
CS 10:
Problem solving via Object Oriented 

Programming

Shortest Path
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Main goals

• Conceptually implement and execute 
graph traversals that do take into 
account cost
 (more in COSC31 and COSC76)
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Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs
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Last class we looked simple graphs, today 
we look at more complicated graphs

s

t

y

x

z

Depth First Search (DFS)
• Use a Stack
• Move forward until can’t 

proceed farther
• Go back to last decision 

point and try another edge

Graph with directed 
edges and several cycles

On-paper run
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

s

Stack

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

Pop -> s, mark visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

Push s unvisited neighbors

t y

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t

Pop -> y, mark visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t

Push y unvisited neighbors

z t x

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

Pop -> x, mark visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

Push x unvisited neighbors

z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

Pop -> z, mark visitedNote: z was in Stack twice 
because two edges lead to z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

All z neighbors (x,s) visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

All z neighbors (x,s) visitedFound cycle!
s is an already visited 
neighbor 

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

All z neighbors (x,s) visitedFound cycle!
s is an already visited 
neighbor (so is x) 

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z t

All z neighbors (x,s) visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t z

Pop -> t, mark visitedNote: t was in Stack twice 
because two edges lead to t

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

t

Pop -> z, skip, already visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

Pop -> t, skip, already visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack
Done
• Red lines indicate a tree 

(root and no cycles)
• Can traverse tree to find 

path from s to others

s

y

t x

z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

Stack

Could DFS have produced 
another tree?
Yes, depends on the order 
vertices pushed onto Stack

Done
• Red lines indicate a tree 

(root and no cycles)
• Can traverse tree to find 

path from s to others

s

y

t x

z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack 
empty:
 u = stack.pop()
 if !u.visited 
  u.visited = true
  (maybe do something while here)
  for v ∈ u.adjacent

      if !v.visited
  stack.push(v)
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Breadth First Search (BFS)
• Use a Queue
• Ripple outward from start
• Finds shortest path to each 

node from start (DFS finds a 
path)

Graph with directed 
edges and several cycles
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

s

enqueue(s)
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

dequeue -> s
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

enqueue s unvisited adjacent

t y
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

dequeue -> t

y
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

yAdjacent vertex y is visited
Found cycle?
NO!  Just another way to get to y
DFS easier for cycle detection

enqueue t unvisited adjacent
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

y

enqueue t unvisited adjacent

x
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

x

dequeue -> y
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

x z

enqueue y unvisited adjacent
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

z

dequeue -> x
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue

dequeue -> z
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BFS finds shortest path to all reachable 
vertices

s

t

y

x

z

Graph with directed 
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or 
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
  if !v.visited 
   v.visited = true
   enqueue(v)
  

Queue
Done
• Red lines indicate a tree 

(root and no cycles)
• Can traverse tree to find 

path from s to others
x

s

t y

z
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DFS and BFS can create different trees, 
both find path from start to other vertices

x

s

t y

z

s

y

t x

z

DFS BFS

• Has path from start 
to all other 
reachable vertices

• No cycles
• Path s to z = 3 edges

• Has shortest path from 
start to all other 
reachable vertices

• No cycles
• Path s to z = 2 edges

Why do we care if 
path has cycles?

If cycles, could get 
caught in endless 
loop computing 
path from s to end

No cycles with tree
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Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs
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BFS considers the number of steps, but not 
how long each step could take
Fastest driving route to Seattle from Hanover

Could try to take the 
most direct route
• Take local roads
• Try to keep on a line 

between Start and 
Goal

OR could try to take 
major highways:
• New York
• Chicago
• Seattle

50 hours?

4 hours

29 hours

12 hours

Drive time estimates from travelmath.com 

Total time: 45 hours 

Seattle Hanover
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Now we consider the idea that not all steps 
are the same

BFS would choose the 
direct route (one leg)

Highway travel makes larger 
number of steps more 
attractive

Note: our metric now is 
driving time, not number of 
edges, however total 
distance is longer!

Need a way to account for 
the idea that each step 
might have different 
“weight” (drive time here)

50 hours?

4 hours

29 hours

12 hours

Drive time estimates from travelmath.com 

Total time: 45 hours 

Fastest driving route to Seattle from Hanover
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With no negative edge weights, we can use 
Dijkstra’s algorithm to find short paths

Use weight as edge label (e.g., 
driving distance between nodes)

Start at node s (single source)

Find path with smallest sum of 
weights to all other nodes

Store shortest path weights in 
v.dist instance variable

Keep back pointer to previous 
node in v.pred

Updated v.dist and v.pred if 
find shorter path later found

Goal: find shortest path to all nodes considering edge weights
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To get intuition, imagine sending runners 
from the start to all adjacent nodes

Simulation
s.dist = 0

Runners take edge weight 
minutes to arrive at adjacent 
nodes 

Runners arrive at node v:
• Record arrival time in v.dist
• Record prior node in v.pred

