
CS 109
Spring 2008
Theory of Computation: Advanced

Homework 5
Due Fri May 01, 5:00pm

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

General Instructions: Same as in Homework 1.
Honor Principle: For the last two problems, you should work entirely on your own and not discuss them with anyone
else. (They are easy problems, so I would like you to practice working on your own on those two — consider it useful
preparation for the Final Exam.) For the first two problems, the honor principle is the same as in Homework 1, i.e., you
may discuss, but write up solutions on your own.

11. For a string x ∈ {0, 1}∗, let N1(x) denote the number of 1s in x. The majority function MAJn : {0, 1}n → {0, 1} is
defined as follows:

MAJn(x) =

{
1 , if N1(x) ≥ n/2 ,
0 , otherwise.

Show that MAJn can be computing using O(n)-sized circuits. [This is essentially Sipser’s Problem 9.26 — if you use
the approach suggested in the book, you need to first solve (in sufficient detail) any subproblems that come up, such
as Sipser’s Problem 9.24.] [2 points]

12. Let k > 0 be an integer. Construct a language in PH that is not in SIZE(nk). [2 points]

This is a hard problem. To get started, recall from the lectures that we proved that there exist languages in SIZE(n2k)
that are not in SIZE(nk). Try writing out this fact formally, using quantifiers: you should have a small, fixed number
of quantifier alternations. This suggests that you might be able to place the required language in either Σp

i or Πp
i ,

for some fixed i, independent of k.

A further hint is given on the next page. I strongly recommend that you turn the problem over in your mind for a
day at least, before looking at that hint.

13. An unbounded fan-in circuit is just like the circuits we defined in class — i.e., DAGs whose vertices (gates) are
inputs (x1, . . . , xn), negated inputs (¬x1, . . . ,¬xn), and logic gates (AND/OR), with one or more gates of fan-out
0 designated as output(s) — except that the restriction that gates have fan-in 2 is removed. Size and depth are
defined as before: number of edges (wires) and maximum path length, respectively.

Prove that there exists a suitable size function s : N → N such that every Boolean function f : {0, 1}n → {0, 1} has
unbounded fan-in circuits with O(1) depth and O(s(n)) size. Find the smallest possible s(n) you can.

[2 points]

14. For integers i ≥ 0, the complexity classes ACi are defined as follows:

ACi = {L ⊆ {0, 1}∗ : ∃ c ∈ N (L has an unbounded fan-in

circuit family 〈Cn〉∞n=1 with size(Cn) = O(nc) and depth(Cn) = O(logi n))} .

In other words, ACi is the unbounded fan-in analogue of NCi. Note that AC0 does not suffer from the severe
shortcoming that NC0 does, where the output can only depend on a constant number of inputs.

Prove that
⋃∞

i=0 ACi =
⋃∞

i=0 NCi. [2 points]

Page 1 of 2

CS 109
Spring 2008
Theory of Computation: Advanced

Homework 5
Due Fri May 01, 5:00pm

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Hint for Problem 12: Did you think about the problem for a day, at least? If not, please do!

For a string w ∈ {0, 1}n, let Bw denote the Boolean circuit described by w; if w is not a well-formed encoding of a
circuit due to syntax errors, define Bw to be a trivial circuit that always outputs 0 (say). Let C(x) denote the output
of circuit C on input x. Argue that, for s ∈ N and w, x ∈ {0, 1}∗, the predicates “size(Bw) ≤ s” and “Bw(x) = 1”
are decidable in polynomial time. Therefore, if we use a fixed number of quantifier alternations and then perform an
inner computation that involves evaluating these types of predicates (maybe a few times), we’ll have either a Σp

i or a Πp
i

computation, depending upon whether we start with a “∃” or a “∀” quantifier.
Now consider the following statement φn(x), for an x ∈ {0, 1}n, and figure out what it’s saying:

φn(x) = ∃w ∈ {0, 1}∗ (size(Bw) ≤ n2k ∧ Bw(x) ∧ ∀ v ∈ {0, 1}∗ (size(Bv) ≤ nk ⇒ ∃ y ∈ {0, 1}n (Bv(y) 6= Bw(y)))) .

Once you have digested it, you’ll find that this is close to what we need to create a suitable language in PH. But
unfortunately {x ∈ {0, 1}∗ : φ|x|(x)} ends up contaning all sufficiently long Boolean strings, so this is not the language
we seek! Figure out why this happens, and then think of what you can do to fix it. Perhaps you need more quantifiers.

Page 2 of 2

