
CS 10:
Problem solving via Object Oriented

Programming

Prioritizing

2

Main goals

• Implement priority queue

• Implement priority queue more
efficiently with heap

3

Agenda

1. Priority Queue ADT

2. Implementation choices

3. Java’s built-in PriorityQueue

4

We can model airplanes landing as a queue
Airplanes queued to land

Each airplane
assigned a
priority to
land in order
of arrival

First in the
traffic pattern
is the first to
land (FIFO)

Image: flickr

5

Sometimes higher priority issues arise and
we need a different order
Airplanes queued to land

Suddenly one
aircraft has an
in-flight
emergency
and needs to
land now!

Need a way to
go to front of
queue

Enter the
priority queue

Image: flickr

I’ve got an
emergency

6

Priority Queues store/retrieve objects
based on priority, not identity or arrival

Map
Key/Value

Key

Value

Maps are a Key/Value store
• put(Key, Value) stores a

Value associated with a Key
(e.g., Key: Student ID and
Value: Student Record)

• get(Key) return Value
associated with Key

• Keys unique; identify object
• No ordering among Keys

Stack (LIFO)

12

1

5

121 5
Queue (FIFO)

Stacks/Queues arrival order
• Item order depends on

when item arrived
• Only one item accessible

at any time (top or front)

51 12
Priority Queue

Priority Queue order
• Items stored/

retrieved by priority
• Priority does not

represent identity
as with a Map Key

• Not dependent on
arrival order like
Stack/Queue

7

Priority Queues have the ability to extract
the highest priority item
Min Priority Queue Overview
• Lowest priority number removed first (“number 1 for landing”)

• Can be used for sorting (put everything in, then repeatedly extract lowest priority
number, one at a time, until queue empty)

• Operations
• insert(element) – insert element into Priority Queue

• Like BST, elements need a way to compare with each other to see which
is the smallest, so element should implement compareTo()

• We will say whatever compareTo() uses to compare elements is the Key
• Many elements can have the same Key in a Priority Queue

• extractMin() – remove and return element with smallest Key

• minimum() – return element with smallest Key, but leaves the element in
Priority Queue (like peek() or front() in Stack or Queue)

• isEmpty()– true if no items stored, false otherwise

• decreaseKey()– reduces an element’s priority number (take CS 31 for
more details on this)

Max Priority Queue works similarly, but extracts
the largest priority item with extractMax()

8

Priority Queues are extensively used in
simulations and scheduling
Job scheduling example

Start job at time 0
Job takes 11 minutes

Priority Queue
Machine 1

Start job at time 2
Job takes 6 minutes

Machine 2

Start job at time 4
Job takes 5 minutes

Machine 3

Add to Priority Queue
that job will finish at
time 11

11

Machine 1

8 9Key

Value Machine 2 Machine 3
Add to Priority Queue
that job will finish at
time 8

Add to Priority Queue
that job will finish at
time 9

Which machine will finish first?
When will that be?
extractMin() to find out

No need to run simulation and
check each minute to see if any
machine finishes at times 0
through 7; can jump to time 8

Which machine will finish next?
extractMin() again and get time 9

9

MinPriorityQueue.java specifies interface
MinPriorityQueue.java

10

Agenda

1. Priority Queue ADT

2. Implementation choices

3. Java’s built-in PriorityQueue

11

Could implement the Priority Queue using
a sorted or unsorted List

Operation Run
time

isEmpty

insert

minimum

extractMin

15 6 9 27

Unsorted List

12

Could implement the Priority Queue using
a sorted or unsorted List

Operation Run
time

Notes

isEmpty O(1) Check size == 0
insert O(1) Add on to end (amortized growth)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move last item to

fill hole

15 6 9 27

Unsorted List

13

Could implement the Priority Queue using
a sorted or unsorted List

15 6 9 27

Unsorted List

Operation Unsorted Sorted Notes
isEmpty O(1)
insert O(1)
minimum Θ(n)
extractMin Θ(n)

27 15 9 6

Sorted List

14

Could implement the Priority Queue using
a sorted or unsorted List

15 6 9 27

Unsorted List

Operation Unsorted Sorted Notes
isEmpty O(1) O(1) Check size == 0
insert O(1) O(2n+1) = O(n) Insert in order, move
minimum Θ(n) O(1) Return last element
extractMin Θ(n) O(1) Remove last element

27 15 9 6

Sorted List

15

Could implement the Priority Queue using
a sorted or unsorted List

15 6 9 27

Unsorted List

Operation Unsorted Sorted Notes
isEmpty O(1) O(1) Check size == 0
insert O(1) O(n) Insert in order, move
minimum Θ(n) O(1) Return last element
extractMin Θ(n) O(1) Remove last element

