
CS 10:
Problem solving via Object Oriented

Programming

Shortest Path

2

Main goals

• Conceptually implement and execute
graph traversals that do take into
account cost
 (more in COSC31 and COSC76)

3

Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs

4

Last class we looked simple graphs, today
we look at more complicated graphs

s

t

y

x

z

Depth First Search (DFS)
• Use a Stack
• Move forward until can’t

proceed farther
• Go back to last decision

point and try another edge

Graph with directed
edges and several cycles

On-paper run

5

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

s

Stack

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

6

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

Pop -> s, mark visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

7

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

Push s unvisited neighbors

t y

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

8

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t

Pop -> y, mark visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

9

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t

Push y unvisited neighbors

z t x

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

10

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

Pop -> x, mark visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

11

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

Push x unvisited neighbors

z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

12

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

Pop -> z, mark visitedNote: z was in Stack twice
because two edges lead to z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

13

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

All z neighbors (x,s) visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

14

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

All z neighbors (x,s) visitedFound cycle!
s is an already visited
neighbor

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

15

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

All z neighbors (x,s) visitedFound cycle!
s is an already visited
neighbor (so is x)

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

16

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z t

All z neighbors (x,s) visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

17

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t z

Pop -> t, mark visitedNote: t was in Stack twice
because two edges lead to t

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

18

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

t

Pop -> z, skip, already visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

19

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

Pop -> t, skip, already visited

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

20

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack
Done
• Red lines indicate a tree

(root and no cycles)
• Can traverse tree to find

path from s to others

s

y

t x

z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

21

DFS creates a tree of all reachable vertices

s

t

y

x

z

Graph with directed
edges and several cycles

Stack

Could DFS have produced
another tree?
Yes, depends on the order
vertices pushed onto Stack

Done
• Red lines indicate a tree

(root and no cycles)
• Can traverse tree to find

path from s to others

s

y

t x

z

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or stack
empty:
 u = stack.pop()
 if !u.visited
 u.visited = true
 (maybe do something while here)
 for v ∈ u.adjacent

 if !v.visited
 stack.push(v)

22

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Breadth First Search (BFS)
• Use a Queue
• Ripple outward from start
• Finds shortest path to each

node from start (DFS finds a
path)

Graph with directed
edges and several cycles

23

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

s

enqueue(s)

24

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

dequeue -> s

25

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

enqueue s unvisited adjacent

t y

26

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

dequeue -> t

y

27

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

yAdjacent vertex y is visited
Found cycle?
NO! Just another way to get to y
DFS easier for cycle detection

enqueue t unvisited adjacent

28

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

y

enqueue t unvisited adjacent

x

29

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

x

dequeue -> y

30

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

x z

enqueue y unvisited adjacent

31

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

z

dequeue -> x

32

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue

dequeue -> z

33

BFS finds shortest path to all reachable
vertices

s

t

y

x

z

Graph with directed
edges and several cycles

BFS algorithm
enqueue(s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
 u = dequeque()
 for v ∈ u.adjacent
 if !v.visited
 v.visited = true
 enqueue(v)

Queue
Done
• Red lines indicate a tree

(root and no cycles)
• Can traverse tree to find

path from s to others
x

s

t y

z

34

DFS and BFS can create different trees,
both find path from start to other vertices

x

s

t y

z

s

y

t x

z

DFS BFS

• Has path from start
to all other
reachable vertices

• No cycles
• Path s to z = 3 edges

• Has shortest path from
start to all other
reachable vertices

• No cycles
• Path s to z = 2 edges

Why do we care if
path has cycles?

If cycles, could get
caught in endless
loop computing
path from s to end

No cycles with tree

35

Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs

36

BFS considers the number of steps, but not
how long each step could take
Fastest driving route to Seattle from Hanover

Could try to take the
most direct route
• Take local roads
• Try to keep on a line

between Start and
Goal

OR could try to take
major highways:
• New York
• Chicago
• Seattle

50 hours?

4 hours

29 hours

12 hours

Drive time estimates from travelmath.com

Total time: 45 hours

Seattle Hanover

37

Now we consider the idea that not all steps
are the same

BFS would choose the
direct route (one leg)

Highway travel makes larger
number of steps more
attractive

Note: our metric now is
driving time, not number of
edges, however total
distance is longer!

Need a way to account for
the idea that each step
might have different
“weight” (drive time here)

50 hours?

