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As usual, please think carefully about how you are going to organise your proofs before you begin
writing. Make sure each solution fits within a page, as per the homework guidelines (Handout 2).

1. As we remarked in class, it is clear that monotone circuits can only compute monotone func-
tions. Prove the converse, i.e., prove that any n-bit monotone Boolean function can be com-
puted by an n-input monotone circuit.

2. Let pn be the parity function on n variables. Consider depth-2 circuits which are given the
input Boolean vector ~x both in unnegated and negated form. As part of our proof that pn /∈
AC0 we showed that if such a circuit computes pn, it must have size at least 2n−1. But what
if we’re only interested in a circuit which computes pn correctly for a little more than half of
the 2n different inputs?

2.1. Why is it not interesting to compute pn correctly on just 2n−1 inputs?

2.2. Show that there is a depth-2 circuit of size 2O(
√

n) that computes pn correctly on at least
2n−1 + 2

√
n inputs.

3. We proved in class that the parity function is not in AC0[3], a supposedly stronger result than
its not being in AC0. Prove that it is in fact a stronger result by showing that AC0[3] is a proper
superset of AC0. In other words, exhibit a function in AC0[3] that is not in AC0.

Hint: You can reuse large parts of the random restrictions proof. You don’t have to write
proofs for things we did in class already.

4. The n-bit majority function takes n Boolean inputs and outputs 1 iff at least n/2 of the inputs
are 1. Prove that this function is not in AC0.

Hint: I know two ways to do this. You can do it directly, mimicking the proof we gave in
class for parity. Or you can give a shorter solution by exhibiting an AC0 circuit which reduces
parity to majority. If using the latter approach, it might help to use FALSE = +1, TRUE = −1
and consider sums of the form x1 + · · ·+xn/2−xn/2+1−· · ·−xn. Be careful about separating
the two cases: (a) n is odd (b) n is even.
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