CS 10:

Problem solving via Object Oriented
Programming

Pattern Recognition



* Implement Hidden Markov Models
(HMMs) based on finite automata for

pattern recognition
e (More on HMMs in COSC 76 —

Artificial Intelligence)



» 1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

4. Training



Sometimes our input is noisy and does not

exactly match a pattern

Pattern matching vs. recognition

Matching Recognition

Looks like a
duck

~ Quacks like
) a duck

\\_/ Does not

. wear cool
Is this a duck?
eyewear

Is it a duck?

Pattern recognition still accepts this as a
duck, even though not all features match 4

X X S




1. Pattern matching vs. recognition

» 2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

4. Training



We can model systems using Finite

Automata

Weather model: possible states

The State of the

weather can be:
* Sunny
* Cloudy
* Rainy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf



We can model systems using Finite

Automata

Weather model: transitions

0.8 0.15 0.5 We can observe

weather patterns and

0.2 . ol
Cloudy determlfu.e probability
of transition between

states

0.2 0.2

0.05 @ 0.3

' 0.6

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf



We can model systems using Finite

Automata

Weather model: Sunny day example

0.8 0.15 0.5 Probability a sunny day is
followed by:
0.2 ° 0)
Cloudy Another sunny day 80%
 Acloudy day 15%

e Arainy day 5%
0.2 0.2 y ay 5%

0.05 @ 0.3

' 0.6

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf



Markov property suggests it doesn’t really

matter how we got into the current State

Given current State, can predict likelihood of future states

0.8 0.15 0.5
w 02 Cloudy
0.2 0.2
0.05 @ 0.3
0.6

Markov property: it doesn’t matter how we got to a state,
the current state is all we need to predict the next state

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Given that we can observe

the state we are in, it

doesn’t really matter how

we got there:

* P(Wn | Wn-lrWn-Zan-3) =
P(Wn | Wn-l)



Model works well if we can directly

observe the state, what if we cannot?

Sometimes we cannot directly observe the state

You're being held prisoner and want to know the
weather outside. You can’t see outside, but you can
observe if the guard brings an umbrella.

You observe photos of your friends. You don’t know
what city they were in, but do know something about
the cities. Can you guess what cities they visited?

You want to ask for a raise, but only if the boss is in a
good mood. How can you tell if the boss is in a good
mood if you can’t tell by looking?

10



Want to ask the boss for raise when the

boss’s state is a Good mood

Gather stats about likelihood of states

Hidden
States

11



In addition to states, find likelihood of

transitioning from one state to another

Gather stats about state transitions

12



Once have states and transitions, might

find something we can directly observe

Might be able to observe music playing

13



This is a Hidden Markov Model (HMM)

Hidden Markov Model

Observable
states

14



So is today a good day to ask for a raise?

So far we have no music observation

15



By observing music, we might be able to

get a better sense of the boss’s mood!

Observe Rock music

16



Bayes theorem can give us the actual

probabilities of each hidden state

Observe Rock music * Given the boss is playing

Rock music, use Bayes
Theorem:

P(A[B) = P(B|A)*P(A)
P(B)

P(G|R) = P(R|G)*P(G)
P(R)

P(R|G) = 0.5

P(G) = 0.6

P(R)=0.6*0.5+0.4*0.1 =

0.34

88% likely to be in good mood

* P(G|R)=0.5*%0.6/0.34 =
G=Good, B=Bad, R=Rock 0.8 >



1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

» 3. Decoding: Viterbi algorithm

4. Training

18



We can estimate the most likely hidden

state based on observations

e Viterbi algorithm reconstructs most
likely historical states given a set of
observations

 Computes “forward” the most
likely state given each observation

* Once most likely state computed
for all observations, back track to
find most likely sequence of states

e Can update its prior estimates
based on new observations

* Closely related Forward algorithm
computes probability of being in all
states as observations made