27 15 9 6

Sorted List

Either way we pay a price, on min/extractMin or on insert
Heaps are a better choice

16

Agenda

1. Priority Queue ADT

2. Implementation choices

3. Java’s built-in PriorityQueue

17

Heaps are based on Binary Trees
Tree data structure

Root node
Parent to two children

Child node of root
Parent node to child below
Interior node

Leaf (or external) node

Edge

Subtree

Anc
es

to
rs

Des
ce

ndan
ts

In a Binary Tree, each node has 0, 1, or 2 children
Height is the number of edges on the longest path from root to leaf
Each node has a Key and a Value
No guarantee of balance in Tree, could have Vine

18

Heaps have two additional properties
beyond Binary Trees: Shape and Order
Shape property keeps tree compact

Shape property
• Nodes added starting

from root and building
downward

• New level started only
once a prior level is filled

• Nodes added left to right
• Called a “complete” tree
• Prevents “vines”
• Makes height as small as

possible: h = ⌊log2 n⌋Next node
added here

Order property
• ∀nodes i ≠ root,

value(parent(i)) ≥ value(i)
• Root is the largest value in

a max heap (or min value
in a min heap)

• Largest value at any
subtree is at the root of
the subtree

• Unlike BST, no relationship
between two sibling
nodes, other than they are
less than parent 19

Heaps have two additional properties
beyond Binary Trees: Shape and Order
Order property keeps nodes organized

Root is largest in max heap
(smallest in min heap)

Subtree root is largest in subtree

Not arranged like BST

Reverse inequality
for min heap

20

The shape property makes an array a
natural implementation choice
Array implementation

Nodes stored in array
• Node i stored at index i
• Parent at index (i-1)/2
• Left child at index i*2 +1
• Right child at index i*2+2

Node 3 containing 8
• i=3
• Parent = (3-1)/2= 1
• Left child = 3*2+1 = 7
• Right child = 3*2+2=8

Heap is conceptually a tree,
data actually stored in an array

Drop any decimal
component

21

Agenda

1. Priority Queue ADT

2. Implementation choices

3. Java’s built-in PriorityQueue

22

Inserting into max heap must keep both
shape and order properties intact
Max heap insert

Insert 15
• Shape property: fill in next

spot in left to right order
(index i=10)

Next node
added here

23

Inserting into max heap must keep both
shape and order properties intact
Max heap insert

Insert 15
• Shape property: fill in next

spot in left to right order
(index i=10)

• Order property: parent must
be larger than children

• Can’t keep 15 below 7
• Swap parent and child

24

Inserting into max heap must keep both
shape and order properties intact
Max heap insert

Insert 15
• Shape property: fill in next

spot in left to right order
(index i=10)

• Order property: parent must
be larger than children

• Can’t keep 15 below 7
• Swap parent and child
• Parent is at index (i-1)/2 = 4

25

We may have to swap multiple times to get
both heap properties
Max heap insert

Insert 15
• Shape property: good!
• Order property: parent must

be larger than children, not
met

• Swap parent and child
• Child is at index i=4
• Parent at (i-1)/2=1

26

Eventually we will find a spot for the newly
inserted item, even if that spot is the root
Max heap insert

Insert 15
• Shape property: good!
• Order property: good!
• Done

General rule
• Keep swapping until order

property holds again
• Here done after swapping 14

and 15

Insert summary:
• Add new node at bottom left of tree
• Bubble new node up (possibly to root)

until order restored
• Tree will be as compact as possible
• Largest node at root

27

extractMax means removing the root, but
that leaves a hole
extractMax

extractMax -> 16
• Max position is at root

(index 0)
• Removing it leaves a hole,

violating shape property

• Also, bottom right most node
must be removed to maintain
shape property

• Solution: move bottom right
node to root (like unsorted)

28

Moving bottom right node to root restores
shape, but not order property
extractMax

After swap
• Shape property: good!
• Order property: want max at

root, but do not have that

• Left and right subtrees are
still valid

• Swap root with larger child
• New root will be greater than

everything in each subtree

29

May need multiple swaps to restore order
property
extractMax

After swap 15 and 7
• Shape property: good!
• Order property: invalid
• Swap node with largest child

30

Stop once order property is restored
extractMax

After swap 7 and 14
• Shape property: good!
• Order property: good!

extractMax summary:
• Remove root
• Move last node to root
• Bubble new root down by repeatedly swapping

with largest child until order is restored

31

Can implement heap-based Min Priority
Queue using an ArrayList
HeapMinPriorityQueue.java

