CS 10:

Problem solving via Object Oriented
Programming

Pattern Matching

* Implement finite automatas for
pattern matching

s
2
Albe
YV IN

» 1. Pattern matching to validate input
 Regular expressions

 Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems

Pattern matching goal: ensure input passes

a validation check

2

Input (e.g., .

P) (e.g Valid or not

series of Automaton i
valid

characters)

Sometimes it is useful to be able to detect

or require patterns

Email addresses follow a pattern:
mailbox@domain.TLD
example: agl@dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

I A T A I
One or more One or Ends with one of a set
more .
characters predefined of values
characters
Followed Followed

by @ by . s

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu

Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “a” matches “a@”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
RiR;

Alternative: Ry | One or the other aleli]o|u matches any vowel

R,

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”

reference/extraction

o“uy.”

Character classes Alternative characters and [a-c] matches “a@” or “b” or “c”, while

[c;-C,] and [Acq-C;] excluded characters [*a-c] matches any but abc
Repetition: R* Matches O or more times “ca*t” matches “ct”, “cat”, “caat”
Non-zero Matches 1 or more times “ca+t” matches “cat” or “caat” or

repetition: R+ “caaat”, but not “ct” °

We can use regex to see if an email address

is valid

Email addresses follow a pattern:
mailbox@domain.TLD
example: agl@dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

As a simple RegEx: [a-z.]+@[a-z.]* [a-z]+. (com | edu | org ...)

Check: This simple regex has some
agl@dartmouth.edu -- valid issues dealing with real email
addresses

Blob.x -- invalid

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
mailto:tjp@cs.dartmouth.edu

Turns out a robust email address validator

is quite complicated

(?:[a-z0-91#S%& ' *+/=?7_*{|}~-]+(?:\.[a-z0-

OI#S%&' *+/=?~ {|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-
\x1f\x21\x23-\x5b\x5d-\x7f] | \\[\x01-\x09\x0b\x0c\x0e-
\x7f])*")@(?:(?:[a-20-9](?:[a-z0-9-] *[a-z0-9]) ?\.)+[a-20-9](?:[a-
20-9-]*[a-z0-9])? | \[(?:(?:25[0-5] | 2[0-4][0-9] | [01]?[0-9][O-
9]?)\.){3}(?:25[0-5] | 2[0-4][0-9] | [01]?[0-9][0-9]? | [a-z0-9-] *[a-Z0-
9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f] | \\[\x01-
\x09\x0b\x0c\x0e-\x7f])+)\])

e Hard to understand what this does
 We can use a graph to make things
easier to understand

Source: IETF RFC2822

A Graph can implement a regex

Email addresses follow a pattern:
mailbox@domain.TLD
example: agl@dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

A Graph can represent the pattern for email addresses .
Sample addresses can be easily verified if in correct form

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu

1. We can define a set of rules that must
be followed

2. We may be able to represent those
rules with a Graph

10

1. Pattern matching to validate input
 Regular expressions

» * Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems

11

We can model States as Vertices and

Transitions as Edges in a directed Graph

Finite Automata validating input

0,1
()
A

Start

1
0,1

* Accepts any input starting with O

12

Finite Automata (FA) are formally defined

as 5-tuple of States, Transitions, and inputs

Finite Automata as 5-tuple (Q, 3, 6, q,, F)

FA=(Q, 2,8, q, F)

 Q—finite set of States (vertices in graph)

Y —complete set of possible input symbols (called the alphabet)

& —transition function where 6: Q x 5 - Q (given current State Q
and input symbol }, transition to next State Q according to 6)

* (o — initial State; q, € Q (means q, is an element of Q)

* Fisasetof valid end States; F € Q (means F is a subset of Q)

We say FA “accepts” (validates) input A=a,a,a;...a, if sequence of
States R=ryr;r,...r, exists in Q such that:
* r,=0, //initial State is Start

r., = 6(r, a,,,), fori=0,1, ..., n-1 //input leads to next State
 r, €F //last Stateis an element of the valid end States

We can build FAs to validate or reject input

Accept any string that starts with 00

Start

14
Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

FAs can demonstrate “recent memory”

Accept any string that ends with 00

Start

15

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

Can split FA into pieces to demonstrate

“permanent memory”
Match first and last symbols

16
Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

What do these FAs do?