4 hours

29 hours

12 hours

Drive time estimates from travelmath.com

Total time: 45 hours

Fastest driving route to Seattle from Hanover

38

With no negative edge weights, we can use
Dijkstra’s algorithm to find short paths

Use weight as edge label (e.g.,
driving distance between nodes)

Start at node s (single source)

Find path with smallest sum of
weights to all other nodes

Store shortest path weights in
v.dist instance variable

Keep back pointer to previous
node in v.pred

Updated v.dist and v.pred if
find shorter path later found

Goal: find shortest path to all nodes considering edge weights

39

To get intuition, imagine sending runners
from the start to all adjacent nodes

Simulation
s.dist = 0

Runners take edge weight
minutes to arrive at adjacent
nodes

Runners arrive at node v:
• Record arrival time in v.dist
• Record prior node in v.pred

Runners immediately leave for
an adjacent node

Runners leave s for y and t

Time 0

s.dist = 0

Weights must be non-negative
Why?
Could end up arriving before you left!
If edge from t to y was -2, then could
back up in time

40

Imagine we send runners from the start to
all adjacent nodes

Runner arrives at y in 4
minutes
• Record y.dist = 4
• Record y.pred = s

Runners leave y for adjacent
nodes t, x, and z

Runner from s has not
reached t yet

Time 4

y.dist = 4
y.pred = s

s.dist = 0

41

Imagine we send runners from the start to
all adjacent nodes

Runner from y arrives at t
at time 5
• t.dist = 5
• t.pred = y

Runners from s still hasn’t
made it to t

Runners leave t for
adjacent nodes x and y

Time 5

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

s.dist = 0

42

Imagine we send runners from the start to
all adjacent nodes

Runner from s arrives at t at
time 6

Runner from y has already
arrived, so best route is from y,
not direct from s

Do not update t.dist and
t.pred

NOTE: BFS would have chosen
the direct route to t

Time 6

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

s.dist = 0

43

Imagine we send runners from the start to
all adjacent nodes

Runner from y arrives at z at
time 7

Record z.dist = 7 and
z.pred = y

Runners leave z for s and x

Time 7

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

z.dist = 7
z.pred = y

s.dist = 0

44

Imagine we send runners from the start to
all adjacent nodes

Runner from t arrives at x at
time 8

x.dist = 8, x.pred = t

All nodes explored

Now have shortest path from s
to all other nodes

Shaded lines indicate best
path to each node

Path forms a tree on graph

Time 8

y.dist = 4
y.pred = s

t.dist = 5
t.pred = y

z.dist = 7
z.pred = y

x.dist = 8
x.pred = t

s.dist = 0

• What ADT have we seen that works well
for a simulation of this nature?

• PriorityQueue!

45

Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs

46

Dijkstra’s algorithms works similarly but
doesn’t rely on waiting for runners

Overview
Start at s

Process all out edges at the
same time

Compare distance to adjacent
nodes with best so far

If current path < best, update
best distance and predecessor
node

Example: one hop from s set
t.dist = 6, t.pred = s

Dijkstra’s algorithm

47

Dijkstra’s algorithms works similarly but
doesn’t rely on waiting for runners

Overview
Start at s

Process all out edges at the
same time

Compare distance to adjacent
nodes with best so far

If current path < best, update
best distance and predecessor
node

Example: one hop from s set
t.dist = 6, t.pred = s, then
update t.dist = 5, t.pred = y
on second hop

Dijkstra’s algorithm

48

Dijkstra uses a Min Priority Queue with
dist values as keys to get closest vertex

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

Dijkstra’s algorithm starting from s

49

Dijkstra defines a relax method to update
best path if needed

void relax(u, v) {
 if (u.dist + w(u,v) < v.dist) {
 v.dist = u.dist + w(u,v);
 v.pred = u;
 }
}

Dijkstra’s relax method

Currently at vertex u, considering distance to vertex v
Check if distance to u + distance from u to v < best distance to v so far
Distance from u to v is w(u,v)
If shorter total distance to v than previous, then update:

v.dist = u.dist + w(u,v)
v.pred = u

50

Example

All nodes have distance Infinity, except Start with distance 0
Distances shown in center of vertices
extractMin() from Min Priority Queue first selects s (dist =0)

Dijkstra’s algorithm void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

51

Example
Dijkstra’s algorithm

Loop over all adjacent nodes v
If distance less than smallest so far, then relax
That is the case here, so update dist and pred on t and y

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

52

Example
Dijkstra’s algorithm

extractMin() now picks y (dist=4)
Look at adjacent t,x, and z
Relax each of them

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

53

Example
Dijkstra’s algorithm

extractMin() now picks t (dist =5)
Look at adjacent x and y
Relax x, but not y

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

54

Example
Dijkstra’s algorithm

extractMin() now picks z (dist = 7)
Look at adjacent x and s
Do not relax x or s

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

55

Example
Dijkstra’s algorithm s

extractMin() now picks x (dist = 8)
Look at adjacent z
Do not relax z
Done!

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

56

Run-time complexity is O(n log n + m log n)

• Add and remove each vertex once in Priority Queue
• Relax each edge (and perhaps reduce key) once
• O(n*(insert time + extractMin) + m*(reduceKey))
• If using heap-based Priority Queue, then each queue

operation takes O(log n)
• Total = O(n log n + m log n)

• Can implement with a Fibonacci heap with O(n2)
• Take CS31 to find out how!

