
CS 10:
Problem solving via Object Oriented 

Programming

Relationships
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Main goals

• Implement graphs
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Agenda

1. Graphs

2. Four common representations

3. Implementation
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Graphs represent directed or undirected 
relationships with nodes and edges

Nodes (vertices)
• Represent objects
• Could be a person or  

city or computer or 
intersection of roads…

Undirected edges
• Connect objects in 

both directions
• “Two-way street”

Directed edges
• Connect objects in a 

single directions
• “One-way street”

Undirected graph
Only undirected edges

Directed graph
Only directed edges

Mixed graph 
Has both directed and 
undirected edges

Graphs

0 1

4 3

2
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Both nodes and edges can hold 
information about the relationship

Nodes
• Represent an Object
• Can be as simple as a String 
• Could be more complex like an 

Object from a Person Class

Edges
• Can hold information about 

relationship
• Distance between cities
• Capacity of a pipe
• Label of relationship type 

(“follower”, “friend”, “co-
worker”)

Graphs

0 1

4 3

2
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Graph ADT defines several useful methods
Create/alter graph structure
insertVertex(v)

Add node v to graph
insertDirected(u,v)/Undirected(u,v)

Add edge to graph between node u and 
node v

removeVertex(v)/removeDirected(u,v)/ 
removeUndirected(u,v)

Remove node v or edge from u to v

Traverse graph
outDegree(v)/inDegree(v)

Count of edges out of or into node v
outNeighbors(v)/inNeighbors(v)

Other nodes connected from/to node v
hasEdge(u,v)

True if node v connected to node u
getLabel(u,v)

Return label on edge from node u to node v

Graph.java

0 1

4 3

2
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We can use Graph ADT methods to answer 
interesting questions 

Questions we can answer
• Who is the most connected? 

(most in edges)

• Who are mutual acquaintances 
(“cliques” where all nodes have 
edges to each other)

• Who is a friend-of-a-friend but 
is not yet a friend? (breadth-
first search, next class)

7
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Agenda

1. Graphs

2. Four common representations

3. Implementation
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Graphs are commonly represented in one 
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map
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Edge Lists create an unordered list of 
vertex pairs where each entry is an edge 

Assume:
n nodes (here 5)
m edges (here 7)

1. Edge List
List of edges

0 1

4 3

2

Edge list
{node #, node #}

{ {0,1}, {0,4}, {1,2}, {1,3}, 
{1,4}, {2,3}, {3,4} }

Node 0

Node 3
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Graphs are commonly represented in one 
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map
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Adjacency Lists store adjacent nodes in a 
List; gives improved performance

Assume:
n nodes (here 5)
m edges (here 7)

2. Adjacency List
List of Lists

0 1

4 3

2
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Graphs are commonly represented in one 
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map
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Adjacency Matrices create an n x n array to 
indicate existence of edges

Assume:
n nodes (here 5)
m edges (here 7)

From

To3. Adjacency Matrix
n x n array

0 1

4 3

2
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Graphs are commonly represented in one 
of four different ways

Common Graph representations
1. Edge List

2. Adjacency List

3. Adjacency Matrix

4. Adjacency Map



2
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Adjacency Maps create a Map for each 
node and a second Map to adjacent nodes

Assume:
n nodes (here 5)
m edges (here 7)

0
1
2
3
4

1
4

2
3
41

3
1
220

1
3

4. Adjacency Map
Map of Maps

0

4

0 1

4 3

2
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How a Graph is implemented has a big 
impact on run-time performance

Method Edge 
List

Adjacency 
List

Adjacency 
Matrix

Adjacency 
Map

in/outDegree(v) O(m) O(1) O(n) O(1)
in/outNeighbors(v) O(m) O(dv) O(n) O(dv)
hasEdge(u,v) O(m) O(du) O(1) O(1)
insertVertex(v) O(1) O(1) O(n2) O(1)
removeVertex(v) O(m) O(dv) O(n2) O(dv)
insertEdge(u,v,e) O(1) O(1) O(1) O(1)
removeEdge(u,v) O(m) O(1) O(1) O(1)

{{0,1}, 
{0,4}, {1,2}, 
{1,3}, {1,4}, 
{2,3}, {3,4}}

n = number of nodes (5), m = number of edges (7), dv = degree of node v

2"

1"

0"
1"
2"
3"
4"

1"
4"

2"
3"
4"1"

3"
1"
4"2"0"

1"
3"

0 1

4 3

2

Best performance is shown in red
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Agenda

1. Graphs

2. Four common representations

3. Implementation
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Our implementation will allow a mixed 
graph (directed and undirected edges)

Undirected edges 
are two directed 
edges, one in each 
direction
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AdjancyMapGraph.java tracks in and out 
edges in two different Maps
AdjacencyMapGraph.java
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out tracks edges leaving a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge
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in tracks edges entering a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob Friend

