
CS 10:
Problem solving via Object Oriented

Programming

Welcome to the class!

Class goal, syllabus, starting on OOP and Java

2

Today main learning goals

1. Get to know each other

2. Align expectations about CS10, outcomes, teaching
methods/tools, coursework, collaboration

3. Describe the pillars of Object-Oriented Programming
(OOP)

4. Identify some main differences between Python and Java

5. Program hello world

6. Use variables and arrays

3

Agenda

1. You, the teaching team, and this
course

2. Object Oriented Programming (OOP)

3. Java intro
1. Hello world
2. Variables
3. Arrays

My background: roboticist

4

B.Sc. in CS&Eng (2006-2009)

M.Sc. (2009-2011) and Ph.D.
in CS&Eng (2012-2015)

Postdoc/Research faculty
(2015-2018)

Dartmouth Reality and Robotics Lab
(2018-present)

Taught courses

Problem Solving via Object Oriented
Programming (COSC10)

Artificial Intelligence (COSC76/276)

Principles of Robot Design and Programming
(COSC81/181)

Machine Learning for Robotics (COSC89/189)

Multirobot Systems (COSC69/169)

Robotics Perception Systems (COSC69/169)

5

Teaching team

Aimen
Abdulaziz

Akshee
Chopra

Ava WeinrotAlex
Nanda

Bill Zheng Eren
Saglam

Leina Sato Jackson
Easley

Marina
Frayre

Nand
Patel

Renata
Hoh

Sarah
Levesque

Shahidullah
Dost

Trung
Nguyen

Yelynn
Kim

Warren
Shepard

Alberto
Quattrini Li

Julien
Blanchet

6

Your background

• How did you satisfy the pre-reqs?
• CS 1
• ENGS 20
• AP exam
• Other

• What’s your future plan?
• CS majors?
• Minors?
• Not sure?

• How many of you programmed in Java before?

7

Primary objective of the course

Reinforce the foundational perspective and skills needed
to develop computational solutions to real interesting problems.

CS87/187 Rendering algorithms

CS81/181 Robotics

CS83/183 Computer Vision

And many others, including Artificial intelligence, Machine learning,
Bioinformatics, …
https://web.cs.dartmouth.edu/undergraduate/undergraduate-courses

https://web.cs.dartmouth.edu/undergraduate/undergraduate-courses

8

Main learning outcomes:
Problem solving via Object Oriented Programming
(not simply how to program in Java)

Problem Program Output

e.g., Image
processing

…

Data structures

Algorithms

Learn by solving real
problems, implementing
and debugging!

?

Object-oriented
programming

Learning resources: multimodal

9

Website for notes, slides, and assignment
instructions (https://www.cs.dartmouth.edu/cs10/)
• Syllabus
• Schedule

Textbook for additional examples and explanations: Data
Structures & Algorithms in Java , 6th ed, by Goodrich, Tamassia,
and Goldwasser

Lectures for covering concepts
• 12 time slot MWF 12:50-1:55 pm EDT (recording

posted afterwards)
X Tu 1:20-2:10pm EDT (see on Canvas if used)

• Feel free to ask questions
Recitation section meetings for hands-on:
• 1 hour/week (starting this week)

https://www.cs.dartmouth.edu/cs10/

10

Learning resources: assessment

5%

10%

25%

60% Exams:
• 2 midterms (each 20%)
• 1 cumulative final (20%)

8 recitation section meeting
programming drills

6 Problem
sets

1+10 short assignments

To assess your learning, you will:
1. Solve recitation section meeting programming

drills and short assignments by writing relatively
small code snippets to consolidate the concepts
learned every week in class.

2. Solve problem sets by writing programs to apply
the concepts learned in class to real-world
problems.
• You can find one problem set collaborator

3. Answer exam questions.

Please see the details on the syllabus (late policy,
grade, extra credit, …)
https://www.cs.dartmouth.edu/cs10/#coursework

Please reach out if you’re falling behind – we’re happy
to help

https://www.cs.dartmouth.edu/cs10/

Learning resources: how to get help

11

• Few channels to simplify the use
• #classes-discussion: for questions and discussions on the concepts covered

in the class.
• #help-assignments: for questions and discussions on the assignments.