19



We can estimate the most likely hidden

state based on observations

No observations yet

20



We can estimate the most likely hidden
state based on observations




We can estimate the most likely hidden

state based on observations

Day 1: Most likely State
Observe has highest score

22



We can estimate the most likely hidden

state based on observations

Day 1: Day 2:
Observe Observe
Rock Jazz

23



We can estimate the most likely hidden

state based on observations

Day 1: Day 2:
Observe Observe
Rock Jazz

0.3*0.7*0.4
>

0.084

Update rule on new observation:
Current* Transition* Observation

Most likely state has
highest value

24




We can estimate the most likely hidden

state based on observations

Day 1: Day 2:
Observe Observe
Rock Jazz

0.3*0.7*0.4
g h f ibl
0.3*0.3*0.3 Do the same for possible

0.0sa transition from Good to Bad



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: * Repeat process for
Observe Observe estimate from Bad State
Rock Jazz * Keep highest estimate as

most likely State

0.04*0.4*0.4=0.0064 < 0.084
Keep 0.084 as most likely

Sum for Forward
algorithm

0.3*0.7*0.4
ﬁ

0.3*0.3*0.3

—
0.084

0.04 / 0.027
~

0.04*0.6*0.3=0.0072 < 0.027 so keep 0.027 ”




We can estimate the most likely hidden

state based on observations

Day 1: Day 2:
Observe Observe
Rock Jazz

0.3*0.7*0.4

—

0.3*0.3*0.3

0.04 0.027
NOTE: score gets smaller

with each observation!
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We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Day 3:
Observe Observe Observe
Rock Jazz Blues

0.3*0.7*0.4

—

0.3*0.3*0.3

28



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Day 3:
Observe Observe Observe
Rock Jazz Blues

0.3*0.7*0.4
ﬁ

0.3*0.3*0.3

0.084*0.7*0.1
—>

0.084*0.3*0.6

0.00588

0.04 0.027 0.01512
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We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Day 3: Sotr.netltme; path
Observe Observe Obserye > 'Mate changes on

new observations
Rock Jazz Blues

0.3*0.7*0.4
ﬂ

0.3*0.3*0.3

0.084*0.7*0.1
—>

0.084*0.3*0.6

0.00588

0.04 0.027 0.01512

30



Viterbi algorithm back tracks to find most

likely state sequence given observations
Viterbi algorithm:

Day 1: Day 2: Day 3: I
Observe Observe Observe processa!

observations
Rock Jazz Blues

0.3*0.7*0.4

—

0.3*0.3*0.3

0.084*0.7*0.1
o

0.084*0.3*0.6

0.00588
Start at last

observation and
track back to start

0.04 0.027 0.01512
Given observations of {Rock, Jazz, Blues}

The boss’s mood mostly likely was {Good, Good, Bad}

31



Viterbi allow us to determine the most

likely sequence of state transitions
Key points

We can’t directly observe the hidden state so we can’t
know the true state with certainty

If there is something we can observe, we might be able
to infer the true state with greater accuracy than

guessing

Given a sequence of observations we can determine the
most likely state transitions over time

32



1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

» 4. Training

33



First we build a model, then we use it to

make predictions on new data

Simplified machine learning pipeline

Use Model

|

Training data annotated  New data not
with actual outcome seen in training
(e.g., weather was Hot, (e.g., |l ate 2 ice
| ate 3 ice cream cones)  cream cones,
what was the

W N mpl f
ant many samples o weather?)

training data to learn
system’s behavior

Predict outcome of
new data (e.g., based
on behavior in the
training data, the
weather was most
likely Hot)

34



To build an HMM we start with previous

observations called training data

Annotated training data gives transition probabilities

Situation:
Have a diary with of number of ice cream cones eaten each
day when the weather was Hot or Cold

Diary provides the annotated training data to build a HMM

Later we will use the model to make predictions (e.g., given
the number of cones eaten on a different set of days,
predict weather for those days)

Cones eaten is observable, weather is the hidden State

35



|dentify observable States (cones eaten)

and count number of times each occurs

Annotated training data gives transition probabilities

Diary entries:

1. Hot day today! | chowed down three whole cones.
2. Hot again. But | only ate two cones; need to run to the store and get more
ice cream.

3. Cold today. Still, the ice cream was calling me, and | ate one cone.

4. Cold again. Kind of depressed, so ate a couple cones despite the weather.

5. Still cold. Only in the mood for one cone.

6. Nice hot day. Yay! Was able to eat a cone each for breakfast, lunch, and
dinner.

7. Hot but was out all day and only had enough cash on me for one ice
cream.

8. Brrrr, the weather turned cold really quickly. Only one cone todm/.
) Real world: normally have
9. Even colder. Still ate one cone.

