General Instructions: Same as in Homework 1.

Honor Principle: For this homework, you should work entirely on your own and not discuss with anyone.

- 15. Give a full formal proof that $ZPP = RP \cap coRP$.
- 16. For constants $0 < \alpha < \beta < 1$, define the class $\mathsf{BPP}_{\alpha,\beta}$ to be the class of all languages $L \subseteq \Sigma^*$ such that there exists a PTM *M* that runs in polynomial time and behaves as follows on an input $x \in \Sigma^*$:

$$\begin{aligned} x \notin L &\Rightarrow & \Pr_R[M(x,r)=1] \leq \alpha \,, \\ x \in L &\Rightarrow & \Pr_R[M(x,r)=1] \geq \beta \,. \end{aligned}$$

Note that our definition of BPP in class coincides with $BPP_{\frac{1}{2},\frac{2}{3}}$ in this notation.

Using Chernoff bounds, give a full formal proof that for all α and β as above, $\mathsf{BPP}_{\alpha,\beta} = \mathsf{BPP}$.

[2 points]

[2 points]

Recall that the Chernoff bound we saw in class had the following general form. Let $\{X_1, \ldots, X_n\}$ be independent indicator random variables with $\mathbb{E}[X_i] = p_i$. Suppose $X = \sum_{i=1}^n X_i$ and let p be such that $np = p_1 + \cdots + p_n$. Then, for any $\delta > 0$:

$$\Pr[X \ge (1+\delta)np] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{np}.$$

We also have a similar inequality bounding deviations of *X* below its mean. For $0 < \delta < 1$:

$$\Pr[X \le (1-\delta)np] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{np}.$$