• Help each other (please remember the honor code; if in doubt, ask)
• Don’t post solution!

• The teaching team will typically respond within 24 hours
• Use the public channels first
• Don’t hesitate to ping in case we missed your message

• Anonymous messages are possible with /anonymous command
• Let’s build an inclusive community!

Office hours (~3 hours/week each member of the teaching team)
• Profs. and TAs

• Each of you will have a reference TA to have a long-term
support

• ECSC building
• Zoom as needed

(access via
Canvas)

12

Learning resources: other tools used
Canvas (https://canvas.dartmouth.edu/courses/65523)
• Course announcements
• Calendar with office hours
• Section assignments
• Link to Slack
• Link to Gradescope
• Link to Panopto
• Record of assignment and current overall grading

Submissions via Gradescope (access through Canvas) for
consistent grading

Recordings on Panopto folder (access through Canvas)

If you have any problem, please let us know

https://canvas.dartmouth.edu/courses/65523

13

Tentative schedule

https://www.cs.dartmouth.edu/cs10/schedule.html

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

Please keep an eye as everything will be posted and updated here

https://www.cs.dartmouth.edu/cs10/schedule.html

• Find it on Gradescope (via Canvas)
• Take course survey to understand your background and

assign you to a section
• Set up development environment (IntelliJ IDEA) and get

Hello World running
• Instructions and screen shots provided on website

https://cs.dartmouth.edu/cs10/software.html
• Create your first Java class
• Read and acknowledge course policies and honor code

• If you have any questions or comments, please feel free to leave
a comment

• Complete survey ASAP before 11:59pm today (or risk
getting assigned to inconvenient section time!)

14

Short Assignment (SA-0) out, complete
survey before 11:59pm today

https://cs.dartmouth.edu/cs10/software.html

Learning resources: advice

15

Successful learning in the class is typically
associated with
• Reading the material recommended
• Actively Participating in the class
• Starting all assignments as soon as they are out
• Reaching out for help immediately when stuck

We will succeed if we work together
• Please talk to us if you are running behind or if

you have any questions/comments

16

Agenda

1. You, me, and this course

2. Object Oriented Programming (OOP)

3. Java intro
1. Hello world
2. Variables
3. Arrays

17

OOP four main pillars for robust, adaptable
and reusable code

https://learningcode.tech.blog/2022/07/08/oops-pillars/

18

Abstraction

19

Encapsulation

20

Inheritance

reduces code redundancy

21

Polymorphism

22

Why is OOP in general so popular?

• Well-organized: Relative data and functions
are grouped in the same object.

• Code reusability: Abstraction allows you to
reuse code throughout a project.

• Testing and debugging: The self-contained
nature of OOP can make testing and
debugging easier.

• Promotes collaboration among
developers: The use of classes, objects, and
well-defined interfaces facilitates teamwork.

• Improves code readability and
documentation: Makes it easier for
developers to understand and contribute to
the codebase

https://learningcode.tech.blog/2022/07/08/oops-pillars/

23

OOP is popular, especially in large
organizations

0 10 20 30 40 50 60 70

Python

C#

C++

Java

Percentage of organizations using language

Top languages used in large organizations

Source: https://www.cloudfoundry.org/wp-content/uploads/Developer-Language-Report_FINAL.pdf (Javascript omitted)

• Each of the
most
common
languages is
object
oriented

• Java is
particularly
popular in
large
organizations

24

Agenda

1. You, me, and this course

2. Object Oriented Programming (OOP)

3. Java intro
1. Hello world
2. Variables
3. Arrays

25

Interpreted vs. compiled language

import java.lang.*

import java.lang.*

import java.lang.*

import java.lang.*

Source Code
Print Hello World

Interpreter

High Level Language code

Run

Hello World!

