CS 85/185	10	Prof. Amit Chakrabarti
Spring 2008	Homework 3	Department of Computer Science
Lower Bounds in Computer Science	Due Mon May 19, 5:00pm	Dartmouth College

General Instructions: Feel free to reference things we have proved in class. That will help a lot in this homework, and will keep your own solutions short.

Notation: We consider certain natural Boolean function families in this homework, which we now define. Each of these function families is of the form $f = \{f_n\}_{n \in \mathbb{N}}$, where $f_n : \{0, 1\}^n \to \{0, 1\}$.

$$\begin{array}{ll} \operatorname{PAR}: & \operatorname{PAR}_n(x) = 1 \iff \sum_{i=1}^n x_i \equiv 1 \pmod{2}, \quad \forall x \in \{0,1\}^n \,. \\ \operatorname{MOD}_m: & \operatorname{MOD}_{m,n}(x) = 1 \iff \sum_{i=1}^n x_i \not\equiv 0 \pmod{m}, \quad \forall x \in \{0,1\}^n, m \in \mathbb{N}, m \geq 2 \,. \\ \operatorname{MOD}'_{m,k}: & \operatorname{MOD}'_{m,k,n}(x) = 1 \iff \sum_{i=1}^n x_i \equiv k \pmod{m}, \quad \forall x \in \{0,1\}^n, m, k \in \mathbb{N}, m \geq 2 \\ \operatorname{MAJ}: & \operatorname{MAJ}_n(x) = 1 \iff \sum_{i=1}^n x_i \geq n/2 \,, \qquad \forall x \in \{0,1\}^n \,. \end{array}$$

Throughout this homework, "circuits" are allowed to have unbounded fan-in. The class AC^0 consists of Boolean functions (equivalently, languages over the alphabet $\{0, 1\}$) that can be computed by constant depth polynomial size circuits with AND, OR and NOT gates. The class $AC^0[m]$ is similar, except that it additionally allows MOD_m gates, where $m \ge 2$ is a constant integer.

1. As we remarked in class, it is clear that monotone circuits can only compute monotone functions. Prove the converse, i.e., prove that any *n*-bit monotone Boolean function can be computed by an *n*-input monotone circuit.

[5 points]

- 2. Consider depth-2 circuits with access to each input bit x_i and its negation $\neg x_i$, where $\vec{x} \in \{0, 1\}^n$ is the input vector. As part of our proof that $PAR \notin AC^0$, we showed that if such a circuit computes PAR_n , it must have size at least 2^{n-1} . But what if we're only interested in a circuit that computes PAR_n correctly on *some* subset of a little more than half of the 2^n different inputs?
 - 2.1. Why is it not interesting to compute PAR_n correctly on just 2^{n-1} inputs? [1 points]

2.2. Show that there is a depth-2 circuit of size $2^{O(\sqrt{n})}$ that computes PAR_n correctly on at least $2^{n-1} + 2^{\sqrt{n}}$ inputs. [9 points]

- 3. We proved in class that $PAR \notin AC^0$, and later seemingly strengthened this by showing $PAR \notin AC^0[3]$. Prove that this latter result *is* in fact stronger by showing that $AC^0 \subset AC^0[3]$ (i.e., a proper subset). For this problem, use only the random restrictions technique, and not the approximation-by-polynomials technique. [5 points]
- 4. Prove that MAJ $\notin AC^0$.

Hint: This can be solved using either of the two techniques we used in class to show PAR $\notin AC^0$. However, you can give a shorter proof by exhibiting an AC^0 circuit that reduces PAR to MAJ. For this approach, it might help to use FALSE = +1, TRUE = -1 and consider sums of the form $x_1 + \cdots + x_{n/2} - x_{n/2+1} - \cdots - x_n$. Be careful about separating the two cases: (a) *n* is odd (b) *n* is even. [10 points]

CS 85/185	10	Prof. Amit Chakrabarti
Spring 2008	Homework 3	Department of Computer Science
Lower Bounds in Computer Science	Due Mon May 19, 5:00pm	Dartmouth College

- 5. Revisit the random restrictions proof that PAR $\notin AC^0$ and perform the necessary calculations to obtain a specific quantitative lower bound, in terms of n and d, on the size of depth-d circuit that computes PAR_n. Your bound should be something super-polynomial in n (for constant d). Do not worry if you don't quite get the optimal bound of $2^{n^{1/(d-1)}}$ just derive what you can. [10 points]
- 6. Let p and q be primes with $p \neq q$. We claimed in class that the approximation-by-polynomials technique can be extended to show that $MOD_q \notin AC^0[p]$. This problem walks you through the proof.