Dijkstra’s algorithm

57

Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs

58

Dijkstra’s algorithm can find shortest path
but what about a huge graph?
Consider a GPS device that finds path
from current location to destination

How does it find path quickly?

Roads from Hanover can lead up to
Alaska or down to Argentina!

Does the “little” GPS computer consider
all those roads?

NO! It uses variant of Dijkstra called A*
to rule out paths that will clearly be
longer than best path discovered so far

A* is able to “stop early”,
without considering every
possible path

59

A* can help find the best path between
two nodes faster than Dijkstra
A* algorithm from Hanover to Boston

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
20

Estimate distance to goal
(maybe use Euclidean
distance) from each node

Estimate must be ≤ actual
distance (admissible)

Distances non-negative
(distance monotonically
increasing; driving further
cannot make trip shorter!)

Estimated distance to goal

Actual distance to node
Boston

60

A* can help find the best path between
two nodes faster than Dijkstra
A* algorithm from Hanover to Boston

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
20

Keep Priority Queue using
distance so far + estimate
for each node (“open set”)

Keep “closed set” where
we know we already
found the best route

Estimated distance to goal

Actual distance to node
Boston

61

A* can help find the best path between
two nodes faster than Dijkstra
Step 1: Start at Hanover, add to Open set

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
20

Open set (Priority Queue)
Hanover 0 + 60 = 60

Closed set

Estimated distance to goal

Actual distance to node
Boston

62

A* can help find the best path between
two nodes faster than Dijkstra
Step 2: extractMin from Open set and explore adjacent

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Randolph 25 + 75 = 100
Manchester = 65 + 45 = 110

Closed set
Hanover 0 + 60 = 60

Estimated distance to goal

Actual distance to node

Extract Hanover
Move to closed set
Explore adjacent

Boston

63

A* can help find the best path between
two nodes faster than Dijkstra
Step 3: extractMin from Open set and explore adjacent

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Manchester = 65 + 45 = 110
Montpelier = 25 + 60 + 130 = 215

Closed set
Hanover 0 + 60 = 60
Randolph 25 + 75 = 100

Estimated distance to goal

Actual distance to node

Extract Randolph
Move to closed set
Explore adjacent

Boston

64

A* can help find the best path between
two nodes faster than Dijkstra
Step 4: extractMin from Open set and explore adjacent

Manchester

Hanover
Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Boston = 65 + 45 = 110
Montpelier = 25 + 60 + 130 = 215

Closed set
Hanover 0 + 60 = 60
Randolph 25 + 75 = 100
Manchester = 65 + 45 = 110

Estimated distance to goal

Actual distance to node

Extract Manchester
Move to closed set
Explore adjacent

Boston

65

A* can help find the best path between
two nodes faster than Dijkstra
Step 5: extractMin from Open set and explore adjacent

Manchester

Hanover

Boston

Randolph

Montpelier

130
75

60

45 55

65

25
60

Open set (Priority Queue)
Montpelier = 25 + 60 + 130 = 215

Closed set
Hanover 0 + 60 = 60
Randolph 25 + 75 = 100
Manchester = 65 + 45 = 110
Boston = 65 + 45 = 110

Estimated distance to goal

Actual distance to node

Found goal at distance of 120 (65+55)
• Still check nodes in open set with

estimate less than this route (120)
• No need to check other routes
• Montpelier can’t be closer, a

straight line would be greater than
best path so far

Extract Boston
Move to closed set
Explore adjacent

66

Agenda

1. DFS and BFS on complex graph

2. Shortest-path simulation

3. Dijkstra’s algorithm

4. A* search

5. Implicit graphs

67

Demo: Model maze intersections as
vertices and run DFS/BFS/A*

MazeSolver.java
• Run
• Load map 5
• Try with:
• Stack == DFS
• Queue = BFS
• A*

68

Summary

• DFS can be helpful in identifying cycles but does
not find path with lowest number of edges

• BFS finds the path with the lowest number of
edges

• To find paths from a start to another node
considering cost
• Dijkstra: considers cost
• A*: considers cost + estimate

• Both Dijkstra and A* rely on a priority queue
• Graph can be implicit

69

Next

• Pattern matching based on finite
automata, which can be intuitively
represented as graph

Additional Resources

70

ANNOTATED SLIDES
Dijkstra algorithm

71

72

Dijkstra uses a Min Priority Queue with
dist values as keys to get closest vertex

void dijkstra(s) {
 queue = new PriorityQueue<Vertex>();
 for (each vertex v) {
 v.dist = infinity;
 v.pred = null;
 queue.enqueue(v);
 }
 s.dist = 0;

 while (!queue.isEmpty()) {
 u = queue.extractMin();
 for (each vertex v adjacent to u)
 relax(u, v);
 }
}

Dijkstra’s algorithm starting from s
Set up Min Priority
Queue

 Initialize dist and
pred

Use dist as key for
Min Priority Queue
(initially infinite)Initialize s distance to zero

While not all nodes
have been explored

Get closest node based
on distance (initially s)

Examine adjacent and
relax