, . , to pre-process data to get
10. Defying the continued coldness by eating three cones. something like:

Hidden states: Hot (4 days) or Cold (6 days) 1 | Hot | 3 cones

i : 2| H 2 con
Observations: 1, 2, or 3 ice cream cones eaten | Hot | 2 cones 5
3 | Cold| 1 cone



Begin at Start, add vertex for each hidden

State with counts from training data

Count observations: 4 Hot days, 6 Cold days

Hidden
States

1 | Hot | 3 cones
2 | Hot | 2 cones
3 | Cold| 1 cone
4 | Cold | 2 cones
5| Cold | 1 cone
6 | Hot | 3 cones
7 | Hot | 1 cone
8 | Cold | 1 cone
9 | Cold | 1 cone
10 | cold | 3 cones

37



Add transitions between hidden States

using count of next day’s hidden State

Count observations: transitions between hidden states (e.g., Hot->Hot)

1 | Hot | 3 cones
2 | Hot | 2 cones
4 3 | Cold| 1 cone
4 | Cold | 2 cones
5| Cold | 1 cone
6 | Hot | 3 cones
7 | Hot | 1 cone
8 | Cold | 1 cone
9 | Cold | 1 cone
10 | cold | 3 cones

2

Hidden'
States

38



For each hidden State, count the number

of occurrences of each observation

Count observations: cones eaten when Cold

1 | Hot | 3 cones
2 | Hot | 2 cones
4 3 | Cold| 1 cone
4 | Cold | 2 cones
5| Cold | 1 cone
6 | Hot | 3 cones
7 | Hot | 1 cone
8 | Cold | 1 cone
9 | Cold | 1 cone
10 | cold | 3 cones

2

Hidden'
States

39



Convert observations counts into

probabilities by dividing by total count

Convert to probabilities

Probability = count/total count

2

Hidden'
States

40



Convert observations into probabilities by

dividing count by total count

Probabilities based on observations

Problem in using probabilities in
0.8 Viterbi algorithm: repeatedly
multiplying numbers less than 1
quickly leads to numerical
precision problems

41



Use logarithms to help with numerical

precision problem

Log probabilities based on observations

A fact about logarithms can help
us avoid precision issues:

-0.97 log(mn) = log(m) + log(n)

To calculate score, add logs of
each factor instead of
multiplying probabilities

Take log (base 10 here, natural
log in PS-5) of each probability

Negative numbers are ok, we

will soon choose largest score
(least negative)

42



Model built: given number of cones eaten,

calculate most likely weather on each day

New set of observations
QWe QW AYS QYe
— — I W S— — —
LW R W

Day 1: Day 2: Day 3:

Two cones Three cones Two cones
Weather Weather Weather
Hot or Cold? Hot or Cold? Hot or Cold?

Observations {Two cones, three cones, two cones} s



Begin at Start State with O current score

H# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0

Observations {Two cones, three cones, two cones} "



First observation is two cones eaten,

calculate score for each possible next State

H Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0
0 Two cones Cold Start 0-0.22-0.77 -0.99 Best
Hot Start 0-0.4-0.6 -1.0 Buessis

A a first day
T \ is Cold

Observations {Two cones, three cones, two cones}
Most likely {Cold} (largest score)

45



Next observation is three cones eaten,

calculate score for each possible next State

H Observation nextState currrentState currScore + transScore nextScore
+ observation

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99
Hot\\\\ Start 0-0.4-0.6 -1.0

1 Three cones Cold ‘Cold —0.99@ 273
Cold Hot -1-0.3-0, -2.07
Hot Cold -0.99-677-0. —41-99
Hot Hot -1-0.3-0.3 -1.6

| |

Observations {Two cones, three cones, two cones}

46
Most likely {Hot Hot }



Next observation is two cones eaten,

calculate score for each possible next State

H Observation nextState currrentState currScore + transScore nextScore
+ observation

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99
Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 273
Cold Hot -1-0.3-0.77 -2.07
Hot Cold -0.99-0.7-0.3 199
Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 381

/! Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 337
Hot Hot -1.6-0.3-0.6 — -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