NOTE: example was for a MAX Priority Queue, this
code implements a MIN Priority Queue

Easy to change to this code to a MAX Priority Queue

32

Helper functions make finding parent and
children easy
HeapMinPriorityQueue.java

33

insert() adds a new item to the end and
swaps with parent if needed
HeapMinPriorityQueue.java

34

extractMin() gets the root at index 0,
moves last to root, and “re-heapifies”
HeapMinPriorityQueue.java

35

minHeapify() recursively enforces Shape
and Order Properties
HeapMinPriorityQueue.java

36

Run time analysis shows Priority Queue
heap implementation better than previous

Operation Heap
Unsorted
ArrayList

Sorted
ArrayList

isEmpty Θ(1) Θ(1) Θ(1)

isEmpty()
• Each implement just checks size of ArrayList; Θ(1)

37

Run time analysis shows Priority Queue
heap implementation better than previous

Operation Heap
Unsorted
ArrayList

Sorted
ArrayList

isEmpty Θ(1) Θ(1) Θ(1)
insert O(log2 n) Θ(1) O(n)

insert()
• Heap: insert at end Θ(1), then may have to bubble up

height of tree; O(log2 n)
• Unsorted ArrayList: just add on end of ArrayList; Θ(1)
• Sorted ArrayList: have to find place to insert O(n), then do

insert, moving all other items; O(n)

38

Run time analysis shows Priority Queue
heap implementation better than previous

Operation Heap
Unsorted
ArrayList

Sorted
ArrayList

isEmpty Θ(1) Θ(1) Θ(1)
insert O(log2 n) Θ(1) O(n)
minimum Θ(1) Θ(n) Θ(1)

minimum()
• Heap: return item at index 0 in ArrayList; Θ(1)
• Unsorted ArrayList: search Arraylist; Θ(n)
• Sorted ArrayList: return last item in ArrayList; Θ(1)

39

Run time analysis shows Priority Queue
heap implementation better than previous

Operation Heap
Unsorted
ArrayList

Sorted
ArrayList

isEmpty Θ(1) Θ(1) Θ(1)
insert O(log2 n) Θ(1) O(n)
minimum Θ(1) Θ(n) Θ(1)
extractMin O(log2 n) Θ(n) Θ(1)

extractMin()
• Heap: return item at index 0, then replace with last item,

then bubble down height of tree; O(log2 n)
• Unsorted ArrayList: search Arraylist, Θ(n), remove, then

move all other items; O(n)
• Sorted ArrayList: return last item in ArrayList; Θ(1)

40

Run time analysis shows Priority Queue
heap implementation better than previous

Operation Heap
Unsorted
ArrayList

Sorted
ArrayList

isEmpty Θ(1) Θ(1) Θ(1)
insert O(log2 n) Θ(1) O(n)
minimum Θ(1) Θ(n) Θ(1)
extractMin O(log2 n) Θ(n) Θ(1)

With Unsorted ArrayList or Sorted ArrayList, can’t escape paying
O(n) (either insert or extractMin)
Heap must pay O(log2 n), but that is much better than O(n)
when n is large
Remember O(log2 n) where n = 1 million is 20 (one billion is 30)

41

Agenda

1. Priority Queue ADT

2. Implementation choices

3. Java’s built-in PriorityQueue

42

Java implements a PriorityQueue, but with
non-standard names

Java’s PriorityQueue Operations
• isEmpty == isEmpty

• insert == add

• minimum == peek

• extractMin == remove
Why remove() instead of extractMin()?
We will control if the min or max gets
removed (next slides show how)

43

If we use our own Objects in PriorityQueue,
need to provide way to compare objects

Student.java
Three ways to compare objects in Java’s Priority Queue:
• Method 1: Objects stored in Priority Queue provide a

compareTo() method

• Method 2: Instantiate a custom Comparator and pass
to Priority Queue constructor

• Method 3: Use anonymous function in Priority Queue
declaration

44

Use Student object to demonstrate the
three Priority Queue methods
Student.java

45

Method 1: Objects in Priority Queue
provide compareTo() method
Student.java

46

If we use our own PriorityQueue, we need
to provide way to compare objects

Student.java
Three ways to compare objects in Java’s Priority Queue:
• Method 1: Objects stored in PriorityQueue provide a

compareTo() method

• Method 2: Instantiate a custom Comparator and pass
to Priority Queue constructor

• Method 3: Use anonymous function in Priority Queue
declaration

47

Method 2: Define custom Comparator and
pass to Priority Queue constructor
Student.java

Output sorted by length of name

What if Object has compareTo() but
you want a different order?