26

Interpreted vs. compiled language

0010010100110
100101010101
101010101
10101010

Compiler

executable machine code

High Level Language code

Run

Hello World!

import java.lang.*

import java.lang.*

import java.lang.*

import java.lang.*

Source Code
Print Hello World

27

Agenda

1. You, me, and this course

2. Object Oriented Programming (OOP)

3. Java intro
1. Hello world
2. Variables
3. Arrays

28

We can flesh out the boilerplate code to
print “Hello World!” to the console

Python Java

29

Agenda

1. You, me, and this course

2. Object Oriented Programming (OOP)

3. Java intro
1. Hello world
2. Variables
3. Arrays

30

In Python we declare variables but do not
say what type of data they hold

print(x)

$ python3 python_variables0.py

Traceback (most recent call last):
 File "PythonVariables.py", line 2, in <module>
 print(x)
NameError: name ‘x' is not defined

Python example

Code

Output

python_variables0.py

31

In Python we declare variables but do not
say what type of data they hold

x = 5
print(x)

$ python3 python_variables01.py
5

Python example

Note: we didn’t tell Python what type of data x
holds, just its value

Python guesses x is an integer based on the
value assigned (called dynamic or duck typing)

Code

Output

python_variables01.py

32

Python’s type function tells us what kind of
data the variable holds

x = 5
print(x)
print(type(x))

$ python3 python_variables02.py
5
<class 'int'>

Python example

Code

Output

python_variables02.py

33

In Python a variable’s data type can change

x = 5
print(x)
print(type(x))
x = "Hello World"
print(x)
print(type(x))

$ python3 python_variables03.py
5
<class 'int'>
Hello World
<class 'str'>

Code

Output

Python example python_variables03.py

34

In Java, we explicitly say what type of data
a variable holds (and can’t change it later!)

Type Description Size Examples

int Integer values (no decimal
component)

32 bits (4 bytes) -104,…1,2,3…107,…5032

double Double precision floating
point (has decimal
component)

64 bits (8 bytes) -123.45, 1.6

boolean true or false 1 bit true, false

char Characters 16 bits (2 bytes for
Unicode)

‘a’,’b’,…’z’

Common primitive types

Note: String are objects, not primitives
We will discuss objects next class

35

In Java, we explicitly say what type of data
a variable holds (and can’t change it!)

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

Code

Output

JavaVariables0.java

36

Java does not initialize local variables

Code

Output
$ javac JavaVariables0.java
JavaVariables0.java:4: error: variable x might not have been initialized
 System.out.println("x = "+x);
 ^
1 error

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

JavaVariables0.java

37

Java tells us where to find errors, pay
attention to these hints when debugging!

Code

Output
$ javac JavaVariables0.java
JavaVariables.java0:4: error: variable x might not have been initialized
 System.out.println("x = "+x);
 ^
1 error

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

JavaVariables0.java

38

We must initialize local variables ourselves

public class JavaVariables01 {
 public static void main(String[] args) {
 int x = 5;
 System.out.println("x = "+x);
 }
}

Code

Output
$ javac JavaVariables01.java
$ java JavaVariables01
x = 5

JavaVariables01.java

39

Initialization can happen after a variable is
declared

public class JavaVariables02 {
 public static void main(String[] args) {
 int x;
 x = 5;
 System.out.println("x = "+x);
 }
}

Code

Output
$ javac JavaVariables02.java
$ java JavaVariables02
x = 5

JavaVariables02.java

40

Variables can only hold the type of data
they were declared to hold

public class JavaVariables03 {
 public static void main(String[] args) {
 int x;
 x = "Hello world";
 System.out.println("x = "+x);
 }
}

Code

Output
$ javac JavaVariables03.java
JavaVariables03.java:4: error: incompatible types: String cannot be converted
to int
 x = "Hello world";
 ^
1 error

JavaVariables03.java

41

Agenda

1. You, me, and this course

2. Object Oriented Programming (OOP)

3. Java intro
1. Hello world
2. Variables
3. Arrays

42

We can use multiple variables to store
multiple values

public class MultipleVariables {
 public static void main(String[] args) {
 int score1 = 5, score2 = 7;
 System.out.println(”score1 = "+ score1 + ", score2 = " + score2);
 }
}

Code

Output
$ javac MultipleVariables.java
$ java MultipleVariables
score1 = 5, score2 = 7

MulitpleVariables.java

43

Arrays provide a better way to store many
values in a contiguous block of memory

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8;
 scores[5] = 9;
 System.out.println(scores);
 }
}

