CS 109	10	Prof. Amit Chakrabarti
Spring 2009	Homework 8	Computer Science Department
Theory of Computation: Advanced	Due Thu May 14, 5:00pm	Dartmouth College

General Instructions: Same as in Homework 1.

Honor Principle: Please work on Problem 20 entirely on your own. For the other problem, you may discuss with fellow students in the class, as in Homework 1.

20. Let $f : \{0,1\}^n \to \{0,1\}^n$ be a function and k > 0 be an integer. Define the function $f^{(k)} : \{0,1\}^n \to \{0,1\}^n$ as follows:

$$f^{(k)} = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}},$$

where " \circ " denotes function composition. Prove that, if f is a one-way permutation, so if $f^{(k)}$.

[2 points]

21. Assuming one-way functions exist, prove that the above result does not generalize to one-way functions. (Obviously, only functions of the form $f : \{0,1\}^n \to \{0,1\}^n$ can be composed with themselves.) [2 points]

Note: These problems are from [Arora-Barak], Chapter 10.