
CS 10:
Problem solving via Object Oriented

Programming

Relationships

2

Main goals

• Implement graphs

3

Agenda

1. Graphs

2. Four common representations

3. Implementation

4

Graphs represent directed or undirected
relationships with nodes and edges

Nodes (vertices)
• Represent objects
• Could be a person or

city or computer or
intersection of roads…

Undirected edges
• Connect objects in

both directions
• “Two-way street”

Directed edges
• Connect objects in a

single directions
• “One-way street”

Undirected graph
Only undirected edges

Directed graph
Only directed edges

Mixed graph
Has both directed and
undirected edges

Graphs

0 1

4 3

2

5

Both nodes and edges can hold
information about the relationship

Nodes
• Represent an Object
• Can be as simple as a String
• Could be more complex like an

Object from a Person Class

Edges
• Can hold information about

relationship
• Distance between cities
• Capacity of a pipe
• Label of relationship type

(“follower”, “friend”, “co-
worker”)

Graphs

0 1

4 3

2

6

Graph ADT defines several useful methods
Create/alter graph structure
insertVertex(v)

Add node v to graph
insertDirected(u,v)/Undirected(u,v)

Add edge to graph between node u and
node v

removeVertex(v)/removeDirected(u,v)/
removeUndirected(u,v)

Remove node v or edge from u to v

Traverse graph
outDegree(v)/inDegree(v)

Count of edges out of or into node v
outNeighbors(v)/inNeighbors(v)

Other nodes connected from/to node v
hasEdge(u,v)

True if node v connected to node u
getLabel(u,v)

Return label on edge from node u to node v

Graph.java

0 1

4 3

2

7

We can use Graph ADT methods to answer
interesting questions

Questions we can answer
• Who is the most connected?

(most in edges)

• Who are mutual acquaintances
(“cliques” where all nodes have
edges to each other)

• Who is a friend-of-a-friend but
is not yet a friend? (breadth-
first search, next class)

7

Dave

Ron

Reza

Abby

Dan

Kirby

Ellen

Lila

Leslie

Nick

Dartmouth

Start up

The Metropolitan
Museum of Art

Me

8

Agenda

1. Graphs

2. Four common representations

3. Implementation

9

Graphs are commonly represented in one
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map

10

Edge Lists create an unordered list of
vertex pairs where each entry is an edge

Assume:
n nodes (here 5)
m edges (here 7)

1. Edge List
List of edges

0 1

4 3

2

Edge list
{node #, node #}

{ {0,1}, {0,4}, {1,2}, {1,3},
{1,4}, {2,3}, {3,4} }

Node 0

Node 3

11

Graphs are commonly represented in one
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map

12

Adjacency Lists store adjacent nodes in a
List; gives improved performance

Assume:
n nodes (here 5)
m edges (here 7)

2. Adjacency List
List of Lists

0 1

4 3

2

13

Graphs are commonly represented in one
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map

14

Adjacency Matrices create an n x n array to
indicate existence of edges

Assume:
n nodes (here 5)
m edges (here 7)

From

To3. Adjacency Matrix
n x n array

0 1

4 3

2

15

Graphs are commonly represented in one
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map

2

16

Adjacency Maps create a Map for each
node and a second Map to adjacent nodes

Assume:
n nodes (here 5)
m edges (here 7)

0
1
2
3
4

1
4

2
3
41

3
1
220

1
3

4. Adjacency Map
Map of Maps

0

4

0 1

4 3

2

17

How a Graph is implemented has a big
impact on run-time performance

Method Edge
List

Adjacency
List

Adjacency
Matrix

Adjacency
Map

in/outDegree(v) O(m) O(1) O(n) O(1)
in/outNeighbors(v) O(m) O(dv) O(n) O(dv)
hasEdge(u,v) O(m) O(du) O(1) O(1)
insertVertex(v) O(1) O(1) O(n2) O(1)
removeVertex(v) O(m) O(dv) O(n2) O(dv)
insertEdge(u,v,e) O(1) O(1) O(1) O(1)
removeEdge(u,v) O(m) O(1) O(1) O(1)

{{0,1},
{0,4}, {1,2},
{1,3}, {1,4},
{2,3}, {3,4}}

n = number of nodes (5), m = number of edges (7), dv = degree of node v

2"

1"

0"
1"
2"
3"
4"

1"
4"

2"
3"
4"1"

3"
1"
4"2"0"

1"
3"

0 1

4 3

2

Best performance is shown in red

18

Agenda

1. Graphs

2. Four common representations

3. Implementation

19

Our implementation will allow a mixed
graph (directed and undirected edges)

Undirected edges
are two directed
edges, one in each
direction

20

AdjancyMapGraph.java tracks in and out
edges in two different Maps
AdjacencyMapGraph.java