48

If we use our own PriorityQueue, we need
to provide way to compare objects

Student.java
Three ways to compare objects in Java’s Priority Queue:
• Method 1: Objects stored in Priority Queue provide a

compareTo() method

• Method 2: Instantiate a custom Comparator and pass
to Priority Queue constructor

• Method 3: Use anonymous function in Priority Queue
declaration

49

Method 3: Use anonymous function in
Priority Queue declaration
Student.java

50

PS-3

https://www.cs.dartmouth.edu/cs10/PS-3.html

Input: Text file

1: Tree creation

2: Encoding

Binary

3: Decoding

https://www.cs.dartmouth.edu/cs10/PS-3.html

51

Summary

• Priority queue have elements returned according to value
(min or max)
• Can implement with unsorted array and sorted array,

each with different complexities
• Heaps are based on binary trees and have two main

properties
• Shape
• Order

• Priority queue implemented with heap can be very efficient

• To use priority queues, objects need to have way to compare
with each other
• Three methods possible

Additional Resources

52

53

There are a number of implementation
choices, but some are not a good fit

Choice Fit Notes

Stack/Queue • Elements ordered by arrival time
• Can only access one element (top or front)
• Element with higher priority that arrives out of

sequence can not be reached

54

There are a number of implementation
choices, but some are not a good fit

Choice Fit Notes

Stack/Queue • Elements ordered by arrival time
• Can only access one element (top or front)
• Element with higher priority that arrives out of

sequence can not be reached

Map • Have to know the Key in order to find item
• In scheduling example, would have to check each

minute 0 through 7

55

There are a number of implementation
choices, but some are not a good fit

Choice Fit Notes

Stack/Queue • Elements ordered by arrival time
• Can only access one element (top or front)
• Element with higher priority that arrives out of

sequence can not be reached

Map • Have to know the Key in order to find item
• In scheduling example, would have to check each

minute 0 through 7

Unsorted List • insert() fast, Θ(1)
• extractMin() slow – search entire List for min Key, Θ(n)

Ok
?

56

There are a number of implementation
choices, but some are not a good fit

Choice Fit Notes

Stack/Queue • Elements ordered by arrival time
• Can only access one element (top or front)
• Element with higher priority that arrives out of

sequence can not be reached

Map • Have to know the Key in order to find item
• In scheduling example, would have to check each

minute 0 through 7

Unsorted List • insert() fast, Θ(1)
• extractMin() slow – search entire List for min Key, Θ(n)

Sorted List • extractMin() fast, Θ(1)
• insert() slow – find right place, make hole, O(n)

Ok
?

Ok
?

57

There are a number of implementation
choices, but some are not a good fit

Choice Fit Notes

Stack/Queue • Elements ordered by arrival time
• Can only access one element (top or front)
• Element with higher priority that arrives out of

sequence can not be reached

Map • Have to know the Key in order to find item
• In scheduling example, would have to check each

minute 0 through 7

Unsorted List • insert() fast, Θ(1)
• extractMin() slow – search entire List for min Key, Θ(n)

Sorted List • extractMin() fast, Θ(1)
• insert() slow – find right place, make hole, O(n)

Binary Search Tree • Not bad, but we do not enforce balance on BST
• extractMin() O(h) (could be better than O(n), but not

necessarily)
• We will do better next class using a Heap

Ok
?

Ok
?

Heap

58

We can implement a PriorityQueue with an
unsorted ArrayList

15 6 9 27

Keep elements unsorted in ArrayList

Unsorted ArrayList implementation

59

isEmpty() is Θ(1) with an unsorted ArrayList

15 6 9 27

isEmpty – just check ArrayList size() method

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0

Unsorted ArrayList implementation
isEmpty()

60

insert() is also Θ(1) with an unsorted
ArrayList

15 6 9 27

insert – just add element to end of ArrayList

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)

Unsorted ArrayList implementation
insert(12)

12

61

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 6 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

12

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

extractMin()
Check 15

Unsorted ArrayList implementation

62

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 6 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

12

extractMin()
Check 6
Smallest 15

Unsorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

63

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 6 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

12

extractMin()
Check 9
Smallest 6

Unsorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

64

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 6 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

12

extractMin()
Check 27
Smallest 6

Unsorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

65

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 6 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

