
CS 10:
Problem solving via Object Oriented

Programming

Info Retrieval

2

Main goals

• Store information in an efficient way
to retrieve it
• Use Set ADT
• Use Map ADT
• Read from file

3

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

4

Sets start out empty

Set
Initial state

isEmpty: True
size: 0

5

First item added will always create a new
entry in the Set (item can’t be a duplicate)

Set isEmpty: False
size: 1

1

add(1)

6

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 2

27

add(27)

1

7

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 3

27

add(6)

1

6

8

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 4

27

add(12)

1

6
12

9

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 5

27

add(15)

1

6
12

15

10

Adding an item that is already in the Set
does not change the Set

Set isEmpty: False
size: 5

27

add(6)

1

6
12

15

6 already in Set
No change

11

Items can be removed

Set isEmpty: False
size: 5

27

remove(1)

1

6
12

15

12

Items can be removed

Set isEmpty: False
size: 4

27

remove(1)

6
12

15

1 removed
size reduced

13

Can also check to see if item is in Set

Set isEmpty: False
size: 4

27

contains(12)

6
12

15

True

14

Can also check to see if item is in Set

Set isEmpty: False
size: 4

27

contains(13)

6
12

15

False

15

Sets are an unordered collection of items
without duplicates
Set ADT
• Model for mathematical definition of a Set
• Like a List, but:
• Unordered (no ith item, can’t set/get by position)
• No duplicates allowed

• Operations:
• add(E e) – adds e to Set if not already present
• contains(E e) – returns true if e in Set, else false
• isEmpty() – true if no elements in Set, else false
• Iterator<E> iterator() – returns iterator over Set
• remove(E e) – removes e from Set
• size() – returns number of elements in Set

How to
implement it?

16

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a Binary Search Tree (BST)

17

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a Binary Search Tree (BST)

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

18

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a Binary Search Tree (BST)

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

contains(e) O(h) • Search for node until found or hit leaf
• Might have to search longest path
• Can’t be more than h+1 checks

19

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a Binary Search Tree (BST)

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

contains(e) O(h) • Search for node until found or hit leaf
• Might have to search longest path
• Can’t be more than h+1 checks

remove(e) O(h) • Traverse tree to find element, then delete it

20

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a Binary Search Tree (BST)

• Soon we will see another, more efficient way to
implement a Set using a hash table

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

contains(e) O(h) • Search for node until found or hit leaf
• Might have to search longest path
• Can’t be more than h+1 checks

remove(e) O(h) • Traverse tree to find element, then delete it

21

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

Set <String> • Add each word in
text to Set

• Duplicates not
maintained

22

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Set <String>
Pretend

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

23

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Set <String>
Pretend
that

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

24

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Set <String>
Pretend
that
this
string
was
loaded
…

• “that” seen again
• Already in Set, so Set

does not change
• At the end the Set

will contain all the
unique words in the
text

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

25

UniqueWords.java: Use a Set to easily
identify the unique words in a body of text

Why is output alphabetical?
In-order tree traversal!

26

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

27

Like Sets, Maps initially start out empty

Map
Key <StudentID> Value <Student Name>

isEmpty: True
size: 0

28

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 1

put(123, “Charlie”)

Map
Key <StudentID> Value <Student Name>
123 Charlie

29

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 2

put(987, “Alice”)

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Alice

30

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 3

put(456, “Bob”)

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Alice
456 Bob

31

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 3

put(456, “Bob”)

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Alice
456 Bob

32

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 3

put(456, “Bob”)

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Alice
456 Bob

• NOTE: Keys are not necessarily
kept in order

• Implementation details left to the
designer

33

If an item already exits, put(Key,Value) will
update the Value for that Key

isEmpty: False
size: 3

put(987, “Ally”)

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Alice
456 Bob

34

If an item already exits, put(Key,Value) will
update the Value for that Key

isEmpty: False
size: 3

put(987, “Ally”)

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Ally
456 Bob

put overwrites Value if item with Key
is already in Map

35

Can remove items by Key and get Value for
that Key (or null if Key not found)

isEmpty: False
size: 3

remove(987) => “Ally”

Map
Key <StudentID> Value <Student Name>
123 Charlie
987 Ally
456 Bob

Removes item with Key and
returns Value

36

Can remove items by Key and get Value for
that Key (or null if Key not found)

isEmpty: False
size: 2

remove(987) => null

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

Returns null if Key not found

37

keyset() returns a Set of Keys in the Map

isEmpty: False
size: 2

keyset() => Set {123, 456}

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

Set has an iterator which can be used
to iterate over all Keys in Map

38

get(Key) returns the Value for the Key (or
null if Key not found)

isEmpty: False
size: 2

get(456) => “Bob”