21

out tracks edges leaving a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

22

in tracks edges entering a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob Friend

Bob

friend

in

Key<String> Value<Map>

Key<String> Value<String>

vertex

vertex edge

23

Inserting vertices and edges requires
updating both in and out
AdjacencyMapGraph.java

u v
e

u v

24

getLabel(u,v) returns the label on the edge
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

When removing edges and vertices, must
remove from both in and out Maps
AdjacencyMapGraph.java

25

Output (from implicit toString() call):
The graph:
Vertices: [Bob, Dartmouth, Alice, Elvis, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={},
Alice={Dartmouth=follower, Bob=friend, Elvis=friend}, Elvis={Dartmouth=follower},
Charlie={Dartmouth=follower, Elvis=follower}}

26

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

27

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Links to Dartmouth = 4

28

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)
Elvis (friend)

29

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Links to Dartmouth:
Bob (follower)
Alice (follower)
Elvis (follower)
Charlie (follower)

30

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

31

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)

32

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Alice & Charlie work together

Links from Alice:
Dartmouth (follower)
Bob (friend)
Charlie (co-worker)

Links from Charlie:
Dartmouth (follower)
Alice (co-worker)

co-worker

33

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Alice unfriends Bob
and Charlie gets fired

Links from Alice:
Dartmouth (follower)

co-worker

34

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
The final graph:
Vertices: [Bob, Dartmouth, Alice, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={},
Alice={Dartmouth=follower},Charlie={Dartmouth=follower}}

35

Summary

• Graphs are used to represent
relationships
• Directed vs. undirected
• Four different implementations

with pros and cons
• Implementation with adjacency map

36

Next

• Graph traversals

Additional Resources

37

ANNOTATED SLIDES
Edge lists

38

39

Edge Lists create an unordered list of
vertex pairs where each entry is an edge

Assume:
n nodes (here 5)
m edges (here 7)

Notes:
• Number nodes 0..n-1
• Edge List stores pairs of indexes that

reference nodes
• Each Edge List entry represents an edge

between two nodes
• m total entries in Edge List
• Can be ordered to show directed edges
• Insert edge fast, just add to list
• Everything else slow
• Example: removeVertex is O(m), have to

remove all edges to/from node, so search
all edges leading to or from node

1. Edge List
List of edges

0 1

4 3

2

Edge list
{node #, node #}

{ {0,1}, {0,4}, {1,2}, {1,3},
{1,4}, {2,3}, {3,4} }

Node 0

Node 3

ANNOTATED SLIDES
Adjacency lists

40

41

Adjacency Lists store adjacent nodes in a
List; gives improved performance

Notes:
• Two vertices are said to be adjacent

if there is an edge between them
• Store List of nodes in or out of each

vertex (same if undirected graph)
• Might keep two lists, one for in

neighbors and one for out neighbors
• Faster to get neighbors than Edge

List, just iterate in O(degree(v)) vs.
O(m)

Assume:
n nodes (here 5)
m edges (here 7)

2. Adjacency List
List of Lists

0 1

4 3

2

ANNOTATED SLIDES
Adjacency matrix

42

43

Adjacency Matrices create an n x n array to
indicate existence of edges

Notes:
• Create n x n matrix A, set A[i,j] = 1 if edge

from node i to node j, else 0
• Works if no parallel edges
• Undirected graph A[i,j] == A[j,i]
• hasEdge(u,v) is now O(1), whereas in

Adjacency List it was O(degree(u))
• Finding neighbors now O(n) because have

to check entire row or column
• Adding/removing vertices O(n2), have to

rebuild entire matrix

Assume:
n nodes (here 5)
m edges (here 7)

From

To3. Adjacency Matrix
n x n array

0 1

4 3

2

ANNOTATED SLIDES
Adjacency map

44

2

Notes:
• Create Map with vertex names as Key
• Map Value is a second Map of adjacent

vertices with vertex name as Key
• Value in second Map is edge label
• No need to number nodes in order
• hasEdge(u,v) now expected O(1)

• Look up u in Map O(1)
• Look up v in second Map O(1) 45

Adjacency Maps create a Map for each
node and a second Map to adjacent nodes

Assume:
n nodes (here 5)
m edges (here 7)

0
1
2
3
4

1
4

2
3
41

3
1
220

1
3

4. Adjacency Map
Map of Maps

0

4

0 1

4 3

2

ANNOTATED SLIDES
AdjacencyMapGraph.java

46

47

AdjancyMapGraph.java tracks in and out
edges in two different Maps
AdjacencyMapGraph.java

Will normally declare something like:
Graph<String, String> relationships = new AdjacencyMapGraph<String, String>();

Vertices V will be Strings (e.g., someone’s name)
Edges E will be Strings (e.g., “follows” or “friend”)