12

extractMin()
Check 12
Smallest 6

Unsorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

66

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 6 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

extractMin()
Unsorted ArrayList implementation

6

12

Return 6

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

67

minimum() and extractMin() are both Θ(n)
with an unsorted ArrayList

15 12 9 27

extractMin – loop to find smallest and move last item to
smallest index to fill hole

extractMin()
Unsorted ArrayList implementation

6 Return 6
Fill hole with last item
No need to slide items left
Nice
We will use this trick again
with Heaps

Operation Run
time

Notes

isEmpty Θ(1) Checks size == 0
insert Θ(1) Add on to end (amortized)
minimum Θ(n) Must loop through all elements to find smallest
extractMin Θ(n) Loop through all elements and move to fill hole

68

We can implement a PriorityQueue with an
unsorted ArrayList
ArrayListMinPriorityQueue.java

69

We can implement a PriorityQueue with an
unsorted ArrayList
ArrayListMinPriorityQueue.java

70

There are several ways to implement a
PriorityQueue, today we look at two

1. Unsorted List

2. Sorted List

71

We can improve extractMin() by using a
sorted List, but inserts take more time

27 15 9 6

Keep elements sorted in ArrayList with smallest always at end

Sorted ArrayList implementation

72

isEmpty() is Θ(1) with a sorted ArrayList

27 15 9 6

isEmpty() – just check ArrayList size() method

isEmpty()
Sorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Return size, same as unsorted

73

insert() is O(n) with a sorted ArrayList

1227 15 9 6

insert() – need to loop backward to find slot for new element,
then move other elements right

insert(12)
Sorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Return size, same as unsorted
insert O(n) Insert in place and move other items right

74

insert() is O(n) with a sorted ArrayList

insert(12)
Sorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Return size, same as unsorted
insert O(n) Insert in place and move other items right

627 15 12 9

insert() – need to loop backward to find slot for new element,
then move other elements right

75

minimum() and extractMin() improve to
Θ(1) with a sorted ArrayList

extractMin() – just remove the last element

extractMin()
Sorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Return size, same as unsorted
insert O(n) Insert in place and move other items right
minimum Θ(1) Get last element
extractMin Θ(1) Get last element, no need to move items

627 15 12 9

76

minimum() and extractMin() improve to
Θ(1) with a sorted ArrayList

27 15 12 9

6
Return 6

extractMin() – just remove the last element

extractMin()
Sorted ArrayList implementation

Operation Run
time

Notes

isEmpty Θ(1) Return size, same as unsorted
insert O(n) Insert in place and move other items right
minimum Θ(1) Get last element
extractMin Θ(1) Get last element, no need to move items

77

SortedArrayList implementation improves
extractMin(), but at expense of insert()
SortedArrayListMinPriorityQueue.java

78

Implementations have different strengths,
but limited practical difference

Operation Unsorted Sorted
isEmpty Θ(1) Θ(1)
insert Θ(1) O(n)
minimum Θ(n) Θ(1)
extractMin Θ(n) Θ(1)

• Generally have the same number of inserts as extracts, so often
no real difference, unless just looking for min without extracting

• We will do better next class when we look at heaps!

ANNOTATED SLIDES
MinPriorityQueue.java

79

80

MinPriorityQueue.java specifies interface
MinPriorityQueue.java • As with BST, elements

must extend Comparable
• Allows Java to compare

elements and determine
which one is smaller

• Uses compareTo()
method on element
objects

• Can make a Max Priority
Queue by reversing the
compareTo() method

• Note: no ability to get
items by index!

• Can only extract smallest
(or largest) item

ANNOTATED SLIDES
ArrayListMinPriorityQueue.java

81

82

We can implement a PriorityQueue with an
unsorted ArrayList
ArrayListMinPriorityQueue.java • Implements MinPriorityQueue

interface using ArrayList
• Store elements in ArrayList called list
• Elements must provide compareTo()

because we say E extends
Comparable

• isEmpty() just checks ArrayList size()
method

• Inserting is easy, just tack new
element on to end of ArrayList

83

We can implement a PriorityQueue with an
unsorted ArrayList
ArrayListMinPriorityQueue.java

• extractMin() finds smallest
index with call to indexOfMin()

• Store smallest element

• Move last element into index
of smallest to avoid creating a
hole

• Remove last item and then
return smallest element

Loop through all elements,
compare (using compareTo())with
smallest so far, return index of
smallest element Θ(n)

ANNOTATED SLIDES
SortedArrayListMinPriorityQueue.java

84

85

SortedArrayList implementation improves
extractMin(), but at expense of insert()
SortedArrayListMinPriorityQueue.java Store elements in ArrayList called list

minimum() and extractMin() are easy,
just get/remove last element in list

insert() is O(n)
Loop backward to find appropriate slot p, O(n)
Insert element at that slot
add(p,element) moves other elements right
 which is also O(n), plus O(1) for
 actual insert into array
 total = O(n) + O(n) +O(1) = O(2n+1) = O(n)