A

1 1
C Input starts and ends with 0

0 (and a single 0 counts)

OpnO

0,1 17

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

Finite Automata come in two flavors,

Deterministic and Nondeterministic

Deterministic Finite Nondeterministic Finite
Automaton (DFA) Automaton (NFA)
Start 0,1 Start 0
2O
1
0,1
* Exactly one transition * May have 0, 1, or more
for each possible input choices for each transition
 No ambiguity * Unspecified inputs are invalid

 Trueif end in any valid State

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

19

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Key Input Paths
A 0 {B,C}
A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

D 0 {B,D}
D 1 {}

E 0 {}

E 1 {}

20

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
States
Start {A}
0) {B,C}
1 {E,D}
0) {B,D}
1 {E} No valid States,
0 i return false
0 Key point: kept track of all possible

States as input processed
If any ending state is valid, then
accept input =

One more practice before looking at code,
what does this NFA do?

Accepts any string with
embedded 00 or 11

22

DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18 String start; //assume only one starting position

19 Set<String> ends; //possibly multiple end states, hence the set in:
20 Map<String, Map<Character,String>> transitions; // state -> (charac
21

22¢ /**

23 * Constructs the DFA from the arrays, as specified in the overall
24 */

25¢ DFA(String[] ss, String[] ts) {

26 ends = new TreeSet<String>Q);

27 transitions = new TreeMap<String, Map<Character,String>>Q);

28

29 // Parse states

30 for (String v : ss) {

31 String[] pieces = v.split(","); //pieces[@] = state name, -
32 //1look for start and end markers

33 if (pieces.length>1) {

34 if (pieces[1].equals("S™)) {

35 start = pieces[0@];

36 3

37 else if (pieces[1].equals("E™)) {

38 ends.add(pieces[0]);

39 }

40 }

41 1

42

43 // Parse transitions

44 for (String e : ts) {

45 String[] pieces = e.split(","); //pieces[@] = starting fror
46 String from = pieces[@];

47 String to = pieces[1];

48 if (!transitions.containsKey(from)) {

49 transitions.put(from, new TreeMap<Character,String>())
50 }

51 for (int i=2; i<pieces.length; i++) { //could be multiple
52 transitions.get(from).put(pieces[i].charAt(@), to);

53 }

54 }

55

56 System.out.println("start: "+start);

57 System.out.println("end: "+ends); 23
58 System.out.println("transitions:"+transitions);

59 }

DFA.java creates Deterministic Finite

Automata

65¢ public boolean match(String s) {

66 String curr = start; // where we are now ();1
67 for (int i=0; i<s.length(Q); i++) {

68 char ¢ = s.charAt(i);

69 if (!transitions.get(curr).containsKey(c)) {

70 System.out.println("This isn't a DFA! No transition from "+curr+" for

71 return false;

72 }

73 curr = transitions.get(curr).get(c); // take a step according to ¢

74 }

75 return ends.contains(curr); // did we end up in one of the desired final states? 01
76 } 4
g

78= Y

79 * Helper method to test matching against a bunch of strings, printing the results

80 x/

81 public void test(String[] inputs) {

82 for (String s : inputs)

83 System.out.println(s + ":" + match(s));

84 }

85

86¢ public static void main(String[] args) { A 0 B
87 Stringl]:sst =-{. "A,;S";. "B,E", YC¥ i}

88 Strlng[] tsl = { "A,B,O", "A,C,lu, "B,B,O,l", "C’c’0’1" }; TranSitionS 1 C
89 DFA dfal = new DFA(ssl, tsl);

90 Map B 0 B
91 String[] testsTl = { "@", "00", "00000", "0010101" };

92 dfal.test(testsTl); 1 B
93 String[] testsF1 = { "", "1", "1100110" },;

94 dfal.test(testsF1); C 0 C
95 }

9% } 1 C 24

NFA.java creates Non-Deterministic Finite

Automata

10 puDL1C CLASS NrA i

17 String start;

18 Set<String> ends;

19 Map<String, Map<Character,List<String>>> transitions; // state -> (character -> [next states])

20 // note the difference from DFA: can have multiple different transitions from state for character
21

22¢ /**

23 * Constructs the DFA from the arrays, as specified in the overall header

24 */

25s NFA(String[] ss, String[] ts) {

26 ends = new TreeSet<String>(Q);

27 transitions = new TreeMap<String, Map<Character,List<String>>>Q);

28

29 // States

30 for (String v : ss) {

31 String[] pieces = v.split(",");

32 if (pieces.length>1) {

33 if (pieces[1].equals("S"™)) start = pieces[@];

