CS 85/185 Prof. Amit Chakrabarti
Spring 2008 Homework 3 Department of Computer Science
Lower Bounds in Computer Science Due Mon May 19, 5:00pm Dartmouth College

General Instructions: Feel free to reference things we have proved in class. That will help a lot in this homework, and
will keep your own solutions short.

Notation: We consider certain natural Boolean function families in this homework, which we now define. Each of these
function families is of the form f = {f,}nen, where f,, : {0,1}™ — {0, 1}.

PAR : PAR,(z) =1 <= Y ;=1 (mod2), Vae{0,1}".
i=1
MOD,, : MODyy, n(2) =1 <= in #Z0 (modm), Vzxe{0,1}",meNm>2.

i=1

m,k,n

MOD;n,k : MOD! () =1 < inzk (mod m), Vxe{0,1}",mkeNm>2.
i—1

n
MAJ : MAJ,(2) =1 <= sz >n/2, Vo e {0,1}".
i=1

Throughout this homework, “circuits” are allowed to have unbounded fan-in. The class AC® consists of Boolean
functions (equivalently, languages over the alphabet {0,1}) that can be computed by constant depth polynomial size
circuits with AND, OR and NOT gates. The class AC°[m)] is similar, except that it additionally allows MOD,,, gates, where
m > 2 is a constant integer.

1. Aswe remarked in class, it is clear that monotone circuits can only compute monotone functions. Prove the converse,
i.e., prove that any n-bit monotone Boolean function can be computed by an n-input monotone circuit.
[5 points]

2. Consider depth-2 circuits with access to each input bit z; and its negation —x;, where Z € {0, 1}" is the input vector.
As part of our proof that PAR ¢ AC", we showed that if such a circuit computes PAR,,, it must have size at least 2!,
But what if we’re only interested in a circuit that computes PAR,, correctly on some subset of a little more than half
of the 2™ different inputs?

2.1. Why is it not interesting to compute PAR,, correctly on just 2"~! inputs? [1 points]

2.2. Show that there is a depth-2 circuit of size 2°(v™) that computes PAR,, correctly on at least 2"~! 4+ 2v™ inputs.
[9 points]

3. We proved in class that PAR ¢ AC’, and later seemingly strengthened this by showing PAR ¢ AC"[3]. Prove that this
latter result is in fact stronger by showing that AC® ¢ AC°[3] (i.e., a proper subset). For this problem, use only the
random restrictions technique, and not the approximation-by-polynomials technique. [5 points]

4. Prove that MaJ ¢ AC".

Hint: This can be solved using either of the two techniques we used in class to show PAR ¢ AC’. However, you
can give a shorter proof by exhibiting an AC® circuit that reduces PAR to MAJ. For this approach, it might help to
use FALSE = +1, TRUE = —1 and consider sums of the form z; + --- + 2,9 — %, /241 — - -+ — 2. Be careful about
separating the two cases: (a) n is odd (b) n is even. [10 points]
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5. Revisit the random restrictions proof that PAR ¢ AC’ and perform the necessary calculations to obtain a specific
quantitative lower bound, in terms of n and d, on the size of depth-d circuit that computes PAR,,. Your bound should
be something super-polynomial in n (for constant d). Do not worry if you don’t quite get the optimal bound of

gn!/T just derive what you can. [10 points]

6. Let p and ¢ be primes with p # ¢q. We claimed in class that the approximation-by-polynomials technique can be
extended to show that MoD, ¢ AC’[p]. This problem walks you through the proof.

The proof requires a bit of finite field theory, but that shouldn’t daunt you. Here is the crucial fact we need: the
finite field K := [F,,,—1 contains IF,, (the familiar field consisting of integers mod p) as a subfield, and also contains a
primitive g-th root of unity, i.e., an element w € K \ {0, 1} such that w? = 1.

Suppose C is an n-input AC°[p] circuit with depth d and size s that computes the function MOD,. As in class, we
can assume, thanks to de Morgan’s Laws, that C' contains no AND gates. We topologically sort C' and proceed to
approximate each of its gates, in order, by polynomials over F,,.

6.1. By generalizing the random subsums construction from class suitably, prove that there exists a polynomial
Mzi,...,x,) € Fplzq, ..., z,] such that
o degh < (p—1)0,
o V¥ e {0,1}": h(Z) € {0,1}, and
]

e Pr[h(Z) # ORr,(7)] < 1/p’, with ¥ € {0,1}". [5 points]
6.2. Based on your construction above, prove that there exists a polynomial f(z1,...,z,) € Fp[z1,...,z,] such that
o deg f < 4/n.

e V¥ e {0,1}": f(¥) € {0,1}, and
o Pr[f(#) £ C() = MoD,(7)] < 5 - p~" "/ =D, where 7 €5 {0, 1}".

To get these bounds you will need to set ¢ appropriately in the previous construction. [3 points]

6.3. The above gave us a “low degree approximation” to the single Boolean function MOD,. By suitably modifying
the circuit C, prove that there exists a “large” good set A C {0,1}" on which each of the Boolean functions
Mop; ;. (with 0 < k < ¢ — 1) can be represented by a low degree polynomial. State your results precisely. In
particular, state a precise lower bound on |A| and an upper bound on the degree. [5 points]

6.4. Consider the affine map o : K — K given by a(z) = 1 4+ (w — 1)z. This map gives us a “notation shift” for
functions with Boolean input: 0/1 notation becomes 1/w notation. Applying « coordinatewise maps the set A
to some set A’ C {1,w}". Based on your earlier observations, prove that the polynomial y;ys - - - y,, agrees with
some “low” degree multilinear polynomial g(y1,...,yn) € K[y1,...,yn] on the set A". [7 points]

6.5. Argue that the equations y; ' = 1+ (w™! — 1)(w — 1)"*(y; — 1) hold for (yi,...,yn) € A'.
[2 points]

6.6. Proceeding as we did in class, prove that every function from A’ to K can be represented (on A’) by a multi-
linear polynomial in K[yi,...,y,] of degree < n/2+ /n. Using this, count the number of functions from A’ to
K in two ways to obtain the desired super-polynomial lower bound on s. [8 points]
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