The proof requires a bit of finite field theory, but that shouldn't daunt you. Here is the crucial fact we need: the finite field $K := \mathbb{F}_{p^{q-1}}$ contains \mathbb{F}_p (the familiar field consisting of integers mod p) as a subfield, and also contains a *primitive q-th root of unity*, i.e., an element $\omega \in K \setminus \{0, 1\}$ such that $\omega^q = 1$.

Suppose *C* is an *n*-input $AC^{0}[p]$ circuit with depth *d* and size *s* that computes the function MOD_{q} . As in class, we can assume, thanks to de Morgan's Laws, that *C* contains no AND gates. We topologically sort *C* and proceed to approximate each of its gates, in order, by polynomials over \mathbb{F}_{p} .

- 6.1. By generalizing the random subsums construction from class suitably, prove that there exists a polynomial $h(x_1, \ldots, x_n) \in \mathbb{F}_p[x_1, \ldots, x_n]$ such that
 - $\deg h \le (p-1)\ell$,
 - $\forall \vec{x} \in \{0,1\}^n$: $h(\vec{x}) \in \{0,1\}$, and
 - $\Pr[h(\vec{x}) \neq OR_n(\vec{x})] \le 1/p^\ell$, with $\vec{x} \in_R \{0, 1\}^n$. [5 points]
- 6.2. Based on your construction above, prove that there exists a polynomial $f(x_1, \ldots, x_n) \in \mathbb{F}_p[x_1, \ldots, x_n]$ such that
 - $\deg f \leq \sqrt{n}$.
 - $\forall \vec{x} \in \{0,1\}^n : f(\vec{x}) \in \{0,1\}$, and
 - $\Pr[f(\vec{x}) \neq C(\vec{x}) = \text{MOD}_{q}(\vec{x})] \leq s \cdot p^{-n^{1/(2d)}/(p-1)}$, where $\vec{x} \in_{R} \{0, 1\}^{n}$.

To get these bounds you will need to set ℓ appropriately in the previous construction. [3 points]

- 6.3. The above gave us a "low degree approximation" to the single Boolean function MOD_q . By suitably modifying the circuit *C*, prove that there exists a "large" good set $A \subseteq \{0,1\}^n$ on which each of the Boolean functions $MOD'_{q,k}$ (with $0 \le k \le q 1$) can be represented by a low degree polynomial. State your results precisely. In particular, state a precise lower bound on |A| and an upper bound on the degree. [5 points]
- 6.4. Consider the affine map $\alpha : K \to K$ given by $\alpha(x) = 1 + (\omega 1)x$. This map gives us a "notation shift" for functions with Boolean input: 0/1 notation becomes $1/\omega$ notation. Applying α coordinatewise maps the set A to some set $A' \subseteq \{1, \omega\}^n$. Based on your earlier observations, prove that the polynomial $y_1y_2 \cdots y_n$ agrees with some "low" degree *multilinear* polynomial $g(y_1, \ldots, y_n) \in K[y_1, \ldots, y_n]$ on the set A'. [7 points]

6.5. Argue that the equations
$$y_i^{-1} = 1 + (\omega^{-1} - 1)(\omega - 1)^{-1}(y_i - 1)$$
 hold for $(y_1, \dots, y_n) \in A'$.
[2 points]

6.6. Proceeding as we did in class, prove that every function from A' to K can be represented (on A') by a multilinear polynomial in $K[y_1, \ldots, y_n]$ of degree $\leq n/2 + \sqrt{n}$. Using this, count the number of functions from A' to K in two ways to obtain the desired super-polynomial lower bound on s. [8 points]