34 else if (pieces[1].equals("E")) ends.add(pieces[@]);

35 }

36 }

37

38 // Transitions

39 for (String e : ts) {

40 String[] pieces = e.split(",");

41 String from = pieces[@], to = pieces[1];

42 if (!transitions.containsKey(from)) transitions.put(from, new TreeMap<Character,List<String>>
43 for (int i=2; i<pieces.length; i++) {

44 char c = pieces[i].charAt(@®);

45 // difference from DFA: list of next states

46 if (!transitions.get(from).containsKey(c)) transitions.get(from).put(c, new ArraylList<Str
47 transitions.get(from).get(c).add(to);

48 }

49 }

50

51 System.out.println("start:"+start);

52 System.out.println("end:"+ends);

53 System.out.println("transitions:"+transitions); 25

54 1

NFA.java creates Non-Deterministic Finite

Automata

60= public boolean match(String s) {

61 // difference from DFA: multiple current states

62 Set<String> currStates = new TreeSet<String>();

63 currStates.add(start);

04 for (int i=0; i<s.length(); i++) {

65 char ¢ = s.charAt(i);

66 Set<String> nextStates = new TreeSet<String>();

67 // transition from each current state to each of its next s
68 for (String state : currStates)

69 if (transitions.get(state).containsKey(c))

70 nextStates.addAll(transitions.get(state).get(c));
71 if (nextStates.isEmpty()) return false; // no way forward f
72 currStates = nextStates;

73 }

74 // end up in multiple states -- accept if any is an end state
75 for (String state : currStates) {

76 if (ends.contains(state)) return true;

77 }

78 return false;

79 }

~~

PS-5 is similar to this! 26

1. Pattern matching to validate input
 Regular expressions

 Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

» 2. Finite State Machines (FSM) to model
complex systems

27

Finite State Machines (FSM) work like FAs,

but track the State of a complex system

Finite State Machine (FSM)
1. Enumerate all States possible for the system

2. Enumerate all possible Events that can occur

3. Map Transition from each State to another
State (possibly the same State) given any Event

4. Start at known State
5. Transition to new State as Events occur

6. You now track the current state of the system

28

Sensors detect arrival and departure of
cars in parking spaces

One sensor in each parking space (11,000 total sensors in San Fran)

Parking meters detect payments and
payment expirations

One parking meter per parking space
/ it}

Aggregate sensor data to show drivers

where they can find parking in real time

Fisherman’s Wharf in San Francisco, CA
Green < 75% occupied, yellow = 75-90% occupied, red > 90% occupied

~ |
<[] %
(v 2, USS Pampanito %
[+ Pier N
3 Pier 413

Musée Mécanique@ Pier43 1/2
er

Choy

Q
- SEoMas North Point Only In San Franci
Boudin Bakery & Cafe jefferson St & Powell St E3

@

n & JW Gallery 55
\lieve It Madame Tuss
ke San Francisco IHOP)) Pier 39 Parkmg Garag

Stockton & Beac 'IQ

m Joe's Crab Sha k
In-N-Out Burger

\ o Fisherman's &
Beach & Jones & | Wharf Parking | 'f'\‘_

- e |
{ Ol
Hors

1211

- Argonaut o
4 The Cannery

Shopping Center

Longshoremen Jheraton \
90 gle Lot - Lot #341 herman's Wharf _,..——-4"""‘——
. Mapdata ®2017 Geogle j MY Report a map error

31

Image: sfpark.org

The parking space could be modeled with a

complicated if-then structure

Simplified automobile parking

Occupancy
Vacant Occupied
Not Paid | Vacant Occupied

Payment Not paid Not paid
status Paid Vacant Occupied

Paid Paid
void handleEvent(Event e) { Error prone and

if (event=="Payment”) { inflexible

if (occupancy=="Occupied” && payment==“Not Paid”) {
Handle every //set time on meter
event, fromelseif (occupancy=“Occupied” && payment==“Paid”) {
everystate //increment time on meter

32

Combination of occupancy and payments

leads to four States for each space

Simplified automobile parking ~ Four possible Four Events:

States Arrival/Departure
Start at vacant and Occupied Status Payment/Expiration
hot paid Vacant Occupied
Q Arrival event
Not
Paid Ejﬂ
Paid
Status
Paid| &
w
=