ANNOTATED SLIDES
HeapMinPriorityQueue.java

86

87

Can implement heap-based Min Priority
Queue using an ArrayList
HeapMinPriorityQueue.java

ArrayList called heap will hold the
heap

Heap elements extend
Comparable

NOTE: example was for a MAX Priority Queue, this
code implements a MIN Priority Queue

Easy to change to this code to a MAX Priority Queue

88

Helper functions make finding parent and
children easy
HeapMinPriorityQueue.java Helper functions

swap() trades node at index i for node at index j

leftChild(), rightChild() and parent()
calculate positions of nodes relative to i

89

insert() adds a new item to the end and
swaps with parent if needed
HeapMinPriorityQueue.java

• Add element to end of heap
• Start at newly added item’s

index

90

insert() adds a new item to the end and
repeatedly swaps with parent if needed
HeapMinPriorityQueue.java

• Add element to end of heap
• Start at newly added item’s

index

• Swap if not root (loc==0) and element < parent
• Continue to “bubble up” inserted node until

reach root or element > parent
• At most O(h) swaps (if new node goes all the

way up to root)
• Due to Shape Property, max h is log2 n, so

O(log2 n)

NOTE: reverse compareTo
inequality to implement a
MAX Priority Queue

91

extractMin() gets the root at index 0,
moves last to root, and “re-heapifies”
HeapMinPriorityQueue.java

• Where will smallest element be?
• Always at the root (index 0)

• Move last item into root node to
satisfy Shape Property

• Update heap so that it satisfies Order
Property

• May have to “bubble down” the new
root down to leaf level

• At most O(h) = O(log2 n) operations

92

minHeapify() recursively enforces Shape
and Order Properties
HeapMinPriorityQueue.java

a = heap, i = starting index

Get left and right children

• Find the smallest node
between the current
node, and the (possibly)
two children

• Track smallest index in
smallest variable

• If starting index is
not the smallest,
then swap node at
starting index with
smallest node

• Bubble down node
from smallest indexAt most O(h) = O(log2 n) operations

SUPPLEMENTAL MATERIAL
Heap Sort

93

94

Using a heap, we can sort items “in place”
in a two-stage process

Given array in unknown order
1. Build max heap in place using array given
• Start with last non-leaf node, max heapify node and children
• Move to next to last non-leaf node, max heapify again
• Repeat until at root
• NOTE: heap is not necessarily sorted, only know for sure

that parent > children and max is at root

2. Extract max (index 0) and swap with item at end of array, then
rebuild heap not considering last item

Does not require additional memory to sort

Heap sort

95

Step 1: build heap in place

9 2 4 7 6 5
9

2

7 6

4

5

Build heap given unsorted array

Non heap!Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

Array
Conceptual heap tree

96

Step 1: build heap in place

9 2 4 7 6 5
9

2

7 6

4

5

Build heap given unsorted array

Last non-leaf
Array

Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

Last non-leaf will be
parent of last leaf

97

Step 1: build heap in place

9 2 4 7 6 5
9

2

7 6

4

5

Build heap given unsorted array

Max heapify
Swap 4 and 5

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

98

Step 1: build heap in place

9 2 5 7 6 4
9

2

7 6

5

4

Build heap given unsorted array

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

99

Step 1: build heap in place

9 2 5 7 6 4
9

2

7 6

5

4

Build heap given unsorted array
Move to prior
non-leaf node

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

100

Step 1: build heap in place

9 2 5 7 6 4
9

2

7 6

5

4

Build heap given unsorted array
Move to prior
non-leaf node

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

Max heapify
Swap 2 and 7

101

Step 1: build heap in place

9 7 5 2 6 4
9

7

2 6

5

4

Build heap given unsorted array

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

Max heapify
Swap 2 and 7

102

Step 1: build heap in place

9 7 5 2 6 4
9

7

2 6

5

4

Build heap given unsorted array
Move to prior
non-leaf node

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

103

Step 1: build heap in place

9 7 5 2 6 4
9

7

2 6

5

4

Build heap given unsorted array

Max heapify
In order, no need to swap

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

104

Step 1: build heap in place

9 7 5 2 6 4
9

7

2 6

5

4

Now it’s a max heap!
Satisfies Shape and Order
Properties

Build heap given unsorted array

Array
Conceptual heap tree

Given array in unsorted order
First build a heap in place
• Start at last non-leaf and heapify
• Repeat for other non-leaf nodes

105

After building the heap, parents are larger
than children, but items may not be sorted

