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1. Introduction 

The following searching problem is considered. A set S of  n distinct names from a 
universe U of  m possible names (m > n) is to be stored in a memory T i n  a manner  
permitting efficient processing of  membership queries of  the form, "Is q in S, and 
if  so, then where can it be found in T?." We assume that the set S is static, so that 
our main concerns are the storage required for S and the time required for 
processing queries. Hashing schemes provide a solution to this problem utilizing 
O(n) storage and permitting queries in (9(1) average time per query. In this paper, 
we concentrate on the worst case time required for a query, while retaining an 
O(n) bound on storage. This question has been considered in various papers, for 
example, [1]-[4]. Yao [4] proposes an interesting complexity model for this 
problem. In Yao's framework, S is a subset of  U = { l, 2 . . . . .  mt of  cardinality n. 
The memory T stores an item from U in each of  its cells, and these cells can be 
randomly accessed by address. A query for an element q in U is processed by 
probing a sequence of  cells in T. This sequence of  probes can be adaptive: The 
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next cell to be probed is determined precisely by q and the contents of the cells 
previously probed. Query time is measured in terms of the number of cells probed, 
and storage is defined to be the size of T (total number of cells). Yao [4] shows 
that storage n + 1 and worst case query time 2 can be simultaneously attained 
provided that m grows at least exponentially in n (m ___ e 2n suffices). Yao and 
Tarjan [3] show that O(n) storage and worst case query time O(log m/log n) can 
generally be attained. Therefore, if m is polynomially bounded in n, or grows at 
least exponentially in n, then linear storage and constant query time can be 
simultaneously achieved. However, as Yao [4] points out, there is an intermediate 
range for m, for example, m -- 2 "~, for which the possibility of linear storage and 
constant query time is not settled by the results quoted above. 

In the next section we describe a storage technique achieving linear storage and 
constant worst case query time for all m and n. The query algorithm is especially 
easy to implement and the relative magnitudes of m and n play no role in the 
proofs. Section 3 discusses a general framework that motivates our construction. 
In Section 4 we describe a refinement that attains space n + o(n), while retaining 
constant query time. Section 5 describes some variations of our method. 

2. Basic Representation and Query Algorithm 

In this section we illustrate the main idea behind our set representation method 
with a technique achieving linear storage and constant query time. Let U - 
{1, . . . ,  m}. To simplify the discussion we assume that p --- m + 1 is a prime 
number. We use the notation a mod b to denote the unique integer x, 1 < x < b, 
such that x - a(mod b). We need the following lemma. 

LEMMA 1. Given W C U with I WI = r, and given k ~ U and s >- r, let 
B(s, W, k, j) = I l x lx  ~ W and (kx mod p)mod s = J}l for 1 <_ j < s. In words, 
B(s, W, k, j) is the number of times the value j is attained by the function x ---> 
(kx mod p)mod s when x is restricted to IV. Then there exists a k E U such that 

~ (  ) r2 B(s, W, k, j )  < - - .  

J~l 2 S 

PROOF. We show that 

) y~ B(s, W, k,j) < (P -- 1)r 2 (1) 
~_~ j=~ 2 s 

from which the Lemma follows immediately. The sum in (1) is the number of 
pairs (k, {x, y}), with x, y E W, x # y, 1 ___ k < p, such that 

(kx mod p)mod s = (ky mod p)mod s. 

The contribution of {x, y}, x # y, to this quantity is at most the number of k such 
that 

k(x - y)mod p E {s, 2s, 3s, . . . ,  p - s, p - 2s, p - 3s . . . .  ]. (2) 

Because x - y has a multiplicative inverse mod p, the number of k satisfying (2) is 
_< 2(p - l)/s. Summing over the (~) possible choices for Ix, y], we conclude that 
the sum in (1) is indeed bounded by (p - l)rZ/s, completing the proof. [] 

COROLLARY 1. There exists a k E U such that ,~L., B(r, W, k, j)  2 < 3r. 

PROOF. Combine Lemma l with the observation that ~ ,  B(r, W, k, j ) - -  
IWI = r. [] 
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COROLLARY 2. There exists a k' E U, such that the mapping x ~ (k 'x  mod 
p)mod r 2 is one-to-one when restrtcted to W. 

