As usual, please think carefully about how you are going to organise your proofs *before* you begin writing. Make sure each solution fits within a page, as per the homework guidelines (Handout 2).

- 1. As we remarked in class, it is clear that monotone circuits can only compute monotone functions. Prove the converse, i.e., prove that any *n*-bit monotone Boolean function can be computed by an *n*-input monotone circuit.
- 2. Let p_n be the parity function on n variables. Consider depth-2 circuits which are given the input Boolean vector \vec{x} both in unnegated and negated form. As part of our proof that $p_n \notin AC^0$ we showed that if such a circuit computes p_n , it must have size at least 2^{n-1} . But what if we're only interested in a circuit which computes p_n correctly for a little more than half of the 2^n different inputs?
 - 2.1. Why is it not interesting to compute p_n correctly on just 2^{n-1} inputs?
 - 2.2. Show that there is a depth-2 circuit of size $2^{O(\sqrt{n})}$ that computes p_n correctly on at least $2^{n-1} + 2^{\sqrt{n}}$ inputs.
- 3. We proved in class that the parity function is not in AC⁰[3], a supposedly stronger result than its not being in AC⁰. Prove that it *is* in fact a stronger result by showing that AC⁰[3] is a *proper* superset of AC⁰. In other words, exhibit a function in AC⁰[3] that is not in AC⁰.

Hint: You can reuse large parts of the random restrictions proof. You don't have to write proofs for things we did in class already.

4. The *n*-bit majority function takes *n* Boolean inputs and outputs 1 iff at least n/2 of the inputs are 1. Prove that this function is not in AC^0 .

Hint: I know two ways to do this. You can do it directly, mimicking the proof we gave in class for parity. Or you can give a shorter solution by exhibiting an AC^0 circuit which reduces parity to majority. If using the latter approach, it might help to use FALSE = +1, TRUE = -1 and consider sums of the form $x_1 + \cdots + x_{n/2} - x_{n/2+1} - \cdots - x_n$. Be careful about separating the two cases: (a) n is odd (b) n is even.