CS 109	TT 1 F	Prof. Amit Chakrabarti
Spring 2011	Homework 5	Computer Science Department
Theory of Computation: Advanced	Due Wed Apr 20, 5:00pm	Dartmouth College

General Instructions: Please write concisely, but rigorously. Non-rigorous solutions won't be graded. For each problem, only "nearly flawless" solutions earn 2 points. Solutions that contain the key insights but are flawed in execution earn only 1 point. Solutions that are correct but needlessly long (usually this means over 1.5 pages long) will earn only 1 point. The purpose of this strict grading scheme is to dissuade you from writing up half-baked ideas in the hope of getting "some" credit. You are budding researchers: your writing should reflect that. [These are the same instructions as for Homework 1, but I am repeating them to emphasize their importance.]

Honor Principle: Same as in Homework 1.

10. The complexity class DP is defined as follows:

 $\mathsf{DP} = \{L_1 \cap L_2 : L_1 \in \mathsf{NP} \text{ and } L_2 \in \mathsf{coNP}\}.$

Prove that the language EXACT-IND-SET = { $\langle G, k \rangle$: *G* is a graph with $\alpha(G) = k$ } is DP-complete under polynomial time reductions. Here, $\alpha(G)$ is the independence number of *G*, defined as the size of a maximum independent set of *G*. [2 points]

11. Locate DP within the polynomial hierarchy, i.e., determine its relation to the classes Σ_i^p and Π_i^p , as best as you can. See if you can say anything more by assuming that the hierarchy does not collapse. [2 points]