PROOF. Choosing s --- r 2, Lemma 1 provides a k' such that B(r 2, W, k', j)  <- 1 
for all j. I"! 

Given S c U, [ S I = n, our technique for representing the set S works as follows. 
The content k of cell 710] is used to partition S into n blocks Wj, 1 ___ j _< n, as 
determined by the value of the function f(x) = (kx mod p)mod n; pointers to 
corresponding blocks Tj in the memory T are provided in locations T[j], 1 <_ j <_ 
n. More specifically, a k is chosen satisfying Corollary 1 (with W = S and r = n), 
so that Y~ I W~ 12 < 3n. The amount of space allocated to the block Tj for Wj is 
I Wj 12 + 2. The subset Wj is resolved within this space by using the perfect hash 
function provided by Corollary 2 (setting W = Wj and r -- I W~I). In the first 
location of Tj we store I W~I, and in the second location we store the value k' 
provided by Corollary 2; each x ~ Wj is stored in location [(k'x mod p)mod I Wj 12] 
+ 2 of block Tj. 

A membership query for q is executed as follows: 

1. Set k = T[0] and setj  = (kq mod p)mod n. 
2. Access in T[j] the pointer to block Tj of T and use this pointer to access the 

quantities [ I11::1 and k' in the first two locations of block Tj. 
3. Access cell ((k'q mod p)mod I Wj [2) + 2 of block T~; q is in S if and only if q 

lies in this cell. 

A query requires five probes, and our choice of k in Corollary 1 implies that the 
size of T is at most 6n. An example is provided below. 

Example 

m - - 3 0 ,  p = 3 1 ,  n = 6 ,  S = { 2 , 4 , 5 , 1 5 , 1 8 , 3 0 1  

0 1 2 3  4 5 6 

12 13 14 15 16 17 18 19 20 21 22 
1111141  1211 1 5 1 2 1  I I 1 2 1 3 1  I 1181301 
I W21k'  I W4I k '  I WsI k '  

23 24 
I l l  1 1151 
I W61 k '  

A query for 30 is processed as follows: 

1. k = T[0] = 2 , j  = (30.2 mod 31)mod 6 = 5. 
2. T[5] = 16, and from cells T[16] and 7117] we learn that block 5 has two 

elements and that k' --- 3. 
3. (30 k' mod 3 l)mod 22 --- 4. Hence, we check the 4 + 2 = 6th cell of block 5 

and find that 30 is indeed present. 

The time required to construct the representation for S might be as bad as O(mn) 
in the worst case; finding k may require testing many possible values before a 
suitable one is found. However, by increasing the size of T by a constant factor, 
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we can show that the representation can be constructed in random expected time 
O(n), independently of m and S. Namely, we use the following variants of  Cor- 
ollaries 1 and 2. 

COROLLARY 3. For at least one-half of  the values k in U, 

B(r, W, k, j)z < 5r. 
I~1 

PROOF. We use eq. (1) and the fact that at most one-half of the terms in a 
sequence can exceed twice the average value of the sequence to conclude that 

~ (B(r ,W,k ,J ) )<2r  
J=l 2 

for at least one-half of the values k in U, from which the corollary follows easily. [] 

COROLLARY 4. The mapping x ~ (k 'x  mod p)mod 2r 2 is one-to-one when 
restricted to W for at least one-half of  the values k' in U. 

PROOF. We set s = 2r 2 in eq. (1) and conclude that 

~ B(2r 2, W,k',l) < 1 
j r |  2 

for at least one-half of the values k' in U, which implies the corollary. [] 

Using Corollaries 3 and 4, we represent a set S of size n as before, except that 
now we allocate space 2 I ~ [ 2 + 2 in storing a block Wj of S. What we gain is the 
fact that the probability that a particular choice for k (or k') is suitable, exceeds ½. 
The choices for k (or k') are selected at random until suitable values are found. 

By modifying our methods slightly, we can guarantee a worst case construction 
time of O(n31og m). 

LEMMA 2. There exists a prime q < nElog m that does not divide any o f  
the elements in & and that separates these elements into distinct residue classes 
rood q. 