Events cause the system to transition between States *

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking Events processed from

ueue as they occur
Start Q Y

Model four
States as

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,

Sensor detects
vehicle departure

Payment PaymentI

tates transition

as Events happen
Meter paid

Model theMeter paid

expired expired

Transition .

from each Sensor detects Current State is

State for Vacant, vehicle departure (f gccypied, \\combination of
Paid > Paid paid status and

each Event Sensor detects

(self loops vehicle arrival occupancy

not shown)

34

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition
as events happen

Start

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment Payment
expired expired

Sensor detects
vehicle departure

Meter paid Meter paid

Occupied,
Paid

>
Sensor detects

vehicle arrival

35

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition

as events happen
Start

Sensor detects
vehicle arrival

e Sensor detects
arrival

* Transition to
Occupied Not
Paid

Vacant,
Not Paid

Occupied,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid Meter paid

expired expired

Sensor detects

Vacant, vehicle departure

Paid

Occupied,
Paid

>
Sensor detects

vehicle arrival

36

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition

as events happen
Start

Sensor detects
vehicle arrival

e Sensor detects
arrival

* Transition to
Occupied Not
Paid

e Sensor detects

Meter paid departure

* Transition to
Vacant Not
Paid

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment Payment
expired expired

Sensor detects
vehicle departure

Meter paid

Occupied,
Paid

>

Sensor detects
vehicle arrival

37

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition
as events happen

Start

Sensor detects
vehicle arrival

Vacant,
Not Paid

Occupied,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid

Meter paid . .
expired expired

Sensor detects

Vacant, vehicle departure

Paid

Occupied,
Paid

>
Sensor detects

vehicle arrival

Sensor detects
arrival
Transition to
Occupied Not
Paid

Sensor detects
departure
Transition to
Vacant Not
Paid

Meter paid,
but no arrival

38

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition

as events happen
Start

Sensor detects
vehicle arrival

e Sensor detects
arrival

* Transition to
Occupied Not
Paid

e Sensor detects

Meter paid departure

* Transition to

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid . .
expired expired

Sensor Vacant Not
probably Sensor detects Paid
erroneously Vacant, vehicle departure Occupied, « Meter paid,
detected Paid R Paid but no arrival
departure, Sensor detects

send someone vehicle arrival

to figure out
why!

39

Tracking the State of each space allows San

Francisco to monitor city-wide parking

Fisherman’s Wharf in San Francisco, CA
Green < 75% occupied, yellow = 75-90% occupied, red > 90% occupied

«] 2
(v USS Pampanito %
| + Yers
= Pier. 41 g
Musée Mécanique
] @ Pier43 1/2
- Scoma's o o North Point
: Boudin Bakery & Cafe jefferson St & Powell St [
Gallery 55

kJW

jof | OL e — ieve | Madame Tuss
leve It gan Francisco

useum 1

Joe's Crab Sha k >

oFushermans _"\
Wharf Parking

fersonS HoP@)
In-N-Out Burger
Beach & Jon

- e |
{ Ol
Hors

1211

Argonaut

\.

The Cannery
Shopping Center Longshoremen Sheraton
90 gle Lot - Lot #341 herman's Wharf
~ Map data ©2017 Google ,..--"‘""'——-

Image: sfpark.org

Pier N

Choy

Only In San Franci

Pier 39 Parkmg Garag
Stockton & Beac 'IQ

INO? Report amap error

40

Summary

* Finite automata for pattern matching
 Finite automata can be represented as graph
with start and end vertices, edges are input
* They can be deterministic or non deterministic
 Finite automata can be extended for finite state
machines to model complex systems

41

e Pattern matching based on finite
automata, which can be intuitively
represented as graph

42

Additional Resources

Pattern matching

ADDITIONAL EXAMPLE

With a slight modification, Finite Automata

can validate input like Huffman

Finite Automata validating input

Input Result
00 a

01 b

1 C

0 Invalid
001100 acca

Leaves represent valid end states

Here can loop back to root from leaf (this is not common)

Invalid if input ends and not at end state

This is an extension of Huffman, go back to root after finding leaf

Pattern matching

ANNOTATED SLIDES

Pattern matching goal: ensure input passes

a validation check

Pattern matching process:
 Given some input (e.g., a series of characters)

* Also given a pattern that describes what
constitutes valid input

 Then check to see if a particular input “passes”
validation check (or in other words, input
matches the pattern)

