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Each of these problems requires you to prove something. Please think carefully about how you are going to organise
your proof before you begin writing. Each problem has a fairly short solution; if you find yourself writing a page or more
of proof, you have probably not found the best solution, so you might want to retry.

1. Consider the problem of selecting both the minimum and the maximum of n given numbers, using comparisons.
The näıve solution would be to first find the minimum and then the maximum, thereby using nearly 2n comparisons.

1.1. Give an algorithm which solves this problem making at most 3dn/2e comparisons. [7 points]

1.2. Prove the almost matching lower bound that any comparison-based algorithm for this problem must use at
least d3n/2e − 2 comparisons. [7 points]

2. We would like to sort an array of numbers using only in-place exchanges of the form xch(i,j) which swaps the
array elements at indices i and j. Furthermore, we would like to avoid exchanging elements that are “far away”:
the two indices involved in an exchange must differ by no more than some constant C. For instance, “bubble sort”
is an exchange-based sorting algorithm and it only swaps adjacent pairs, so it satisfies our requirement with C = 1.

Prove that under these conditions sorting requires Ω(n2) time in the worst case. Note that we did not insist that the
algorithm uses comparisons alone. [10 points]

3. Consider the problem of finding the second largest of n given elements (numbers, if you prefer) using comparisons.
In class, we used a leaf counting argument to prove a lower bound of n − 2 + log n comparisons. This exercise
will walk you through an alternative proof of this lower bound using an adversarial argument. The algorithm asks
queries of the form “is xi < xj?” and the adversary answers them using an adversarial strategy which satisfies two
properties:

(a) There is always at least one input with which the adversary’s answers are consistent.

(b) If the algorithm has asked less than n− 2 + log n questions so far, then there are at least two consistent inputs
with different answers (for the second largest element).

Clearly the existence of such a strategy proves the lower bound.

The adversary maintains n tokens, initially allocated one per element. When he∗ is asked a comparison query
between two elements, he declares the element that has more tokens the winner, and then he takes away all of the
loser’s tokens and gives them to the winner.

3.1. Spell out this adversarial strategy in detail (make sure you handle all cases) and argue that it satisfies prop-
erty (a) above. [5 points]

3.2. Recall that we argued in class that by the time the algorithm knows the second largest element, it must also
know the largest. Prove that when the algorithm finds out the largest element, the adversary must have
allocated all n tokens to that element. [5 points]

3.3. Prove that the largest element must therefore win at least log n comparisons. [6 points]

∗It is considered ungallant to use “she” for a character as mean as the adversary!
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3.4. Finish the lower bound proof by showing that property (b) above is satisfied. Don’t try to actually produce two
different consistent inputs; just argue that having performed less than n− 2 + log n comparisons the algorithm
cannot know the answer for sure. [4 points]

4. By suitably generalizing the function in the figure below, construct a family of functions fn : {0, 1}n → {0, 1} such
that, for infinitely many n, D(fn) = Θ(n) whereas C(fn) = Θ(

√
n).

x x x x x x x x x x x x x x x x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Make sure you define fn for all integers n, even if you happen to start with a definition for certain special values of
n. [6 points]

5. Let G be a group of permutations of [n] (not necessarily the group of all permutations). Let α ∈ {0, 1, ?}n be a
partial assignment. For π ∈ G, define π ◦ α to be the partial assignment obtained by applying the permutation π to
α. We define a function Fα,G : {0, 1}n → {0, 1} as follows:

∀x ∈ {0, 1}n : Fα,G(x) =

{
1, if ∃π ∈ G : x matches π ◦ α

0, otherwise.

Let |α| denote the number of exposed bits in α.

5.1. Prove that C1(Fα,G) = |α|. [4 points]

5.2. Prove that s(Fα,G) ≥ |α|/2. [6 points]
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