Code 0 1 2 3 4

Index

44

Finding an index in an array is two math
operations: 1 addition and 1 multiplication

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8;
 scores[5] = 9;
 System.out.println(scores);
 }
}

Code

10 3.2 6.5

0 1 2 3 4

Index

45

Java throws an exception if try to access
memory outside the contiguous block

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Code

Output
$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5
out of bounds for length 5
at MultipleVariablesArray.main(MultipleVariablesArray.java:9)

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

46

Memory outside the contiguous block may
be used for other purposes

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Code

Output
$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5
out of bounds for length 5
at MultipleVariablesArray.main(MultipleVariablesArray.java:9)

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

? ?

47

Printing an array prints the starting
memory address

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Code

Output
$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
[D@1dbd16a6

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

48

One way to loop over array elements is to
use a C-style for loop

public class MultipleVariablesArray {
 public static void main(String[] args) {
 int numberOfScores = 5;
 double[] scores = new double[numberOfScores]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);

 System.out.print("[");
 for (int i= 0; i < numberOfScores-1; i++) {
 System.out.print(scores[i] + ", ");
 }
 System.out.println(scores[numberOfScores-1] + "]");
 }
}

Code

Output
$ javac MultipleVariablesArray.java
$ java MultipleVariablesArray
D@1dbd16a6
[10.0, 3.2, 6.5, 7.8, 8.8]

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

49

Java also has multidimensional arrays

public class MultidimensionalArray {
 public static void main(String[] args) {
 int numberOfStudents = 10;
 int numberOfQuizes = 5;
 double[][] scores = new double[numberOfStudents][numberOfQuizes];

 //set score for student 3 on quiz 2
 scores[2][1] = 9.2; //remember zero-indexing!

 //print all scores
 int quiz;
 for (int student = 0; student < numberOfStudents; student++) {
 for (quiz = 0; quiz < numberOfQuizes-1; quiz++) {
 System.out.print(scores[student][quiz] + ", ");
 }
 System.out.println(scores[student][quiz]);
 }
 }
}

Code MultidimensionalArray.java

50

Arrays holding numeric values are
initialized to zero

public class MultidimensionalArray {
 public static void main(String[] args) {
 int numberOfStudents = 10;
 int numberOfQuizes = 5;
 double[][] scores = new double[numberOfStudents][numberOfQuizes];

 //set score for student 3 on quiz 2
 scores[2][1] = 9.2; //remember zero-indexing!

 //print all scores
 int quiz;
 for (int student = 0; student < numberOfStudents; student++) {
 for (quiz = 0; quiz < numberOfQuizes-1; quiz++) {
 System.out.print(scores[student][quiz] + ", ");
 }
 System.out.println(scores[student][quiz]);
 }
 }
}

Code

Output
$ javac MultidimensionalArray.java
$ java MultidimensionalArray
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 9.2, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0

MultidimensionalArray.java

• Syllabus: active learning, how to get help, honor code
• Object-oriented programming pillars
– Abstraction
– Encapsulation
– Inheritance
– Polymorphism

• Java intro:
– Hello world
– Variables with types
– Arrays
– Errors indicated at compile or run time

51

Summary

• Encapsulation

52

Next

Additional Resources

53

CREATING HELLO WORLD

54

55

In keeping with tradition, we’ll start with
“Hello world”
HelloWorld.java
1. Start IntelliJ, create “cs10” Java Project (only need to do this one time)
2. Create “day1” Source folder to logically group your source code (e.g., “PS1” Source folder

holds all the source code for Problem Set 1)
3. Create new “HelloWorld” class in “day1” source folder

• File on disk is “HelloWorld.java”
• Class Name is “HelloWorld”
• IntelliJ “stubs” out “main” method (where program execution starts)

Other items of note:
Javadoc
• Java documentation feature
• Enter description for Class or method
• Starts with “/**”, ends with “*/”
• Can add tags such as “@author” or “@param”
main() is where action starts
Add System.out.println(“Hello World”) to output to the console
Right click on code and choose “Run <class name>.main()” button to run

