks down, as there may be multiple edges out of a single node
in the consequence graph. As a result, it is harder to determine the relationship between the structure of the
consequence graph and the number of common bits. In a graph G of degree 1, there is at least one common
bit for every two nodes not in loops in Gπ, but this attribute surprisingly breaks down in graphs with higher
degree as well. If a technique is developed to make use of consequence graphs of higher degree, then more
lower bounds should be determined for the graph model, as well as for the corresponding shift circuits and
Sum-Index communication game.

The existence of a protocol with sub-linear cost for the Sum-Index function shows us that linear bounds
on the common bits will not hold for graphs with some non-constant degree. This result is cause to wonder
whether shift functions are truly hard, in the circuit complexity sense; however, a linear bound for common
bits in specific graphs is a step towards finding a similarly strong lower bound for higher degree graphs.
Although several questions are implicit in the earlier chapters, two open problems seem most relevant and
important to the topics we have covered:

• How restrictive is our communication model? In the general model, in which no party is required to
send a determined subset of the input array, is it possible to match any of the restricted bounds?

• Are there circuits with size O(n) and depth O(log n) which compute the shift function?

An interesting side note is that the Sum-Index function and the non-linear upper bound proved by Pud-
lak, Rodl, Sgall have been used to justify new methods in Private Information Retrieval. Private Information
Retrieval deals with a situation in which a person wants to retrieve large sets of information from a data-
base without allowing database administrators or other people with access to determine what queries he
is performing and what data has been retrieved. In an extensive review of the subject, Chor, Goldreich,
Kushilevitz, and Sudan, examine the problem of confidential retrieval of information from distributed data-
bases (multiple servers), and cite the results of PRS as the first sign that reducing the communication costs
is possible[1]. As these researchers look to improve upper bounds on the complexity of the Sum-Index
function, we hope the techniques introduced in this paper are a framework for finding strong lower bounds.
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