CS 85/185	TT 14	Prof. Amit Chakrabarti
Spring 2008	Homework 4	Department of Computer Science
Lower Bounds in Computer Science	Due Mon Jun 2, 5:00pm	Dartmouth College

General Instructions: This homework is just two short exercises. You shouldn't sweat it too much!

- 1. Prove the formula version of Shannon's Theorem, i.e., prove that for every large enough integer *n* there exists a function $f_n : \{0,1\}^n \to \{0,1\}$ such that $L(f_n) = \Omega(2^n/\log n)$. Here $L(f_n)$ denotes the length of the shortest Boolean formula, using the operators $\{\vee, \wedge, \neg\}$, that evaluates f_n . [10 points]
- 2. The Karchmer-Wigderson game corresponding to a nonconstant Boolean function $f : \{0,1\}^n \to \{0,1\}$ is as follows: Alice gets an input $x \in \{0,1\}^n$ such that f(x) = 1 and Bob gets an input $y \in \{0,1\}^n$ such that f(y) = 0. The goal of the game is for Alice and Bob to agree on an index $i \in [n]$ such that $x_i \neq y_i$. Let d(f) denote the minimum depth of a Boolean circuit that computes f. Let CC(f) denote the complexity of the shortest communication protocol that solves the above Karchmer-Wigderson game. Prove that d(f) = CC(f). [15 points]

Note: One direction should be a straightforward generalization of what we did in class for the STCON game. The other direction is also an induction argument: use induction on the complexity of the best protocol for the game.