
CS 85/185

Fall 2003

Lower Bounds in Computer Science

Homework 1
Due Oct 7, 2003

Amit Chakrabarti

Department of Computer Science

Dartmouth College

Each of these problems requires you to prove something. Please think carefully about how you are
going to organise your proof before you begin writing. Each problem has a fairly short solution; if

you find yourself writing a page or more of proof, you have probably not found the best solution.

So retry the problem.

1. Consider the problem of selecting both the minimum and the maximum of n given numbers,
using comparisons. The naive solution would be to first find the minimum and then the

maximum, thereby using nearly 2n comparisons. But, as we remarked in class, there is an

algorithm which solves this problem making only 3dn/2e comparisons.

Your task is to prove an almost matching lower bound. Prove that any comparison based

algorithm for this problem must use at least d3n/2e − 2 comparisons.

2. We would like to sort an array of numbers using only in-place exchanges of the form xch(i,j)

which swaps the array elements at indices i and j. Furthermore, we would like to avoid
exchanging elements that are “far away”: the two indices involved in an exchange must differ

by no more than some constant C. For instance, “bubble sort” is an exchange-based sorting
algorithm and it only swaps adjacent pairs, so it satisfies our requirement with C = 1.

Prove that under these conditions sorting requires Ω(n2) time in the worst case. Be careful!

Note that we did not insist that the algorithm uses comparisons alone.

3. Consider the problem of finding the second largest of n given elements (numbers, if you
prefer) using comparisons. In class, we used a leaf counting argument to prove a lower bound

of n − 2 + log n comparisons. This exercise will walk you through an alternative proof of this

lower bound using an adversarial argument.

The algorithm asks queries of the form “is xi < xj?” and the adversary answers them using

an adversarial strategy which satisfies two properties:

(a) There is always at least one input with which the adversary’s answers are consistent.

(b) If the algorithm has asked less than n− 2 + log n questions so far, then there are at least

two consistent inputs with different answers (for the second largest element).

Clearly the existence of such a strategy proves the lower bound.

The adversary maintains n tokens, initially allocated one per element. When he∗ is asked a
comparison query between two elements, he declares the element that has more tokens the

winner, and then he takes away all of the loser’s tokens and gives them to the winner.

3.1. Spell out this adversarial strategy in detail (make sure you handle all cases) and argue
that it satisfies property (a) above.

3.2. Recall that we argued in class that by the time the algorithm knows the second largest

element, it must also know the largest. Prove that when the algorithm finds out the
largest element, the adversary must have allocated all n tokens to that element.

3.3. Prove that the largest element must therefore win at least log n comparisons.

3.4. Finish the lower bound proof by showing that property (b) above is satisfied. Don’t try to

actually produce two different consistent inputs; just argue that having performed less

than n − 2 + log n comparisons the algorithm cannot know the answer for sure.

4. For a Boolean function f : {0, 1}n → {0, 1}, prove the following relation between its certificate
complexity, its sensitivity and its block sensitivity: C(f) ≤ s(f)bs(f). Hint: fix an input to the

function and consider a set of disjoint sensitive blocks each of which is minimal. How large
can each block be? How many blocks can there be, at most? Now produce a short certificate.

∗It is considered ungallant to use “she” for a character as mean as the adversary!

1



5. In this problem we shall prove two lower bounds on the (asymptotic) gap between some of

the complexity measures for Boolean functions that we have studied.

5.1. Construct a family of functions fn : {0, 1}n → {0, 1} such that, for infinitely many n,

D(fn) = Θ(n) whereas C(fn) = Θ(
√

n). This shows that the gap between C(f) and
D(f) can be quadratic. We have already shown in class that D(f) ≤ C(f)2 for any f , so

this is the largest possible gap.

5.2. Construct a family of functions gn : {0, 1}n → {0, 1} such that, for infinitely many n,
bs(gn) = Θ(

√
n) whereas deg(gn) = Θ(n). Again, this shows a quadratic gap. From what

we have seen in class, and from Problem 4, we have deg(f) ≤ D(f) ≤ C(0)(f)bs(f) ≤
s(f)bs(f)2 ≤ bs(f)3; therefore the gap can be at most cubic.

A hint for the first sub-problem: Consider only those n’s which are powers of 2. Then consider
an appropriate generalisation of the function in the figure below.

x x x x x x x x x x x x x x x x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A hint for the second sub-problem: Consider only those n’s which are perfect squares and

divide the n inputs into
√

n equal-sized blocks.

2