56

1. Create “cs10” Project to hold source
code (only need to do this one time)

Start IntelliJ, then select “Create new project” or click File->New->Project

1) Choose
Java

2) Choose
Java
version

3) Take
defaults

4) Click
Next

57

1. Create “cs10” Project to hold source
code (only need to do this one time)

Do not create project from template

1) Leave
UNCHECKED

2) Click Next

58

1. Create “cs10” Project to hold source
code (only need to do this one time)

Name project “cs10” and set directory on disk where code will be stored

2) Choose
directory where
code will be
stored

1) Choose
Project name
(“cs10”)

3) Click Finish

59

2. Create Source folder to hold your source
code for day one of class

Click File->New->Directory to create directory for related code (e.g., “day1” or “PS1”)

1) Click File->New->Directory
2) Give directory a name

3) Right click
on new
directory
then select
“Mark
Directory
as” and
“Sources
Root”

Source folders are a useful way to
organize your code (ex. PS1 Source folder
contains all code for Problem Set 1)

60

3. Create new “HelloWorld” class in “day1”
source folder

60

Right click on Source folder and select New->Java Class

1) Right click on Source folder (e.g. “day1”),
then select New->Java Class

2) Give class a name (starting with capital letter)

3) IntelliJ creates file on disk (e.g.,
“HelloWorld.java”) and sets up your new class

61

IntelliJ creates HelloWorld.java
“boilerplate” code

Class is named HelloWorld

File on disk is HelloWorld.java

62

We can flesh out the boilerplate code to
print “Hello World!” to the console

Execution begins at main() method
Type “main” then enter and IntelliJ expands to include the main method declaration

In Java a print statement is System.out.println(“text you want to print goes here”);
Type “sout” then enter to have IntelliJ fill out print statement for you (saves a lot of typing!)

63

We can flesh out the boilerplate code to
print “Hello World!” to the console

Javadoc
• Describes program (or method)
• Begins with “/**” ends with “*/”

Add tags such as
“@author” or “@param”

64

Running the program prints “Hello World!”
to console

Run program by right clicking
on program text and selecting
“Run <class name>.main()”

Output appears in console below

ANNOTATED SLIDES
Variables – Python example

65

66

In Python we declare variables but do not
say what type of data they hold

print(x)

$ python3 python_variables0.py

Traceback (most recent call last):
 File "PythonVariables.py", line 2, in <module>
 print(x)
NameError: name ‘x' is not defined

Python example

Variable x is not defined, Python has no idea
what to print and gives an error message

Code

Output

python_variables0.py

67

In Python we declare variables but do not
say what type of data they hold

x = 5
print(x)

$ python3 python_variables01.py
5

Python example

Give a value to x and Python prints is value

Note: you didn’t tell Python what type of data
x holds, just its value

Python guesses x is an integer based on the
value assigned (called dynamic or duck typing)

Code

Output

python_variables01.py

68

Python’s type function tells us what kind of
data the variable holds

x = 5
print(x)
print(type(x))

$ python3 python_variables02.py
5
<class 'int'>

Python example

Confirm Python thinks variable x is an
integer by printing its data type

Confirmed, Python thinks x is an integer

Code

Output

python_variables02.py

69

In Python a variable’s data type can change

x = 5
print(x)
print(type(x))
x = "Hello World"
print(x)
print(type(x))

Python allows the type of a variable to change

Still guesses variable type based on value assigned

Now thinks x is a String

$ python3 python_variables03.py
5
<class 'int'>
Hello World
<class 'str'>

Code

Output

Python example python_variables03.py

70

In Python a variable’s data type can change

x = 5
print(x)
print(type(x))
x = "Hello World"
print(x)
print(type(x))

Python allows the type of a variable to change

Still guesses variable type based on value assigned

Now thinks x is a String

$ python3 python_variables03.py
5
<class 'int'>
Hello World
<class 'str'>

Code

Output

Python example

Unlike Python we will tell Java
specifically what kind of data
a variable holds

Once we give a variable a
type, we can’t change it to a
different type later (e.g., an
integer can’t become a String
in Java)

python_variables03.py

ANNOTATED SLIDES
Variables – Java example

71

72

In Java, we explicitly say what type of data
a variable holds (and can’t change it!)