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

39

get(Key) returns the Value for the Key (or
null if Key not found)

isEmpty: False
size: 2

get(987) => null

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

40

containsKey(Key) returns True if Key in
Map, False otherwise

isEmpty: False
size: 2

containsKey(123) => True

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

41

containsKey(Key) returns True if Key in
Map, False otherwise

isEmpty: False
size: 2

containsKey(987) => False

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

42

containsValue(Value) returns True if Value
in Map, False otherwise

isEmpty: False
size: 2

containsValue(“Bob”) => True

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

43

containsValue(Value) returns True if Value
in Map, False otherwise

isEmpty: False
size: 2

containsValue(“Alice”) => False

Map
Key <StudentID> Value <Student Name>
123 Charlie
456 Bob

44

Map ADT associates Keys with Values
Map ADT
• Key is used to look up a Value (ex., student ID finds student record)
• Python programmers can think of Maps as Dictionaries
• Value could be an object (e.g., a person object or student record

containing courses taken and grades for each)
• Operations:

• containsKey(K key) – true if key in Map, else false
• containsValue(V value)– true if one or more Keys contain value
• get(K key) – returns Value for specified key or null otherwise
• isEmpty() – true if no elements in Map, else false
• keySet() – returns Set of Keys in Map
• put(K key, V value) – store key/value in Map; overwrite

existing (NOTE: no add operation in Map ADT)
• remove(K key) – removes key from Map and returns value
• size() – returns number of elements in Map

How to
implement it?

45

Trees are one way to implement the Map
ADT
Maps implemented with Trees
• Could implement as a List, but linear search time
• Like Sets, Trees are natural way to think about Map implementation
• Problem: no easy way to implement containsValue() because Tree searches for

Keys not Values (but containsKey() is easy!)
• Could search entire Tree for Value

• Problem: linear time

• Idea: keep a Set of values, update on each put and then search Set
• Problem: the same Value could be stored with different keys, so if delete

Key, can’t necessarily delete Value from Set

• Better idea: keep a second Tree with Values as Keys and counts of each Value
• When adding a Value, increment its count in the second Tree
• When deleting a Key, decrement Value count, delete Value in second Tree

if count goes to zero
• Now have O(h) time search for containsValue()
• Uses more memory, but has better speed

46

containsValue() keep two trees: trade
memory for speed

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

• Each node has Key and Value
• Duplicate Values allowed,

duplicate Keys not allowed
• Easy to do containsKey(key)

• Search Tree for key
• Return false if hit leaf and

key not found, else true

• Each node has Value and count of
how many times Value in Map

• Easy to do containsValue(value)
• Search Tree for value
• Return false if hit leaf and value

not found, else true
• This trades memory for speed

47

On put(key,value), add Key/Value to Tree,
increment count (if needed)

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

Put(987, “Bob”)

987
Bob

48

On put(key,value), add Key/Value to Tree,
increment count (if needed)

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

Put(987, “Bob”)

987
Bob

Increment
count

49

On put(key,value), add Key/Value to Tree,
increment count (if needed)

123
Bob

56
Alice

456
Charlie

Bob
2

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

Put(987, “Bob”)

987
Bob

Increment
count

50

On remove(key), delete Key/Value and
decrement count

123
Bob

56
Alice

456
Charlie

Bob
2

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(987)

987
Bob

51

On remove(key), delete Key/Value and
decrement count

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(987)

• Know there is still one
“Bob” in the Tree

• Don’t delete node “Bob”
from this tree

52

On remove(key), delete Key/Value and
decrement count

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(56)

Remove “Alice”

53

On remove(key), delete Key/Value and
decrement count

123
Bob

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(56)

Because count goes to 0,
remove “Alice” here too

Must also update counts if
a put() replaces a value

54

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)
• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map
Key <String> Value <Integer>
Pretend 1

55

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)
• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map
Key <String> Value <Integer>
Pretend 1
that 1

56

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)
• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map
Key <String> Value <Integer>
Pretend 1
that 1
this 1

57

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)
• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map
Key <String> Value <Integer>
Pretend 1
that 2
this 1
…

58

UniqueWordCounts.java: Use Map to count
word occurrences in a body of text

59

UniqueWordPositions.java: Maps can also
contain Objects such as a List as their Value

What is this
program doing?

60

Maps can also contain Objects such as a
List as their Value

Map
Key<String> Value <List <Integer>>
Pretend head 0 \
that head 1 15 \
this head 2 18 \
…

• Track position where each word appears (first word is at index 0)
• Word may appear in multiple positions (e.g., 7th and 41st index)
• Need a way to track many items for each word (word is Key in Map)
• Use Map with a List as the Value instead of Object representation of a

primitive type (e.g., Integer)
• Map will hold many Lists, one List for each Key
• Here each List element is Integer, represents index where word found

Values as objects is a
powerful concept indeed!