48

out tracks edges leaving a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

• out tracks edges leaving a vertex
• out is a Map with vertex as Key, Map as Value
• Value Map has end vertex as Key, Edge as Value

vertex vertex edge

49

in tracks edges entering a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob Friend

Bob

friend

in

Key<String> Value<Map>

Key<String> Value<String>

• in tracks edges entering a vertex
• in is a Map with vertex as Key, Map as Value
• Value Map has start vertex as Key, Edge as

Value

vertex

vertex edge

50

Inserting vertices and edges requires
updating both in and out
AdjacencyMapGraph.java • Adding new vertex adds Key to

both in and out
• Value in both cases is set to

empty Map (e.g., new vertex
has no in or out edges)

Add directed edge from vertex u to
vertex v with edge label e
• Get out Value Map using vertex

u as Key

u v
e

51

Inserting vertices and edges requires
updating both in and out
AdjacencyMapGraph.java

Add directed edge from vertex u to
vertex v with edge label e
• Get out Value Map using vertex

u as Key

• Put new entry into Value Map
with destination vertex v and
edge e

u v
e

• Adding new vertex adds Key to
both in and out

• Value in both cases is set to
empty Map (e.g., new vertex
has no in or out edges)

52

Inserting vertices and edges requires
updating both in and out
AdjacencyMapGraph.java

Add directed edge from vertex u to
vertex v with edge label e
• Get out Value Map using vertex

u as Key

• Put new entry into Value Map
with destination vertex v and
edge e

• Repeat process, updating in for
incoming edge e into v from u

u v
e

• Adding new vertex adds Key to
both in and out

• Value in both cases is set to
empty Map (e.g., new vertex
has no in or out edges)

53

We model undirected edges as directed
edges going in both directions
AdjacencyMapGraph.java

Adding undirected edge creates
two directed edges
• One edge from u to v
• One edge from v to u

u v

54

getLabel(u,v) returns the label on the edge
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

• getLabel(u,v) returns label on edge from u to v
• getLabel(“Alice”, “Bob”) returns “Friend”
• First get Value Map for Key “Alice” from out

55

getLabel(u,v) returns the label on the edge
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

• getLabel(u,v) returns label on edge from u to v
• getLabel(“Alice”,”Bob”) returns “Friend”
• First get Value Map for Key “Alice” from out
• Next get use Key “Bob” to get Value String

56

getLabel(u,v) returns the label on the edge
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

• getLabel(u,v) returns label on edge from u to v
• getLabel(“Alice”,”Bob”) returns “Friend”
• First get Value Map for Key “Alice” from out
• Next get use Key “Bob” to get Value String
• Return “Friend”

When removing edges and vertices, must
remove from both in and out Maps
AdjacencyMapGraph.java

57

• Removing directed edge from u to v
• Remove from both in and out Maps
• Removing undirected, call removeDirected()

 twice

Removing vertex v
• Remove all in edges (out from neighbor)
• Remove all out edges (in from neighbor)
• Then remove v from in and out Maps

ANNOTATED SLIDES
RelationshipTest.java

58

Output (from implicit toString() call):
The graph:
Vertices: [Bob, Dartmouth, Alice, Elvis, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={},
Alice={Dartmouth=follower, Bob=friend, Elvis=friend}, Elvis={Dartmouth=follower},
Charlie={Dartmouth=follower, Elvis=follower}}

59

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java Declare graph:

Vertices V are Strings
Edges E are Strings

Add nodes

Add edges

60

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

• inDegree(u) gives count of
edges coming into u

Output:
Links to Dartmouth = 4

61

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

• outNeighbors(u) gives
neighboring vertices from u

• getLabel(u,v) gets edge
label from u to v

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)
Elvis (friend)

62

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

• inNeighbors(u) gives
neighbors on incoming
edges

Output:
Links to Dartmouth:
Bob (follower)
Alice (follower)
Elvis (follower)
Charlie (follower)

63

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Removing node Elvis
also removes link from
Alice and others

64

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)

Removing node Elvis
also removes link from
Alice and others

65

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Alice & Charlie work together

Links from Alice:
Dartmouth (follower)
Bob (friend)
Charlie (co-worker)

Links from Charlie:
Dartmouth (follower)
Alice (co-worker)

Adding link between
Charlie and Alice

co-worker

66

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
Alice unfriends Bob
and Charlie gets fired

Links from Alice:
Dartmouth (follower)

Alice removes edge to
Bob

co-worker

And Charlie no
longer co-
worker

67

RelationshipTest.java: create graph with
both directed and non-directed edges
RelationshipTest.java

Output:
The final graph:
Vertices: [Bob, Dartmouth, Alice, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={},
Alice={Dartmouth=follower},Charlie={Dartmouth=follower}}