Bob

friend

in

Key<String> Value<Map>

Key<String> Value<String>

vertex

vertex edge
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Inserting vertices and edges requires 
updating both in and out
AdjacencyMapGraph.java

u v
e

u v
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getLabel(u,v) returns the label on the edge 
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge



When removing edges and vertices, must 
remove from both in and out Maps
AdjacencyMapGraph.java
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Output (from implicit toString() call):
The graph:
Vertices: [Bob, Dartmouth, Alice, Elvis, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={}, 
Alice={Dartmouth=follower, Bob=friend, Elvis=friend}, Elvis={Dartmouth=follower}, 
Charlie={Dartmouth=follower, Elvis=follower}}
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Links to Dartmouth = 4
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)
Elvis (friend)
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Links to Dartmouth:
Bob (follower)
Alice (follower)
Elvis (follower)
Charlie (follower)
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)



32

RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Alice & Charlie work together

Links from Alice:
Dartmouth (follower)
Bob (friend)
Charlie (co-worker)

Links from Charlie:
Dartmouth (follower)
Alice (co-worker)

co-worker
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Alice unfriends Bob
and Charlie gets fired

Links from Alice:
Dartmouth (follower)

co-worker
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
The final graph:
Vertices: [Bob, Dartmouth, Alice, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={}, 
Alice={Dartmouth=follower},Charlie={Dartmouth=follower}}
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Summary

• Graphs are used to represent 
relationships
• Directed vs. undirected
• Four different implementations 

with pros and cons
• Implementation with adjacency map
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Next

• Graph traversals



Additional Resources

37



ANNOTATED SLIDES
Edge lists

38
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Edge Lists create an unordered list of 
vertex pairs where each entry is an edge 

Assume:
n nodes (here 5)
m edges (here 7)

Notes:
• Number nodes 0..n-1
• Edge List stores pairs of indexes that 

reference nodes 
• Each Edge List entry represents an edge 

between two nodes
• m total entries in Edge List
• Can be ordered to show directed edges
• Insert edge fast, just add to list
• Everything else slow
• Example: removeVertex is O(m), have to 

remove all edges to/from node, so search 
all edges leading to or from node

1. Edge List
List of edges

0 1

4 3

2

Edge list
{node #, node #}

{ {0,1}, {0,4}, {1,2}, {1,3}, 
{1,4}, {2,3}, {3,4} }

Node 0

Node 3



ANNOTATED SLIDES
Adjacency lists

40
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Adjacency Lists store adjacent nodes in a 
List; gives improved performance

Notes:
• Two vertices are said to be adjacent 

if there is an edge between them
• Store List of nodes in or out of each 

vertex (same if undirected graph)
• Might keep two lists, one for in 

neighbors and one for out neighbors
• Faster to get neighbors than Edge 

List, just iterate in O(degree(v)) vs. 
O(m)

Assume:
n nodes (here 5)
m edges (here 7)

2. Adjacency List
List of Lists

0 1

4 3

2



ANNOTATED SLIDES
Adjacency matrix

42
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Adjacency Matrices create an n x n array to 
indicate existence of edges

Notes:
• Create n x n matrix A, set A[i,j] = 1 if edge 

from node i to node j, else 0
• Works if no parallel edges
• Undirected graph A[i,j] == A[j,i]
• hasEdge(u,v) is now O(1), whereas in 

Adjacency List it was O(degree(u))
• Finding neighbors now O(n) because have 

to check entire row or column
• Adding/removing vertices O(n2), have to 

rebuild entire matrix

Assume:
n nodes (here 5)
m edges (here 7)

From

To3. Adjacency Matrix
n x n array

0 1

4 3

2



ANNOTATED SLIDES
Adjacency map

44
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Notes:
• Create Map with vertex names as Key
• Map Value is a second Map of adjacent 

vertices with vertex name as Key
• Value in second Map is edge label
• No need to number nodes in order
• hasEdge(u,v) now expected O(1)

• Look up u in Map O(1)
• Look up v in second Map O(1) 45

Adjacency Maps create a Map for each 
node and a second Map to adjacent nodes

Assume:
n nodes (here 5)
m edges (here 7)

0
1
2
3
4

1
4

2
3
41

3
1
220

1
3

4. Adjacency Map
Map of Maps

0

4

0 1

4 3

2



ANNOTATED SLIDES
AdjacencyMapGraph.java

46
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AdjancyMapGraph.java tracks in and out 
edges in two different Maps
AdjacencyMapGraph.java

Will normally declare something like:
Graph<String, String> relationships = new AdjacencyMapGraph<String, String>();

Vertices V will be Strings (e.g., someone’s name)
Edges E will be Strings (e.g., “follows” or “friend”)
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out tracks edges leaving a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

• out tracks edges leaving a vertex 
• out is a Map with vertex as Key, Map as Value
• Value Map has end vertex as Key, Edge as Value

vertex vertex edge
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in tracks edges entering a vertex
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob Friend

