
CS 109
Spring 2011
Theory of Computation: Advanced

Homework 7
Due Mon May 2, 5:00pm

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

General Instructions: Same as in Homework 1.

Honor Principle: Same as in Homework 1. Additionally, note that the first problem is a standard exercises in a number of
textbooks, sometimes with solutions given. You are specifically required not to consult any books or websites other than this
course’s textbooks and website while working on those problems.

14. An unbounded fan-in circuit is just like the circuits we defined in class — i.e., DAGs whose vertices (gates) are inputs
(x1, . . . , xn), negated inputs (¬x1, . . . ,¬xn), and logic gates (AND/OR), with one or more gates of fan-out 0 designated
as output(s) — except that the restriction that gates have fan-in 2 is removed. Size and depth are defined as before:
number of edges (wires) and maximum path length, respectively.

(Warm-up exercise; no credit; no need to turn this in) Prove that there exists a suitable size function s : N→ N such
that every Boolean function f : {0, 1}n → {0, 1} has unbounded fan-in circuits with O(1) depth and O(s(n)) size. Find
the smallest possible s(n) you can.

For integers i ≥ 0, the complexity classes ACi are defined as follows:

ACi = {L ⊆ {0, 1}∗ : ∃ c ∈ N (L is decided by an unbounded fan-in

circuit family 〈Cn〉∞n=1 with size(Cn) = O(nc) and depth(Cn) = O(logi n))} .

In other words, ACi is the unbounded fan-in analogue of NCi . Note that AC0 does not suffer from the severe shortcoming
that NC0 does, where the output can only depend on a constant number of inputs.

Prove that
⋃∞

i=0 ACi =
⋃∞

i=0 NCi . [2 points]

15. Let k > 0 be an integer. Construct a language in PH that is not in SIZE(nk). [2 points]

This is a hard problem. To get started, recall from the lectures that we proved that there exist languages in SIZE(n2k)
that are not in SIZE(nk). Try writing out this fact formally, using quantifiers: you should have a small, fixed number of
quantifier alternations. This suggests that you might be able to place the required language in either Σp

i or Πp
i , for some

fixed i, independent of k.

A further hint is given on the next page. I strongly recommend that you turn the problem over in your mind for a day at
least, before looking at that hint.

16. Give a full formal proof that ZPP= RP∩ coRP. [2 points]

Page 1 of 2

CS 109
Spring 2011
Theory of Computation: Advanced

Homework 7
Due Mon May 2, 5:00pm

Prof. Amit Chakrabarti
Computer Science Department

Dartmouth College

Hint for Problem 15: Did you think about the problem for a day, at least? If not, please do!

For a string w ∈ {0, 1}n, let Bw denote the Boolean circuit described by w; if w is not a well-formed encoding of a circuit due
to syntax errors, define Bw to be a trivial circuit that always outputs 0 (say). Let C(x) denote the output of circuit C on input
x . Argue that, for s ∈ N and w, x ∈ {0,1}∗, the predicates “size(Bw) ≤ s” and “Bw(x) = 1” are decidable in polynomial time.
Therefore, if we use a fixed number of quantifier alternations and then perform an inner computation that involves evaluating
these types of predicates (maybe a few times), we’ll have either a Σp

i or a Πp
i computation, depending upon whether we start

with a “∃” or a “∀” quantifier.
Now consider the following statement φn(x), for an x ∈ {0,1}n, and figure out what it’s saying:

φn(x) = ∃w ∈ {0, 1}∗ (size(Bw)≤ n2k ∧ Bw(x) ∧ ∀ v ∈ {0,1}∗ (size(Bv)≤ nk ⇒∃ y ∈ {0,1}n (Bv(y) 6= Bw(y)))) .

Once you have digested it, you’ll find that this is close to what we need to create a suitable language in PH. But unfor-
tunately {x ∈ {0, 1}∗ : φ|x |(x)} ends up contaning all sufficiently long Boolean strings, so this is not the language we seek!
Figure out why this happens, and then think of what you can do to fix it. Perhaps you need more quantifiers.

Page 2 of 2