Runners immediately leave for 
an adjacent node

Runners leave s for y and t

Time 0

s.dist = 0

Weights must be non-negative
Why?
Could end up arriving before you left!
If edge from t to y was -2, then could 
back up in time
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Imagine we send runners from the start to 
all adjacent nodes

Runner arrives at y in 4 
minutes
• Record y.dist = 4
• Record y.pred = s

Runners leave y for adjacent 
nodes t, x, and z

Runner from s has not 
reached t yet

Time 4

y.dist = 4
y.pred = s

s.dist = 0
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Imagine we send runners from the start to 
all adjacent nodes

Runner from y arrives at t 
at time 5
• t.dist = 5
• t.pred = y

Runners from s still hasn’t 
made it to t

Runners leave t for 
adjacent nodes x and y

Time 5

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

s.dist = 0
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Imagine we send runners from the start to 
all adjacent nodes

Runner from s arrives at t at 
time 6

Runner from y has already 
arrived, so best route is from y, 
not direct from s

Do not update t.dist and 
t.pred

NOTE: BFS would have chosen 
the direct route to t

Time 6

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

s.dist = 0
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Imagine we send runners from the start to 
all adjacent nodes

Runner from y arrives at z at 
time 7

Record z.dist = 7 and 
z.pred = y

Runners leave z for s and x

Time 7

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

z.dist = 7
z.pred = y

s.dist = 0
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Imagine we send runners from the start to 
all adjacent nodes

Runner from t arrives at x at 
time 8

x.dist = 8, x.pred = t

All nodes explored

Now have shortest path from s 
to all other nodes

Shaded lines indicate best 
path to each node

Path forms a tree on graph

Time 8

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

z.dist = 7
z.pred = y

x.dist = 8
x.pred = t

s.dist = 0

• What ADT have we seen that works well 
for a simulation of this nature?

• PriorityQueue!
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Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs
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Dijkstra’s algorithms works similarly but 
doesn’t rely on waiting for runners

Overview
Start at s

Process all out edges at the 
same time

Compare distance to adjacent 
nodes with best so far

If current path < best, update 
best distance and predecessor 
node

Example: one hop from s set 
t.dist = 6, t.pred = s

Dijkstra’s algorithm
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Dijkstra’s algorithms works similarly but 
doesn’t rely on waiting for runners

Overview
Start at s

Process all out edges at the 
same time

Compare distance to adjacent 
nodes with best so far

If current path < best, update 
best distance and predecessor 
node

Example: one hop from s set 
t.dist = 6, t.pred = s, then 
update t.dist = 5, t.pred = y 
on second hop

Dijkstra’s algorithm
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Dijkstra uses a Min Priority Queue with 
dist values as keys to get closest vertex

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
  v.pred = null;
  queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}

Dijkstra’s algorithm starting from s
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Dijkstra defines a relax method to update 
best path if needed

void relax(u, v) {
  if (u.dist + w(u,v) < v.dist) {
    v.dist = u.dist + w(u,v);
    v.pred = u;
  }
}

Dijkstra’s relax method

Currently at vertex u, considering distance to vertex v
Check if distance to u + distance from u to v < best distance to v so far
Distance from u to v is w(u,v)
If shorter total distance to v than previous, then update:

v.dist = u.dist + w(u,v) 
v.pred = u
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Example

All nodes have distance Infinity, except Start with distance 0
Distances shown in center of vertices
extractMin() from Min Priority Queue first selects s (dist =0)

Dijkstra’s algorithm void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
    v.pred = null;
 queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}
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Example
Dijkstra’s algorithm 

Loop over all adjacent nodes v
If distance less than smallest so far, then relax
That is the case here, so update dist and pred on t and y

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
    v.pred = null;
 queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}
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Example
Dijkstra’s algorithm 

extractMin() now picks y (dist=4)
Look at adjacent t,x, and z
Relax each of them

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
    v.pred = null;
 queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}



53

Example
Dijkstra’s algorithm 

extractMin() now picks t (dist =5)
Look at adjacent x and y
Relax x, but not y

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
    v.pred = null;
 queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}
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Example
Dijkstra’s algorithm 

extractMin() now picks z (dist = 7)
Look at adjacent x and s
Do not relax x or s

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
    v.pred = null;
 queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}
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Example
Dijkstra’s algorithm s

extractMin() now picks x (dist = 8)
Look at adjacent z
Do not relax z
Done!

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
    v.pred = null;
 queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}
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Run-time complexity is O(n log n + m log n)

• Add and remove each vertex once in Priority Queue
• Relax each edge (and perhaps reduce key) once
• O(n*(insert time + extractMin) + m*(reduceKey))
• If using heap-based Priority Queue, then each queue 

operation takes O(log n)
• Total = O(n log n + m log n)

• Can implement with a Fibonacci heap with O(n2)
• Take CS31 to find out how!

