
CS 85/185
Spring 2008
Lower Bounds in Computer Science

Homework 3
Due Mon May 19, 5:00pm

Prof. Amit Chakrabarti
Department of Computer Science

Dartmouth College

General Instructions: Feel free to reference things we have proved in class. That will help a lot in this homework, and
will keep your own solutions short.

Notation: We consider certain natural Boolean function families in this homework, which we now define. Each of these
function families is of the form f = {fn}n∈N, where fn : {0, 1}n → {0, 1}.

PAR : PARn(x) = 1 ⇐⇒
n∑

i=1

xi ≡ 1 (mod 2) , ∀x ∈ {0, 1}n .

MODm : MODm,n(x) = 1 ⇐⇒
n∑

i=1

xi 6≡ 0 (mod m) , ∀x ∈ {0, 1}n,m ∈ N,m ≥ 2 .

MOD′m,k : MOD′m,k,n(x) = 1 ⇐⇒
n∑

i=1

xi ≡ k (mod m) , ∀x ∈ {0, 1}n,m, k ∈ N,m ≥ 2 .

MAJ : MAJn(x) = 1 ⇐⇒
n∑

i=1

xi ≥ n/2 , ∀x ∈ {0, 1}n .

Throughout this homework, “circuits” are allowed to have unbounded fan-in. The class AC0 consists of Boolean
functions (equivalently, languages over the alphabet {0, 1}) that can be computed by constant depth polynomial size
circuits with AND, OR and NOT gates. The class AC0[m] is similar, except that it additionally allows MODm gates, where
m ≥ 2 is a constant integer.

1. As we remarked in class, it is clear that monotone circuits can only compute monotone functions. Prove the converse,
i.e., prove that any n-bit monotone Boolean function can be computed by an n-input monotone circuit.

[5 points]

2. Consider depth-2 circuits with access to each input bit xi and its negation ¬xi, where ~x ∈ {0, 1}n is the input vector.
As part of our proof that PAR /∈ AC0, we showed that if such a circuit computes PARn, it must have size at least 2n−1.
But what if we’re only interested in a circuit that computes PARn correctly on some subset of a little more than half
of the 2n different inputs?

2.1. Why is it not interesting to compute PARn correctly on just 2n−1 inputs? [1 points]

2.2. Show that there is a depth-2 circuit of size 2O(
√

n) that computes PARn correctly on at least 2n−1 + 2
√

n inputs.
[9 points]

3. We proved in class that PAR /∈ AC0, and later seemingly strengthened this by showing PAR /∈ AC0[3]. Prove that this
latter result is in fact stronger by showing that AC0 ⊂ AC0[3] (i.e., a proper subset). For this problem, use only the
random restrictions technique, and not the approximation-by-polynomials technique. [5 points]

4. Prove that MAJ /∈ AC0.

Hint: This can be solved using either of the two techniques we used in class to show PAR /∈ AC0. However, you
can give a shorter proof by exhibiting an AC0 circuit that reduces PAR to MAJ. For this approach, it might help to
use FALSE = +1, TRUE = −1 and consider sums of the form x1 + · · · + xn/2 − xn/2+1 − · · · − xn. Be careful about
separating the two cases: (a) n is odd (b) n is even. [10 points]

Page 1 of 2

CS 85/185
Spring 2008
Lower Bounds in Computer Science

Homework 3
Due Mon May 19, 5:00pm

Prof. Amit Chakrabarti
Department of Computer Science

Dartmouth College

5. Revisit the random restrictions proof that PAR /∈ AC0 and perform the necessary calculations to obtain a specific
quantitative lower bound, in terms of n and d, on the size of depth-d circuit that computes PARn. Your bound should
be something super-polynomial in n (for constant d). Do not worry if you don’t quite get the optimal bound of
2n1/(d−1)

— just derive what you can. [10 points]

6. Let p and q be primes with p 6= q. We claimed in class that the approximation-by-polynomials technique can be
extended to show that MODq /∈ AC0[p]. This problem walks you through the proof.

The proof requires a bit of finite field theory, but that shouldn’t daunt you. Here is the crucial fact we need: the
finite field K := Fpq−1 contains Fp (the familiar field consisting of integers mod p) as a subfield, and also contains a
primitive q-th root of unity, i.e., an element ω ∈ K \ {0, 1} such that ωq = 1.

Suppose C is an n-input AC0[p] circuit with depth d and size s that computes the function MODq. As in class, we
can assume, thanks to de Morgan’s Laws, that C contains no AND gates. We topologically sort C and proceed to
approximate each of its gates, in order, by polynomials over Fp.

6.1. By generalizing the random subsums construction from class suitably, prove that there exists a polynomial
h(x1, . . . , xn) ∈ Fp[x1, . . . , xn] such that

• deg h ≤ (p− 1)`,
• ∀ ~x ∈ {0, 1}n : h(~x) ∈ {0, 1}, and
• Pr[h(~x) 6= ORn(~x)] ≤ 1/p`, with ~x ∈R {0, 1}n. [5 points]

6.2. Based on your construction above, prove that there exists a polynomial f(x1, . . . , xn) ∈ Fp[x1, . . . , xn] such that

• deg f ≤
√

n.
• ∀ ~x ∈ {0, 1}n : f(~x) ∈ {0, 1}, and

• Pr[f(~x) 6= C(~x) = MODq(~x)] ≤ s · p−n1/(2d)/(p−1), where ~x ∈R {0, 1}n.

To get these bounds you will need to set ` appropriately in the previous construction. [3 points]

6.3. The above gave us a “low degree approximation” to the single Boolean function MODq. By suitably modifying
the circuit C, prove that there exists a “large” good set A ⊆ {0, 1}n on which each of the Boolean functions
MOD′q,k (with 0 ≤ k ≤ q − 1) can be represented by a low degree polynomial. State your results precisely. In
particular, state a precise lower bound on |A| and an upper bound on the degree. [5 points]

6.4. Consider the affine map α : K → K given by α(x) = 1 + (ω − 1)x. This map gives us a “notation shift” for
functions with Boolean input: 0/1 notation becomes 1/ω notation. Applying α coordinatewise maps the set A
to some set A′ ⊆ {1, ω}n. Based on your earlier observations, prove that the polynomial y1y2 · · · yn agrees with
some “low” degree multilinear polynomial g(y1, . . . , yn) ∈ K[y1, . . . , yn] on the set A′. [7 points]

6.5. Argue that the equations y−1
i = 1 + (ω−1 − 1)(ω − 1)−1(yi − 1) hold for (y1, . . . , yn) ∈ A′.

[2 points]

6.6. Proceeding as we did in class, prove that every function from A′ to K can be represented (on A′) by a multi-
linear polynomial in K[y1, . . . , yn] of degree ≤ n/2 +

√
n. Using this, count the number of functions from A′ to

K in two ways to obtain the desired super-polynomial lower bound on s. [8 points]

Page 2 of 2