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

Code

Output

Java knows x is an integer because
we declare it as an integer

When a variable is declared Java
allocates memory for it

Here Java allocates memory for
one integer (4 bytes)

JavaVariables0.java

73

Java does not initialize local variables

Code

Output

This code looks like it should run,
but fails at compile time

Why?

x is not given an initial value

It was also an error in Python
when we didn’t give x a value

$ javac JavaVariables0.java
JavaVariables0.java:4: error: variable x might not have been initialized
 System.out.println("x = "+x);
 ^
1 error

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

JavaVariables0.java

74

Java tells us where to find errors, pay
attention to these hints when debugging!

Code

Output

Note: Java tells us what file
contained the error

And also tells us what line number!

$ javac JavaVariables0.java
JavaVariables.java0:4: error: variable x might not have been initialized
 System.out.println("x = "+x);
 ^
1 error

public class JavaVariables0 {
 public static void main(String[] args) {
 int x;
 System.out.println("x = "+x);
 }
}

JavaVariables0.java

75

We must initialize local variables ourselves

public class JavaVariables01 {
 public static void main(String[] args) {
 int x = 5;
 System.out.println("x = "+x);
 }
}

Code

Output

Initialize x with an integer value

$ javac JavaVariables01.java
$ java JavaVariables01
x = 5

Note: javac from the command line
compiles file name provided

Creates a file with a .class extension with
the byte code (JavaVariables.class here)

java command runs the byte code (no need to
provide the .class file extension)

JavaVariables01.java

76

Initialization can happen after a variable is
declared

public class JavaVariables02 {
 public static void main(String[] args) {
 int x;
 x = 5;
 System.out.println("x = "+x);
 }
}

Code

Output

Not necessary to give local variables
a value when declared

Just give the variable a value before
using it

$ javac JavaVariables02.java
$ java JavaVariables02
x = 5

JavaVariables02.java

77

Variables can only hold the type of data
they were declared to hold

public class JavaVariables03 {
 public static void main(String[] args) {
 int x;
 x = "Hello world";
 System.out.println("x = "+x);
 }
}

Code

Output

Variables must hold the type of data
they were declared to hold

Here we can’t store a String in an
integer variable!

Java tells us where to find the error
(file name: line number)

$ javac JavaVariables03.java
JavaVariables03.java:4: error: incompatible types: String cannot be converted
to int
 x = "Hello world";
 ^
1 error

JavaVariables03.java

ANNOTATED SLIDES
Arrays

78

79

We can use multiple variables to store
multiple values

public class MultipleVariables {
 public static void main(String[] args) {
 int score1 = 5, score2 = 7;
 System.out.println(”score1 = "+ score1 + ", score2 = " + score2);
 }
} Here both score1 and score2 are integers,

initialized with different values

This approach becomes cumbersome if we
want to track many values

Code

Output
$ javac MultipleVariables.java
$ java MultipleVariables
score1 = 5, score2 = 7

MulitpleVariables.java

Say we wanted to track multiple quiz scores

Can declare multiple variables on one line

80

Arrays provide a better way to store many
values in a contiguous block of memory

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Use an array to store multiple quiz scores

OS allocates a contiguous block of memory

Here enough room to hold 5 doubles
(5 doubles * 8 bytes/double = 40 bytes)

Arrays are zero-indexed in Java (unlike Matlab)

Keyword new allocates memory for array (we
will see soon this is an object)

scores holds the starting address of contiguous
memory block

Code 0 1 2 3 4

Index

81

Finding an index in an array is two math
operations: 1 addition and 1 multiplication

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Access values the array holds by telling
Java which index to use

Java gets address:
starting address + index * size of values

Here index 2 is at starting address of
scores array + 2 * 8 bytes/double (16
bytes offset from start)

Can find the first element in same time it
takes to find the last element

Code

10 3.2 6.5

0 1 2 3 4

Index

82

Java throws an exception if try to access
memory outside the contiguous block

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Java throws an exception if you try to
access an element before or after the
array’s block of memory

Code

Output
$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5
out of bounds for length 5
at MultipleVariablesArray.main(MultipleVariablesArray.java:9)

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

83

Memory outside the contiguous block may
be used for other purposes

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

Can you assume the memory before or
after the allocated block is available for
your use?