PROOF. For S = {x~ . . . . .  xn} let t = l-I,<j (x, - xj) I], x,. Clearly, log I tl -< 
(n~l)log m. Since the prime number theorem gives log(I'Iq<x, qpnme q) -- x + o(x), 
we conclude that some prime q < n210g m cannot divide t. This prime q satisfies 
the lemma. [] 

We proceed as follows. If m < n210g n, then O(nm) - O(n310g m). If m > 
n210g n, then in time O(nq) we produce a prime q satisfying Lemma 2 and store it 
in location T[ -  1 ]. The remainder of Tis specified as before, except that the location 
where x E S gets stored is determined by using the hash value x mod q in place of 
x, in effect replacing U with a smaller universe, U' = {1 . . . .  , q - 1}, with q ___ 
n210g m. The total construction time is bounded by O(nq) --- O(n310g m). 

3. Discussion 

The scheme described above can be couched in the following general framework. 
The value k in T[O] induces a coloring of U with n colors, namely x ---, 
(kx mod p)mod n. Yao's two-probe method is likewise based on an indexed family 
x = {Ck}, I × I <-- m, of n-colorings having the property that for each S C_ U, I S I = 
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n, there exists a Ck in X that is one-to-one when restricted to S. Yao refers to such 
a family X as a separating system. With Yao's method, the set S is stored in T by 
placing k in T[0], to invoke the coloring Ck, and placing x E S in T[j] where j is 
the color of  x under Ck. This approach works provided that such a × exists. The 
restriction [x[ -< m arises from the fact that its elements are indexed by the 
permissible range of  T[0]. A simple counting argument shows that at least 
(m)/(m/n)" colorings are required for a separating system, from which we deduce 
that m > n'/n!. R. Graham uses a probabilistic argument to show that if m >~ n'+2/ 
n! ~. e" then a separating system x exists. 

To extend Yao's method when m = exp(o(n)), we resign ourselves to the fact 
that collisions are inevitable under the coloring induced by T[0]. Referring to the 
monochromatic blocks of S as bins, we attempt to use secondary colorings to 
separate the elements within bins. If a bin size b is sufficiently small; that is, b _< 
log m, then that bin can be resolved by choosing a b-coloring from a family x '  that 
comprises a separating system for subsets of  size b. 

Now a probabilistic argument shows that for all m _> n, there exists a family of 
n-colorings X, [ × [ -< m, such that for each S C_ U, [ S [ = n, there exists a coloring 
C E x that partitions S into bins of  size < log n _ log m. Therefore, we conclude 
from this reasoning that there exist table storage schemes under Yao's model with 
O(l)  query time and O(n) storage. However, we have not been able to explicitly 
construct a class of storage schemes for all m >__ n along these lines. We refer to 
storage schemes of this kind, where bin sizes are uniformly bounded by log m, as 
L ® schemes. 

Returning again to Yao's two-probe method, we consider the possibility of 
utilizing more table space, in effect using t-colorings with t _ n to completely 
resolve the elements of an n set S. Again, using counting and probabilistic 
arguments, we can show that a family X oft-colorings exists, ] x I -< m, that resolves 
all S of  size n, provided that m is roughly at least exp(n2/t), which is roughly best 
possible. Therefore, by choosing t = n 2, we remove any constraint on m. 

Although using n 2 colors, or equivalently space n 2 is very inefficient in terms of 
our original problem, it is reasonable to use b 2 colors to resolve bins of  size b, 
provided that ~ b 2 is small. Probabilistic arguments show, in fact, that almost all 
families of  n-colorings X with I x ] = m achieve ~ b E = O(n)  for every S of  size n, 
for all m >_ n. This provides another class of  linear space, constant query time table 
storage schemes, which we refer to as L 2 schemes. Contrary to the difficulty we 
have in constructing explicit L ® schemes, the construction in Section 2 provides 
an explicit class of  L 2 schemes. 

