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As usual, please think carefully about how you are going to organise your proofs before you begin
writing. You shouldn’t need more than a page for each solution, but we shall relax things a bit for

problems 1 and 6.

Warning: This homework is fairly challenging. Start early!

1. Treating an n-bit vector ~x as a string (so that the ordering of the variables is important) we

can define a Boolean function As
n : {0, 1}n → {0, 1} as follows: As

n(~x) = 1 iff ~x contains s as
a substring. Here s is a fixed string.

1.1. Show that A111
5 and A111

6 are not evasive, i.e. it is possible to compute these functions
without ever having to look at every input bit.

1.2. Show that A111
3 and A111

4 are evasive.

1.3. Prove that A111
n is evasive iff n ≡ 0 or 3 (mod 4). Hint: For the “if” direction, use

a recurrence for the number of strings of length n that satisfy A111
n , and prove that

sometimes just looking at this number tells you that the function is evasive. For the

“only if” direction, use the ideas from your solution to 1.1, plus induction.

1.4. Find all integers n for which A100
n is evasive. Hint: Consider n mod 3.

2. Let f be a bipartite graph property, i.e., a Boolean function on mn Boolean variables {xij :
1 ≤ i ≤ m, 1 ≤ j ≤ n} that is invariant under permutations of the variables that preserve the

bipartition. This problem walks you through Yao’s proof that, if f is nontrivial and monotone,
then f is evasive.

Call i the left index and j the right index of variable xij . Let σ be a permutation that keeps

the left index fixed and adds 1 (mod n) to the right index. Let Γ be the permutation group

generated by σ.

2.1. As discussed in class, the action of Γ partitions the mn variables into orbits. How many

orbits? What does each orbit look like?

2.2. Recall that a face of the fixed-point complex ∆f,Γ is a set of orbits such that setting all

variables inside those orbits to 1 and setting variables outside to 0 gives an assignment
~x such that f(~x) = 0. Based on what you showed above, what do the faces of ∆f,Γ look

like?

2.3. Recall that the Euler characteristic χ(∆) of an abstract complex ∆ is defined by

χ(∆) =
∑

∅6=F∈∆

(−1)|F |−1 =

∞
∑

i=1

(−1)i−1 · #{faces of size i} .

Based on your work above, write out an expression for χ(∆f,Γ).

2.4. Simplify the above expression and figure out when it can equal 1. Using the topological

method, conclude that f is evasive.

3. Even while doing research on lower bounds one often has to prove upper bounds, if only to

provide counterexamples for plausible but false lower bound conjectures. In the early 1970’s it
was conjectured that any nontrivial graph property fn on n-vertex graphs has D(fn) = Ω(n2).
The Rivest-Vuillemin theorem proves this for monotone fn, but what about non-monotone

properties?

Call an n-vertex graph a scorpion∗ if it has the structure shown in the following figure.

∗This is the historical name for such graphs. I couldn’t think of a better name, so I went ahead and called it a scorpion.
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Feet (Arbitrary subgraph
on these n-3 vertices)

Torso

Neck

Head (degree 1)

(degree 2)

(degree n-2)

Let fn be the property of being a scorpion.

3.1. Argue that fn is not monotone.

3.2. Design an algorithm that computes fn while querying at most 6n of the
(

n

2

)

Boolean

variables representing the possible edges of the n-vertex graph. This shows that far from
having an Ω(n2) lower bound, we have an upper bound: D(fn) ≤ 6n = O(n).

Hint: Once you find out which vertex is the torso, it is easy to check if the graph is a scorpion.

4. The extreme points problem asks whether the convex hull of n given points in the plane has

n vertices; note that as this is an easier problem than computing the convex hull, the convex
hull lower bound does not apply to it directly.

Model this problem as a set recognition problem for an appropriate set W ⊆ R
2n. Prove that

#W ≥ (n − 1)! and conclude that the algebraic computation tree complexity of the problem

is Ω(n log n).

5. Let a1, . . . , ak and b be fixed nonzero vectors in R
n such that the system of inequalities

{ai · x ≥ 0, i = 1, . . . , k} is feasible and implies the inequality b · x ≥ 0. Then, it can be

shown that b is a non-negative linear combination of the ai’s, i.e., b =
∑k

i=1
λiai for some

non-negative reals λi. This fact is sometimes known as Farkas’s Lemma.

Using Farkas’s Lemma, prove the following two lower bounds in the linear decision tree model.

5.1. The complexity of finding the largest of n given reals is n − 1.

5.2. The complexity of finding the second largest is at least n − 2 + log n.

Hint: Once you have solved the first subproblem, use what you learnt along with a leaf

counting argument to solve the second.

6. Give a clear proof of Theorem 9 in Ben-Or’s paper (Handout 4). This is a relatively easy
exercise since you don’t have to invent any new techniques, but it is important to get a feel

for formalizing a model of computation and writing up a clear proof for a theorem that is

“obvious” to you.

2