Code

Output
$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: Index 5
out of bounds for length 5
at MultipleVariablesArray.main(MultipleVariablesArray.java:9)

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

? ?

NO! The OS allocated the block of
memory for the array and may be using
the memory before or after for other
purposes!

C programmers can access memory
before or after, this often causes bugs!

84

Printing an array prints the starting
memory address

public class MultipleVariablesArray {
 public static void main(String[] args) {
 double[] scores = new double[5]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);
 }
}

By default, printing an array prints a value
based on the array’s starting memory address

Code

Output
$ javac MultipleVariablesArray.java
S java MultipleVariablesArray
[D@1dbd16a6

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

85

One way to loop over array elements is to
use a C-style for loop

public class MultipleVariablesArray {
 public static void main(String[] args) {
 int numberOfScores = 5;
 double[] scores = new double[numberOfScores]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);

 System.out.print("[");
 for (int i= 0; i < numberOfScores-1; i++) {
 System.out.print(scores[i] + ", ");
 }
 System.out.println(scores[numberOfScores-1] + "]");
 }
}

Normally use a variable to declare array size

Code

Output
$ javac MultipleVariablesArray.java
$ java MultipleVariablesArray
D@1dbd16a6
[10.0, 3.2, 6.5, 7.8, 8.8]

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

C-style for loop
Three components:
1. Initialization
2. Conditional
3. Increment

86

One way to loop over array elements is to
use a C-style for loop

public class MultipleVariablesArray {
 public static void main(String[] args) {
 int numberOfScores = 5;
 double[] scores = new double[numberOfScores]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);

 System.out.print("[");
 for (int i= 0; i < numberOfScores-1; i++) {
 System.out.print(scores[i] + ", ");
 }
 System.out.println(scores[numberOfScores-1] + "]");
 }
}

Code

Output
$ javac MultipleVariablesArray.java
$ java MultipleVariablesArray
D@1dbd16a6
[10.0, 3.2, 6.5, 7.8, 8.8]

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

Access elements at index i using
square brackets

Note: using print not println here
println adds a new line character

87

Java also has multidimensional arrays

public class MultidimensionalArray {
 public static void main(String[] args) {
 int numberOfStudents = 10;
 int numberOfQuizes = 5;
 double scores[][] = new double[numberOfStudents][numberOfQuizes];

 //set score for student 3 on quiz 2
 scores[2][1] = 9.2; //remember zero-indexing!

 //print all scores
 int quiz;
 for (int student = 0; student < numberOfStudents; student++) {
 for (quiz = 0; quiz < numberOfQuizes-1; quiz++) {
 System.out.print(scores[student][quiz] + ", ");
 }
 System.out.println(scores[student][quiz]);
 }
 }
}

Code
Store quiz scores for several
students in 2-dimensional array
One row for each student
One column for each quiz

Remember zero indexing!
Student 3 is at index 2
Quiz 2 is at index 1

Nested loops
Loop over each student
 loop over each quiz
 print quiz score for student

Can declare variable outside for loop so its scope goes beyond for loop

Because quiz declared outside for loop, it is still in scope
here (would be out of scope if declared as part of for loop)

MultidimensionalArray.java

88

Arrays holding numeric values are
initialized to zero

public class MultidimensionalArray {
 public static void main(String[] args) {
 int numberOfStudents = 10;
 int numberOfQuizes = 5;
 double scores[][] = new double[numberOfStudents][numberOfQuizes];

 //set score for student 3 on quiz 2
 scores[2][1] = 9.2; //remember zero-indexing!

 //print all scores
 int quiz;
 for (int student = 0; student < numberOfStudents; student++) {
 for (quiz = 0; quiz < numberOfQuizes-1; quiz++) {
 System.out.print(scores[student][quiz] + ", ");
 }
 System.out.println(scores[student][quiz]);
 }
 }
}

Code

Output
$ javac MultidimensionalArray.java
$ java MultidimensionalArray
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 9.2, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0, 0.0, 0.0, 0.0

Java initializes numeric
array values to zero

Value set

MultidimensionalArray.java