47

Finite automata examples

ANNOTATED SLIDES

We can model States as Vertices and

Transitions as Edges in a directed Graph

Finite Automata validating input Set of input symbols called
Begin at alphabet
Start Transition from A to B

Start

if input 0, else to C O, 1 Double circle indicates valid
i ‘ end States, non-double circle

States are invalid end States

Operation:
* Begin at Start State
Stay in C e Read character of input
States as OI 1 regardless if * Follow graph according
Graph givenOor1l to input
Vertices * Continue until no more
input characters
\ Edges can loop back * If at valid end State,
Edges as transitions to same vertex input valid, else invalid

(“self loop”) What does this do?
* Accepts any input 4o
starting with O

between States based
on input

We can build FAs to validate or reject input

Accept any string that starts with 00

Handle any
remaining
Handle first 0 Handle second 0
Start | 0.1
Define Start
State O) 1
!-Iand.le Handle any remaining
invalid invalid input
input on
first two Vertices with no escape
characters sometimes called a “trap” 50

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

4

FAs can demonstrate “recent memory’

Accept any string that ends with 00 Handle any

remaining 0s

Start Handle first 0 Handle second 0 0
0 0
A B
1 1 1

Define Start
State

Handle any remaining
invalid input

Stay here if
inputis 1

Not a valid
end State

51

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

Can split FA into pieces to demonstrate

“permanent memory”
Match first and last symbols

Stay in valid end State B if O,
else invalid State C

Stay in valid end State E if 1,
1 else invalid State D

Start with O,
must end with 0

Start

Start with 1,
must end with 1

52
Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

DFA.java

ANNOTATED SLIDES

DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18 String start; AsSTmeoTyoTE-StETTT-pUStEon » Store start node (there will be only one)

19 Set<String> ends; //possibly multiple end states, hence the set in: . R

g(i Map<String, Map<Character,String>> transitions; // state -> (charac b Store \Ialld end states In Set (COUId be

22¢ Vaks i i

23 * Constructs the DFA from the arrays, as specified in the overall mUItIpIe valld end StatES)

24 */ o . .o

S st s, String) 9 { e Track Transitions with Map of Maps

26 ends = reeSet<String>Q); H

27 tr‘ansitrilg:s = new Tr'eeMa;g)<Str'ing, Map<Character,String>>(Q); ¢ Key for OUter Map IS State

28

29 // Parse states * Value for outer Map another Map

30 for (String v : ss) {

31 String[] pieces = v.split(","); //pieces[@] = state name, - e Inner Map haS Character as Key,

32 //1look for start and end markers

33 if (pieces.length>1) { next State as Value

34 if (pieces[1].equals("S™)) {

> , stort - pleces(ol; * So, given a State and a Character,

37 lse if (pi [1]. 1s("E™) {

i e sl sauts can look up next State

39 }

40 }

41 } . .

2 L N * Parse States in String[] ss = {“A,S”,”B,E”,”C”}
arse transitions . .

44 for (String e : t) { . e States will be in form:

45 Str'1..ng[] pieces = e.sp'l.}t(,"); //pieces[@] = starting fror . . .

“ String from = pleces[]; * <Char>, S indicates starting State (e.g.,

48 if (It iti .containsKey(from)) { “u ” H

49 ' tr;::ﬁi:)zrs‘?pﬁzr(‘f:cl):f fl)éw ;22eMap<Character',Str‘ing>()) AIS means A IS the Start)

5@ } L] L] []

51 for (int i=2; i<pieces.length; i++) { //could be multiple - ¢ <Char>, E indicates endlng State (e.g.,

52 t iti .get(from).put(pi [1].charAt(®), to); .

53) ransitions.get(from).put(pieces[i].char o “B’E" means B is M end State)

54 } o o o L]

55 e <Char> indicates non-starting or ending

56 System.out.println("start: "+start); P

57 System.out.println("end: "+ends);

e e s transitions); state (e.g., “C") 54

59 }

DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18
19
20
21

22¢

23
24

25¢

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

String start; //assume only one starting position
Set<String> ends; //possibly multiple end states, hence the set in:
Map<String, Map<Character,String>> transitions; // state -> (charac

/**
* Constructs the DFA from the arrays, as specified in the overall
*/
DFA(String[] ss, String[] ts) {
ends = new TreeSet<String>(Q);
transitions = new TreeMap<String, Map<Character,String>>Q);