Dijkstra’s algorithm 
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Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs
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Dijkstra’s algorithm can find shortest path 
but what about a huge graph?
Consider a GPS device that finds path 
from current location to destination

How does it find path quickly?

Roads from Hanover can lead up to 
Alaska or down to Argentina!

Does the “little” GPS computer consider 
all those roads?

NO!  It uses variant of Dijkstra called A* 
to rule out paths that will clearly be 
longer than best path discovered so far

A* is able to “stop early”, 
without considering every 
possible path
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A* can help find the best path between 
two nodes faster than Dijkstra
A* algorithm from Hanover to Boston 

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
20

Estimate distance to goal 
(maybe use Euclidean 
distance) from each node

Estimate must be ≤ actual 
distance (admissible)

Distances non-negative 
(distance monotonically 
increasing; driving further 
cannot make trip shorter!)

Estimated distance to goal

Actual distance to node
Boston
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A* can help find the best path between 
two nodes faster than Dijkstra
A* algorithm from Hanover to Boston 

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
20

Keep Priority Queue using 
distance so far + estimate 
for each node (“open set”)

Keep “closed set” where 
we know we already 
found the best route

Estimated distance to goal

Actual distance to node
Boston
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A* can help find the best path between 
two nodes faster than Dijkstra
Step 1: Start at Hanover, add to Open set

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
20

Open set (Priority Queue)
Hanover 0 + 60 = 60

Closed set

Estimated distance to goal

Actual distance to node
Boston
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A* can help find the best path between 
two nodes faster than Dijkstra
Step 2: extractMin from Open set and explore adjacent

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Randolph 25 + 75 = 100
Manchester = 65 + 45 = 110

Closed set
Hanover 0 + 60 = 60

Estimated distance to goal

Actual distance to node

Extract Hanover
Move to closed set
Explore adjacent

Boston
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A* can help find the best path between 
two nodes faster than Dijkstra
Step 3: extractMin from Open set and explore adjacent

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Manchester = 65 + 45 = 110
Montpelier = 25 + 60 + 130 = 215

Closed set
Hanover 0 + 60 = 60
Randolph 25 + 75 = 100

Estimated distance to goal

Actual distance to node

Extract Randolph
Move to closed set
Explore adjacent

Boston
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A* can help find the best path between 
two nodes faster than Dijkstra
Step 4: extractMin from Open set and explore adjacent

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Boston = 65 + 45 = 110
Montpelier = 25 + 60 + 130 = 215

Closed set
Hanover 0 + 60 = 60
Randolph 25 + 75 = 100
Manchester = 65 + 45 = 110

Estimated distance to goal

Actual distance to node

Extract Manchester
Move to closed set
Explore adjacent

Boston
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A* can help find the best path between 
two nodes faster than Dijkstra
Step 5: extractMin from Open set and explore adjacent

Manchester

Hanover

Boston

Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Montpelier = 25 + 60 + 130 = 215

Closed set
Hanover 0 + 60 = 60
Randolph 25 + 75 = 100
Manchester = 65 + 45 = 110
Boston = 65 + 45 = 110

Estimated distance to goal

Actual distance to node

Found goal at distance of 120 (65+55)
• Still check nodes in open set with 

estimate less than this route (120)
• No need to check other routes
• Montpelier can’t be closer, a 

straight line would be greater than 
best path so far

Extract Boston
Move to closed set
Explore adjacent
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Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs
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Demo: Model maze intersections as 
vertices and run DFS/BFS/A*

MazeSolver.java
• Run
• Load map 5
• Try with:
• Stack == DFS
• Queue = BFS
• A* 
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Summary

• DFS can be helpful in identifying cycles but does 
not find path with lowest number of edges

• BFS finds the path with the lowest number of 
edges

• To find paths from a start to another node 
considering cost
• Dijkstra: considers cost
• A*: considers cost + estimate

• Both Dijkstra and A* rely on a priority queue
• Graph can be implicit
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Next

• Pattern matching based on finite 
automata, which can be intuitively 
represented as graph



Additional Resources
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ANNOTATED SLIDES
Dijkstra algorithm
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Dijkstra uses a Min Priority Queue with 
dist values as keys to get closest vertex

void dijkstra(s) {
  queue = new PriorityQueue<Vertex>();
  for (each vertex v) {
    v.dist = infinity;
  v.pred = null;
  queue.enqueue(v);
  }   
  s.dist = 0;

  while (!queue.isEmpty()) {
    u = queue.extractMin();
    for (each vertex v adjacent to u)
      relax(u, v);
  }
}

Dijkstra’s algorithm starting from s
Set up Min Priority 
Queue

 Initialize dist and 
pred

Use dist as key for 
Min Priority Queue 
(initially infinite)Initialize s distance to zero

While not all nodes 
have been explored

Get closest node based 
on distance (initially s)

Examine adjacent and 
relax


