Homework 11 Due Fri May 28, 5:00pm

General Instructions: Same as in Homework 1.

Honor Principle: Same as in Homework 1.

26. We defined the classes AM and MA, involving two players Arthur (a probabilistic polynomial-time verifier) and Merlin (a computationally unbounded "magical" prover who can observe Arthur's coin tosses). A formal definition of AM can be given as follows.

Suppose $L \subseteq \{0,1\}^*$ is a language, and Merlin is trying to prove to Arthur that $x \in L$. Let $V(x, r, w) \in \{0,1\}$ denote the outcome of Arthur's verifier (1 = ACCEPT, 0 = REJECT) on input $x \in \{0,1\}^*$, random string $r \in \{0,1\}^*$ and witness $w \in \{0,1\}^*$ provided by Merlin. We say $L \in \text{AM}$ if $\exists V$ such that

$$\begin{split} x \notin L &\implies & \Pr_r[\exists \, w \, (V(x,r,w)=1)] \leq \frac{1}{3} \,, \\ x \in L &\implies & \Pr_r[\exists \, w \, (V(x,r,w)=1)] \geq \frac{2}{3} \,. \end{split}$$

Notice that the definition captures the nature of the interaction: Merlin provides a witness w based on both x and r. The class MA differs from this in that Merlin must provide a witness w in advance, and Arthur *then* uses a random string r to do the verification. Give an analogous formal definition of MA; use the specific constants $\frac{1}{3}$ and $\frac{2}{3}$ as above. Then, give a full formal proof that MA \subseteq AM. [2 points]

27. Prove that AM \subseteq PH. Try to find the lowest level you can within the polynomial hierarchy that contains AM. [2 points]