// Parse states
for (String v : ss) {
String[] pieces = v.split(","); //pieces[0@] = state name,
//1look for start and end markers
if (pieces.length>1) {
if (pieces[1].equals("S™)) {
start = pieces[0@];
}

else if (pieces[1].equals("E™)) {
ends.add(pieces[0]);
}

}

// Parse transitions

for (String e : ts) {
String[] pieces = e.split(","); //pieces[@] = starting fror
String from = pieces[@];
String to = pieces[1];
if (!transitions.containsKey(from)) {

transitions.put(from, new TreeMap<Character,String>())

}

for (int i=2; i<pieces.length; i++) { //could be multiple
transitions.get(from).put(pieces[i].charAt(@), to);
}
}

System.out.println("start: "+start);
System.out.println("end: "+ends);
System.out.println("transitions:"+transitions);

* Parse Transitions in String[] ts = {“A,B,0”...
e Transition in form:

<Statel>,<State2>,<Char>,<Char>
Means transition from Statel to
State2 if see character <Char>

“A,B,0” means transition from State A
to State B if given Character 0

55

DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18
19
20
21

22¢

23
24

25¢

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

String start; //assume only one starting position
Set<String> ends; //possibly multiple end states, hence the set in:
Map<String, Map<Character,String>> transitions; // state -> (charac

/**
* Constructs the DFA from the arrays, as s
*/

DFA(String[] ss, String[] ts) {

ends = new TreeSet<String>(Q);
transitions = new TreeMap<String, Map<Charagter,String>>Q);

cified in the overall

// Parse states
for (String v : ss) {
String[] pieces = v.split(","); //pieces[@\ = state name,
//1look for start and end markers
if (pieces.length>1) {
if (pieces[1].equals("S™)) {
start = pieces[0@];
}

else if (pieces[1].equals("E™)) {
ends.add(pieces[0]);
}

}

// Parse transitions
for (String e : ts) {
String[] pieces = e.split(","); //pieces[@] = starting
String from = pieces[@];
String to = pieces[1];
if (!transitions.containsKey(from)) {
transitions.put(from, new TreeMap<Character,String>())
}

for (int i=2; i<pieces.length; i++) { //could be multiple
transitions.get(from).put(pieces[i].charAt(@), to);
}
}

System.out.println("start: "+start);
System.out.println("end: "+ends);
System.out.println("transitions:"+transitions);

Parse Transitions in String[] ts = {“A,B,0”...
Transition in form:
e <Statel>,<State2>,<Char>,<Char>
 Means transition from Statel to
State2 if see character <Char>
 “A,B,0” means transition from State A
to State B if given Character 0
Add Transitions to Map called transitions

56

DFA.java creates Deterministic Finite

Automata

65¢ public boolean match(String s) {

66 String curr = start; // where we are now 011
67 for (int i=0; i<s.length(Q); i++) {
68 char ¢ = s.charAt(i);
69 if (!transitions.get(curr).containsKey(c)) {
70 System.out.println("This isn't a DFA! No transition from "+curr+" for
71 return false;
72 }
73 curr = transitions.get(curr).get(c); // take a step according to ¢
74 }
75 return ends.contains(curr); // did we end up in one of the desired final states? 01
76 } ’
g
78¢ et
79 * Helper method to test matching against a bunch of strings, printing the results
2? *gl, T S TR * Create 3 States:

® public void tes ring[] inputs
82 for (String s : inputs) A (start), B (end), C
83 System.out.println(s + ":" + match(s)); ope
84} * Create transitions between States based
85 :
86= public static void main(String[] args) { on InPUt A 0 B
87 Stringl]:sst =-{. "A,;S";. "B,E", YC¥ i} .
88 Strlng[] tsl = { "A,B,O", "A,C,lu, "B,B,O,l", "C’c’0’1" }; TranSItlonS 1 C
89 DFA dfal = new DFA(ssl, tsl);
90 Map B 0 B
91 String[] testsTl = { "@", "00", "00000", "0010101" };
92 dfal.test(testsTl); 1 B
93 String[] testsF1 = { "", "1", "1100110" },;
94 dfal.test(testsF1); C 0 C
95 }