Bob

friend

in

Key<String> Value<Map>

Key<String> Value<String>

• in tracks edges entering a vertex 
• in is a Map with vertex as Key, Map as Value
• Value Map has start vertex as Key, Edge as 

Value

vertex

vertex edge
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Inserting vertices and edges requires 
updating both in and out
AdjacencyMapGraph.java • Adding new vertex adds Key to 

both in and out
• Value in both cases is set to 

empty Map (e.g., new vertex 
has no in or out edges)

Add directed edge from vertex u to 
vertex v with edge label e
• Get out Value Map using vertex 

u as Key

u v
e
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Inserting vertices and edges requires 
updating both in and out
AdjacencyMapGraph.java

Add directed edge from vertex u to 
vertex v with edge label e
• Get out Value Map using vertex 

u as Key

• Put new entry into Value Map 
with destination vertex v and 
edge e

u v
e

• Adding new vertex adds Key to 
both in and out

• Value in both cases is set to 
empty Map (e.g., new vertex 
has no in or out edges)
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Inserting vertices and edges requires 
updating both in and out
AdjacencyMapGraph.java

Add directed edge from vertex u to 
vertex v with edge label e
• Get out Value Map using vertex 

u as Key

• Put new entry into Value Map 
with destination vertex v and 
edge e

• Repeat process, updating in for 
incoming edge e into v from u

u v
e

• Adding new vertex adds Key to 
both in and out

• Value in both cases is set to 
empty Map (e.g., new vertex 
has no in or out edges)
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We model undirected edges as directed 
edges going in both directions
AdjacencyMapGraph.java

Adding undirected edge creates 
two directed edges
• One edge from u to v
• One edge from v to u

u v
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getLabel(u,v) returns the label on the edge 
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

• getLabel(u,v) returns label on edge from u to v
• getLabel(“Alice”, “Bob”) returns “Friend”
• First get Value Map for Key “Alice” from out
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getLabel(u,v) returns the label on the edge 
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

• getLabel(u,v) returns label on edge from u to v
• getLabel(“Alice”,”Bob”) returns “Friend”
• First get Value Map for Key “Alice” from out
• Next get use Key “Bob” to get Value String
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getLabel(u,v) returns the label on the edge 
between u and v
AdjacencyMapGraph.java

Alice
Bob

Charlie
Dartmouth

Elvis

Alice

Bob
Dartmouth

Elvis

Friend
Follower

Friend

Bob
friend out

Key<String> Value<Map>

Key<String> Value<String>

vertex vertex edge

• getLabel(u,v) returns label on edge from u to v
• getLabel(“Alice”,”Bob”) returns “Friend”
• First get Value Map for Key “Alice” from out
• Next get use Key “Bob” to get Value String
• Return “Friend”



When removing edges and vertices, must 
remove from both in and out Maps
AdjacencyMapGraph.java
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• Removing directed edge from u to v
• Remove from both in and out Maps
• Removing undirected, call removeDirected() 

  twice

Removing vertex v 
• Remove all in edges (out from neighbor)
• Remove all out edges (in from neighbor)
• Then remove v from in and out Maps



ANNOTATED SLIDES
RelationshipTest.java

58



Output (from implicit toString() call):
The graph:
Vertices: [Bob, Dartmouth, Alice, Elvis, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={}, 
Alice={Dartmouth=follower, Bob=friend, Elvis=friend}, Elvis={Dartmouth=follower}, 
Charlie={Dartmouth=follower, Elvis=follower}}
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java Declare graph:

Vertices V are Strings
Edges E are Strings

Add nodes

Add edges
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

• inDegree(u) gives count of 
edges coming into u

Output:
Links to Dartmouth = 4



61

RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

• outNeighbors(u) gives 
neighboring vertices from u

• getLabel(u,v) gets edge 
label from u to v

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)
Elvis (friend)
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

• inNeighbors(u) gives 
neighbors on incoming 
edges

Output:
Links to Dartmouth:
Bob (follower)
Alice (follower)
Elvis (follower)
Charlie (follower)
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Removing node Elvis 
also removes link from 
Alice and others



64

RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Links from Alice:
Dartmouth (follower)
Bob (friend)

Removing node Elvis 
also removes link from 
Alice and others
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Alice & Charlie work together

Links from Alice:
Dartmouth (follower)
Bob (friend)
Charlie (co-worker)

Links from Charlie:
Dartmouth (follower)
Alice (co-worker)

Adding link between 
Charlie and Alice

co-worker
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
Alice unfriends Bob
and Charlie gets fired

Links from Alice:
Dartmouth (follower)

Alice removes edge to 
Bob

co-worker

And Charlie no 
longer co-
worker
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RelationshipTest.java: create graph with 
both directed and non-directed edges
RelationshipTest.java

Output:
The final graph:
Vertices: [Bob, Dartmouth, Alice, Charlie]
Out edges: {Bob={Dartmouth=follower, Alice=friend}, Dartmouth={}, 
Alice={Dartmouth=follower},Charlie={Dartmouth=follower}}