61

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

62

UniqueWordPositionsFile.java: Read words
from a file instead of hard-coded String

63

A scanner can be used to read input from
keyboard

64

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

65

Search.java: Make different data structures
to help answer questions

Hamlet

Julius Caesar

King Lear

Macbeth

Midsummer

Othello

Romeo & Juliet

Tempest

Shakespeare works Key <String>
filename

Value Map<<String>,<Integer>>
word count

hamlet.txt forbear 1

the 1,150

…

juliusCaesar.txt the 606

Key <String>
filename

Value <Integer>
number words

hamlet.txt 32,831

juliusCaesar.txt 21,183

Key <String>
word

Value <Integer>
total count

forbear 6

forsooth 5

the 5,716

Key <String>
word

Value <Integer>
number files

forbear 3

forsooth 3

the 8

Read

file2WordCounts
• Use filename

as Key
• Store how

many times
each word
appears in file

• Map of Maps!numWords
• Map filename to

number of words in file

numFiles: # of files word is in
totalCounts: How many
total times word appears

66

Demo: Search.java uses Scanner and data
structures to answer questions

Type a word to see how many times it appears in each file
• Love
• Forbear
• Forsooth
• Audience suggestion

n to get n most common words
• Try top 10 words with # 10, then # 100
• Try bottom 10 words with # -10, then # -100

Can restrict to just a single file with # n (e.g., # 10 hamlet.txt)

Search multiple words, does an AND

Play around on your own

67

Summary

• Set for avoiding storing duplicates
• Map for storing key and value
• Both set and map can be implemented in

different ways, including list and BST

68

ADT Overview
List (Binary) Tree Set Map

Description Keep items
stored in order
by index

Keep
hierarchical
relationship
between nodes

Keep an
unordered
set of objects

Keep a set of
Key/Value pairs

Common use • Grow to
hold any
number of
items

• Find items
quickly by
Key

• Generally
faster than
List

• Prevent
duplicates

• Find items
quickly by
Key

Implementation
options

• Linked list
• Growing

array

• BinaryTree
• BST

• List
• BST
• Hash table

• List
• BST
• Hash table

Java provided • LinkedList
• ArrayList

• TreeSet
• HashSet

• TreeMap
• HashMap

• How to implement hash tables

69

Next

Additional Resources

70

ANNOTATED SLIDES
UniqueWords.java

71

72

UniqueWords.java: Use a Set to easily
identify the unique words in a body of text

Large amount of text simulates webpage

split() makes an array
with entry for each
word (including
duplicates)

Java has Set implementation
based on Tree
Implements Set interface
Set elements are Strings hereAdd all words to Set, discarding duplicates

No duplicate words
Print calls toString() on SetWhy is output alphabetical?

In-order tree traversal!

ANNOTATED SLIDES
UniqueWordsCounts.java

73

74

UniqueWordCounts.java: Use Map to count
word occurrences in a body of text

Large amount of text simulates webpage
Split into words (aka tokens)

Java has Map based on Trees
Implements Map interface

String Key, Integer Value
Loop over
all words

Update
word
counts

We have seen this word before,
increments Value for this Key

Have not seen this word before, put() into
Map with a value of 1 for word Key

Printing Map calls toString()

Check if word seen previously

ANNOTATED SLIDES
UniqueWordsPositions.java

75

76

UniqueWordPositions.java: Maps can also
contain Objects such as a List as their Value

Create Map with String as Key and List of
Integers as Value

• If Map has this word as a Key then add()
position where word found to List

• get() returns Value which is a List here

• Create a new List if we haven’t seen
this word before

• add() word to new List
• Then put(word, List) into Map

Loop over
all words

Update
word
positions

Check if word seen previously

ANNOTATED SLIDES
UniqueWordPositionsFile.java

77

78

UniqueWordPositionsFile.java: Read words
from a file instead of hard-coded String

• Load String page from a file
• Rest of the code is the same as

UniqueWordsPosition.java

BufferedReader can read from
a file on disk

• NOTE: Throws exception
• What would happen if file not found?
• Here would pass exception to caller

 (may end execution)

Append each line from file onto
String strDon’t forget to close file

ANNOTATED SLIDES
Scanner

79

80

A scanner can be used to read input from
keyboard

Declare Scanner to read
from keyboard

Parses input to match assigned
type (e.g., read input as a
String with nextLine())

Parse input as an integer with
nextInt()