57

% } 1 C

DFA.java creates Deterministic Finite

Automata

. . * Match test string s
65¢ public boolean match(String s) {

66 String curr = start; // where we are how Start at start (A) 0,1
67 for (int i=0; i<s.length(Q); i++) { ope
68 FRARJE = 5 FEPAECE) * Follow transitions
69 if (!transitions.get(curr).containsKey(c)) {
70 System.out.println("This isn't a DFA! No transition from "+curr+" for "
71 return false;
72 }
73 curr = transitions.get(curr).get(c); // take a step according to ¢
74 }
75 return ends.contains(curr); // did we end up in one of the desired final states? 01
76 } 4
77
78¢ Vo
79 * Helper method to test matching against a bunch of strings, printing the results
5 i A TR s * Create 3 States:

< public void tes ring[] inputs
82 for (String s : inputs) A (start), B (end), C
83 System.out.println(s + ":" + match(s)); ope
84} g * Create transitions between States based
85 :
86¢ public static void main(String[] args) { on InPUt A 0 B
87 Stringl]:sst =-{. "A,;S";. "B,E", YC¥ i} .
88 StringD tS]' = { "A’B’O"’ "A’c,l"’ "B’B’O’1"’ "C,C,Q,l" }; Transltlons 1 C
89 DFA dfal = new DFA(ssl, tsl);
90 Map B 0 B
91 String[] testsTl = { "@", "00", "00000", "0010101" };
92 dfal.test(testsT1); -— 1 B
93 String[] testsF1 = { "", "1", "1100110" },; All true
9 dfal.test(testsF1); C 0 C
95 } = All false .
% } 1 C

NFA.java

ANNOTATED SLIDES

NFA.java creates Non-Deterministic Finite

Automata

10 puDL1C CLASS NrA i

17 String start;

18 Set<String> ends;

19 Map<String, Map<Character,List<String>>> transitions; // state -> (character -> [next states])

20 // note the difference from DFA: can ha ultiple different transitions from state for character

21

22+ /**

23 * Constructs the DFA from the arrays, as specified in overall header ..

24 */ * Like DFA, but transitions are a Map of Map
25s NFA(String[] ss, String[] ts) { .

26 ends = new TreeSet<String>Q); Of LIStS

27 transitions = new TreeMap<String, Map<Character,List<String>>>Q); .

28 L e “State -> Character -> Next possible states for
29 tates

30 for (String v : ss) { this Character (could be more than one)
31 String[] pieces = v.split(",");

32 if (pieces.length>1) {

33 if (pieces[1].equals("S"™)) start = pieces[@];

34 else if (pieces[1].equals("E")) ends.add(pieces[@]);

35 }

36 } : i

37 * Add List of next States in constructor
38 // Transitions

39 for (String e : ts) {

40 String[] pieces = e.split(",");

41 String from = pieces[@], to = pieces[1];

42 if (!transitions.containsKey(from)) transitions.put(from/ new TreeMap<Character,List<String>>

43 for (int i=2; i<pieces.length; i++) {

44 char c = pieces[i].charAt(@®);

45 // difference from DFA: list of next states

46 if (!transitions.get(from).containsKey(c)) transitions.get(from).put(c, new ArraylList<Str

47 transitions.get(from).get(c).add(to);

48 }

49 }

50

51 System.out.println("start:"+start);

52 System.out.println("end:"+ends);

53 System.out.println("transitions:"+transitions); 60

54 1

NFA.java creates Non-Deterministic Finite

Automata

Set currStates tracks all possible States
given input so far

60-= public boolean match(String s) Initially set to start

61 // difference from DFA; tiple current states

62 Set<String> currStates = new TreeSet<String>();

63 currStates.add(start); . Keep a Set of all possible States that could
64 for (int i=0; i<s.length(); i++) { .)

65 char ¢ = s.charAt(i); be reached from all currStates given input
66 Set<String> nextStates = new TreeSet<String>();

67 // transition from each current state to each of its next s

68 for (String state : currStates) — addAll adds all
69 if (transitions.get(state : C items in List to

70 nextStates.addAll(transitions.get(state).get(c));

71 if (nextStates.isEmpty(M\ return false; // no way forward f nextStates Set

72 currStates = nextStates;

73 }

74 // end up in multiple states -- accep®™\if any is an end state

75 for (String state : currStates) { . . .

76 if (ends.contains(state)) return true; * Given input and all pOSSIble current
77 } States, track all possible next states
;g) return false; « Return false if no valid next states

- .) . . * Update currStates to nextStates
After processing all input, see if any State in

currState is a valid end state

PS-5 is similar to this! 61
If yes, then return true, else false

