
CS 85/185
Fall 2003
Lower Bounds in Computer Science

Homework 3
Due Nov 20, 2003

Amit Chakrabarti
Department of Computer Science

Dartmouth College

As usual, please think carefully about how you are going to organise your proofs before you begin
writing. Make sure each solution fits within a page, as per the homework guidelines (Handout 2).

1. As we remarked in class, it is clear that monotone circuits can only compute monotone func-
tions. Prove the converse, i.e., prove that any n-bit monotone Boolean function can be com-
puted by an n-input monotone circuit.

2. Let pn be the parity function on n variables. Consider depth-2 circuits which are given the
input Boolean vector ~x both in unnegated and negated form. As part of our proof that pn /∈
AC0 we showed that if such a circuit computes pn, it must have size at least 2n−1. But what
if we’re only interested in a circuit which computes pn correctly for a little more than half of
the 2n different inputs?

2.1. Why is it not interesting to compute pn correctly on just 2n−1 inputs?

2.2. Show that there is a depth-2 circuit of size 2O(
√

n) that computes pn correctly on at least
2n−1 + 2

√
n inputs.

3. We proved in class that the parity function is not in AC0[3], a supposedly stronger result than
its not being in AC0. Prove that it is in fact a stronger result by showing that AC0[3] is a proper
superset of AC0. In other words, exhibit a function in AC0[3] that is not in AC0.

Hint: You can reuse large parts of the random restrictions proof. You don’t have to write
proofs for things we did in class already.

4. The n-bit majority function takes n Boolean inputs and outputs 1 iff at least n/2 of the inputs
are 1. Prove that this function is not in AC0.

Hint: I know two ways to do this. You can do it directly, mimicking the proof we gave in
class for parity. Or you can give a shorter solution by exhibiting an AC0 circuit which reduces
parity to majority. If using the latter approach, it might help to use FALSE = +1, TRUE = −1
and consider sums of the form x1 + · · ·+xn/2−xn/2+1−· · ·−xn. Be careful about separating
the two cases: (a) n is odd (b) n is even.

1