9 7 5 2 6 4
9

7

2 6

5

4Heap array after construction

Heap order is maintained here
Looping over array does not give elements in sorted order
Traversing tree doesn’t work either
• Preorder = 9,7,2,6,5,4
• Inorder = 2,7,6,9,4,5
• Post order = 2,6,7,4,5,9

Array
Conceptual heap tree

106

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

9 7 5 2 6 4
9

7

2 6

5

4

Heap on left, sorted on right

extractMax() = 9
Swap with last item in array

Array
Conceptual heap tree

107

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 7 5 2 6 9
4

7

2 6

5

9

extractMax() = 9
Swap with last item in array

Heap on left, sorted on right

Array
Conceptual heap tree

108

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 7 5 2 6 9
4

7

2 6

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items

109

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 7 5 2 6 9
4

7

2 6

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items
Rebuild heap
from root

110

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 7 5 2 6 9
4

7

2 6

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items

Max heapify
Swap 7 and 4

Swap 4 with
largest child 7

111

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

7 4 5 2 6 9
7

4

2 6

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items

Max heapify
Swap 7 and 4

112

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

7 4 5 2 6 9
7

4

2 6

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items

Max heapify
Swap 4 and 6

Swap 4 with
largest child 6

113

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

7 6 5 2 4 9
7

6

2 4

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items

Max heapify
Swap 4 and 6

114

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

7 6 5 2 4 9
7

6

2 4

5

Heap on left, sorted on right
Conceptual heap tree

Rebuild heap on n-1 items

Heap n-1 items

Heap built

115

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 6 5 2 7 9
7

6

2 4

5

Heap array

extractMax() = 7
Swap with last item in array

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

116

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 6 5 2 7 9
4

6

2

5

Heap array

Rebuild heap on n-2 items

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

Max heapify
Swap 4 and 6

Swap 4 with
largest child 6

117

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

6 4 5 2 7 9
6

4

2

5

Heap array

Rebuild heap on n-2 items

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

Heap built

118

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

2 4 5 6 7 9
2

4 5

Heap array

extractMax() = 6
Swap with last item in array

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

Max heapify
Swap 5 and 2

Swap 2 with
largest child 5

119

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

5 4 2 6 7 9
5

4 2

Heap array

Rebuild heap on n-3 items

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

Heap built

120

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

2 4 5 6 7 9
2

4

Heap array

extractMax() = 5
Swap with last item in array

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

121

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 2 5 6 7 9
4

2

Heap array

Rebuild heap on n-4 items

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

Max heapify
Swap 4 and 2

122

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

4 2 5 6 7 9
4

2

Heap array

Rebuild heap on n-4 items

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

Heap built

123

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

2 4 5 6 7 9
2

Heap array

extractMax() = 4
Swap with last item in array

Heap Sorted
Heap on left, sorted on right

Conceptual heap tree

124

Step 2: Repeatedly extractMax() and store
at end, rebuild heap on n-1 items

2 4 5 6 7 9

Heap array

Done
Items sorted in place
No extra memory used

Sorted
Heap on left, sorted on right

Conceptual heap tree

125

Heapsort.java: First build heap, then
extractMin, rebuilt heap…

126

Heapsort.java: First build heap, then
extractMin, rebuilt heap…

127

Heapsort in two steps
Given array in unknown order

1. Build max heap in place using array given
• Start with last non-leaf node, max heapify node and children
• Move to next to last non-leaf node, max heapify again
• Repeat until at root
• NOTE: heap is not necessarily sorted, only know parent >

children and max is at root

2. Extract max (index 0) and swap with item at end of array, then
rebuild heap not considering last item

Does not require additional memory to sort
Run time:

Building heap is O(n) – see course web page (most nodes are leaves)
Each extractMax/swap might need O(log2 n) operations to restore Heap
Make n-1 = O(n) extractMax/swaps to get array in sorted order

Total run time is O(n) + O(n log2 n) = O(n log2 n)

ANNOTATED SLIDES
Heapsort.java

128

129

Heapsort.java: First build heap, then
extractMin, rebuilt heap…

Code very similar to
HeapMinPriorityQueue.java

• Sort() method calls helper with
size of heap to consider

• Initially consider each element

First build heap from root to
last element to be considered
(initially last element, then n-2,
then n-3,…)

While not at root, (lastLeaf > 0)
Swap root and last element

Reduce size of heap to consider
Rebuild smaller heap
Done when at root

130

Heapsort.java: First build heap, then
extractMin, rebuilt heap…

• buildHeap() builds heap from last
non-leaf node (parent of last leaf)