4. Refinement 

In this section we show how to reduce the storage utilization to n + o(n) while 
retaining constant query time. First, we provide a sketch. Our data structure in 
Section 2 involves an initial partition of  S into n blocks, followed by resolutions of 
these blocks at the second level of the data structure. Our refinement involves an 
initial partition of  S into a larger number of  blocks, g(n) (to be specified below), of 
which, obviously, at most n are nonempty. Those blocks that have more than one 
element are resolved at the second level as before. However, there will be very few 
blocks with more than one element; and moreover, the total space required to 
resolve them is only o(n). The element of  a singleton block is directly stored in the 
initial level of the data structure. To reduce the space requirement for the initial 
level of the data structure from g(n) to n + o(n), we use an auxiliary data structure 
(to be described). 
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Choosing W-- S, s -- g(n), and r = n in Lemma 1, we find that for some k E U, 

2 = o . (3)  
j= l  

Since x z = O((~)) for x _ 2, 

Y/ 

eq. (3) implies that 

B ( g ( n ) , S , k , j )  2-- O(n~(n) ) (4) 

where Y,' denotes the sum over all j such that 1 <_ j < g(n) and B(g(n), S, k, j)  >_ 
2. The set S is partitioned into blocks as determined by the values of  the function 
f(x) = (kx rood p)mod g(n). Since g(n) will be chosen so that lira n/g(n) = 0, eq. 
(4) implies that the total space required to resolve those blocks having two or more 
elements (using the method in Section 2) is o(n). 

In processing a membership query for q, we first determine the number j = 
(kq mod p)mod g(n) of the block Wj of the partition of S to which q must belong 
if q belongs to S. At most n of  these blocks are nonempty. With each nonempty 
block W~ we associate a cell of T in which we store either (a) the single item of W~ 
in the event that I Wj I = 1, or (b) a pointer to the second level of  our data structure 
where Wj is resolved if I Wjl - 2. We also use a tag bit to indicate which of  (a) or 
(b) applies. (These tag bits can be packed into O(n/log m) = o(n) words.) This 
approach requires an auxiliary data structure to determine whether a block Wj is 
nonempty, and to find the cell and tag bit associated with W~ when Wj is nonempty. 
The design of this auxiliary data structure is a slight modification of  a similar 
construction due to Tarjan and Yao [3]. The cells associated with nonempty W~ 
are arranged consecutively with increasing j. Let T' designate the portion of T in 
which these cells are located. We partition the interval I - -  [1, g(n)] into n2/g(n) 
subintervals of size (g(n)/n) 2. With each of the nZ/g(n) subintervals a o f / ,  we 
associate a base address B H ,  which is the address of the location immediately 
preceding the cells in T' associated with nonempty Wj, j 6 a. These base addresses 
are stored in a table of size n2/g(n) = o(n). A second table A[j], ,j E I, is used to 
store offsets: A[j] = 0 if Wj = ~, otherwise B[a] + A[j] is the address in T' 
associated with ~ fo r j  E ~. Since A[j] assumes at most (g(n)/n) 2 + 1 possible 
values, the entire table A[j], j E I can be packed into O(g(n)log(g(n)/n)/log n) 
cells of  T. Picking g(n) = n(log n) '/2 the resulting space requirement for the A[j] 
table is o(n), and so the total space requirement for our data structure is n + o(n). 

The remarks at the end of Section 2 concerning the time required to construct 
the representation for S carry over and apply here. 

5. Variations 

The results presented here remain valid if we substitute the mapping x 
/(kx mod p). s/pl in place of (kx mod p)mod s. Presumably, many other suitable 
mappings can be found. Another mapping that may be of interest, particularly if 
the multiplication of large numbers is considered objectionable, is the following. 
Assume that U is the set of d dimensional s-ary vectors where s is a prime. Given 
two vectors k = (k~, . . . ,  ka) and x -- (x~ . . . . .  xa) in U, we let k. x denote the inner 
product: k-x = Y. k,x, mod s. Then the analog to Lemma 1 holds for the mapping 
x ~ k.x. This mapping avoids multiplication by large numbers and has the further 
advantage that k .x  can be computed more rapidly for "short" x (x with small 
Hamming weight). Our data structure, however, requires a variety of  such mappings 
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(s is a bounded parameter), which in turn requires that it be easy to convert 
between different representations (having differing values of s) of the elements in 
U. We would also like the Hamming weight to be roughly preserved in switching 
between representations. An obvious way to accomplish this is to use a block code 
approach to these representations, of which the binary coded decimal is an example. 
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