• Calls maxHeapify() on each non-leaf
node until hit root

• Finds largest between i and two
children

• If largest not i, swap i and largest
• Recursively call maxHeapify() to

bubble down i to right place

ANNOTATED SLIDES
Student.java – Method 1 with compareTo

131

132

Use Student object to demonstrate the
three Priority Queue methods
Student.java

Student stores data about a
student’s name and year

If we are going to use Student in a
PriorityQueue, need a way to tell which
ones are bigger, the same, or smaller than
other Students

This approach sorts increasing
alphabetically by student name
Here we use the built in String compareTo()
method to evaluate Students based on
name (could reverse compareTo() for
descending order)
• If this name < s2.name return negative
• If this name equals s2.name return 0
• If this name > s2.name return positive

Student class implements
Comparable so
PriorityQueue holding
Student objects can
compare students

133

Method 1: Objects in Priority Queue
provide compareTo() method
Student.java • Student Objects added to

ArrayList in undefined order
• Student objects have name and

year instance variables

• Priority Queue created to hold
Student Objects

• No Comparator provided in
constructor

• By default PriorityQueue will
use Student object’s
compareTo() to find min Key

• ArrayList of students is added
to PriorityQueue with addAll()
method

• Output in sorted order
• Each time while loop executes,

removes smallest Student
object using compareTo()

Output in alphabetical order

ANNOTATED SLIDES
Student.java – Method 2 with comparator

134

135

Method 2: Define custom Compator and
pass to Priority Queue constructor
Student.java

• Instantiate new Comparator
• Create new Priority Queue and

pass Comparator in constructor
• Then fill Priority Queue with

students
• Sort by looping until Priority

Queue empty
• Each time remove Student with

smallest Key as determined by
Comparator instead of
Student’s compareTo()

Output sorted by length of name

• Still in main()
• Define Comparator class that

requires compare() method
• compare() has two Student params
• Here we use length of name to

compare two Student Objects
• compare() returns negative, equal,

or positive same as compareTo()

What if Object has compareTo() but
you want a different order?

ANNOTATED SLIDES
Student.java – Method 3 with anonymous function

136

137

Method 3: Use anonymous function in
Priority Queue declaration
Student.java

Output sorted by student year in
descending order (reversed normal
order of compared objects)

• Anonymous functions don’t have a name
• Declared “inline”
• Sometimes called “lambda function”
• Here compare Students based on year
• Passed to Priority Queue constructor
• Students removed by anonymous function

order (year in this case), not compareTo()
order

Created a Max Priority
Queue by simply
reversing compare

EXAMPLE OF READING FILE

138

139

Use a BufferedReader to read a file line by
line until reaching the end of file

BufferedReader input = new BufferedReader(new FileReader(fileName));
String line;
int lineNum = 0;
while ((line = input.readLine()) != null) {
 System.out.println("read @"+lineNum+"`"+line+"'");
 lineNum++;
}

• BufferedReader opens file with name filename
• Reading will start at beginning of file
• Each line from file stored in line in while loop
• input.readLine will return null at end of file
• Here we are just printing each line

Roster.java

140

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• Many possible exceptions
reading data from a file:
• File may not be found
• Some data might be

missing (e.g., name
without a year)

• Some data might be
invalid (e.g., year is not a
valid Integer)

141

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• This method reads a comma
separated variable (csv) file

• Each line should have student
name and year

• Creates a Student Object from
each line of the file

• Returns a List of Student
Objects with one entry for each
valid line

• File name to read is passed as
String parameter

142

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• This method reads a comma
separated variable (csv) file

• Each line should have student
name and year

• Creates a Student Object from
each line of the file

• Returns a List of Student
Objects with one entry for each
valid line

• File name to read is passed as
String parameter

• Create new BufferedReader
• Catch error if file not found

143

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• This method reads a comma
separated variable (csv) file

• Each line should have student
name and year

• Creates a Student Object from
each line of the file

• Returns a List of Student
Objects with one entry for each
valid line

• File name to read is passed as
String parameter

• Create new BufferedReader
• Catch error if file not found

• Read each line of file, store
in line String

• Split() on comma, make sure
we got two parts (input
could be invalid)

144

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• Got two elements after
split()

• Try to parse as name as
String and year as Integer

• Add to roster if valid student

145

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• Got two elements after
split()

• Try to parse as name as
String and year as Integer

• Add to roster if valid student

• If second element not
Integer:
• Catch error
• Print error message
• Keep reading

146

When reading files, we need to be ready to
handle many different exceptions
Roster.java

• Got two elements after
split()

• Try to parse as name as
String and year as Integer

• Add to roster if valid student

• If second element not
Integer:
• Catch error
• Print error message
• Keep reading

Close file in finally block (not
shown) – always runs