47



Because estimates can change, start at end

and work backward to find most likely path

# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0
0 Two cones Cold Start 0-0.22-0.77 -0.99
Previ f Hot
revious came trom Hot 1ot Start 0-0.4-0.6 ‘1.0
SNr” &
1 Three cones Cold Cold -0.99-0.97-0.77 273
Back track to largest  Cold Hot -1-0.3-0.77 -2.07
where nextState is Hot
Hot Cold -0.99-0.7-0.3 -1.99
Hot Hot -1-0.3-0.3 -1.6 N
N’
2 Two cones Cold Cold -2.07-0.97-0.77 381
Cold Hot -1.6-0.3-0.77 -2.67
Hot Cold -2.07-0.7-0.6 337
Hot <___ Hot -1.6-0.3-0.6 @
— /
Observations {Two cones, three cones, two cones} Most likely nextState at e&d

Most likely {Hot Hot Hot } was Hot



The weather was most likely Hot, Hot, Hot

Best estimates of hidden State given new set of observations

QYa Q) (A (& QYIS
— = = =
o W O WY W W

Day 1: Day 2: Day 3:

Two cones Three cones Two cones
Weather Weather Weather

Hot Hot Hot

Observations {Two cones, three cones, two cones} 4

Most likely {Hot Hot Hot }



PS-5 due on 5/23 at 11:59pm ET

Training

/ Input

train-sentences

A
your work is beautiful .

Trained HMM \

train-tags Training
\
o PRO N V ADJ .
Testing
/ Input Output
A The Fulton County Grand
Jury said lFrida§f/ an The/DET Fulton/NP County/N Grand/ADJ Jury/N said/VD
XEXEEE;?Z%ZZQ; Trained Friday/N an/DET investigation/N of/P Atlanta's/NP
primary election recent/ADJ primary/N election/N produced/VD “*/*" no/DET|
produced ' no evidence HMM evidence/N "/" that/CNJ any/DET irregularities/N took/VD
"' that any place/N ./.

irregularities took

\ place .

J

/

50



Summary

« Hidden Markov models for recovering the most
likely hidden state given a sequence of
observations

Markov property: it doesn’t matter how we got
to a state, the current state is all we need to
predict the next state

Modeling similar to finite automata

Viterbi Algorithm to find the most likely
sequence

Training is necessary to build the model

51



Additional Resources




Weather model

ANNOTATED SLIDES



Markov property suggests it doesn’t really

matter how we got into the current State

Given current State, can predict likelihood of future states
Given that we can observe

0.8 0.15 0.5 thestate wearein, it
doesn’t really matter how
w 0.2 we got there:
Cloudy * Probability of weather
at time n, given the
0.2 0.2 weather at time n-1,

and at n-2, and n-3 ...
* Is approximately equal

0.05 0.3
to the probability of
weather at time n given
0.6 only the weather at n-1

Markov property: it doesn’t matter how we got to a state, * P(Wn | Wn-l'Wn-Z'Wn-3) =
the current state is all we need to predict the next state P(w,|w, )

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf



Good/bad mood example

ANNOTATED SLIDES



Want to ask the boss for raise when the

boss’s state is a Good mood

Gather stats about likelihood of states

Hidden
States

Can’t know boss’s mood
for sure simply by
looking (state is hidden)
Want to know current
state (Good or Bad)
Could ask everyday and
record statistics about it
Assume boss answers
truthfully:

* Ask 100 times

* 60 times good

e 40 times bad
Boss slightly more likely
to be in good mood
(60% chance) 56



In addition to states, find likelihood of

transitioning from one state to another

Gather stats about state transitions « Watch boss on day

after asking about
mood, ask again next
day

* Calculate probability
of staying in same
mood or transitioning
to another mood
(hidden state)

e Similar to how
weather transitioned
states

57



This is a Hidden Markov Model (HMM)

Hidden Markov Model * States (boss’s mood)

are hidden, can’t be
directly observed

* But we can observe
something (music)
that can help us
calculate the most
likely hidden state

Observable
states

58



So is today a good day to ask for a raise?

So far we have no music observation

Given no other
information, it’s a
pretty good bet the
boss in Good mood

Good mood =0.6

Bad mood =0.4

Yes, on any given day
boss is slightly more

likely to be in a good
mood

59



By observing music, we might be able to

get a better sense of the boss’s mood!

Observe Rock music

Say today we observe
the boss is playing
Rock music

Should we ask for a
raise?

Good mood =
0.6*0.5=0.3

Bad mood =
0.4*0.1=0.04

Most likely a good day
to ask! »



We can estimate the most likely hidden

state based on observations

Given no observations,
can make a guess at true
state

Guess state with highest
score

61



We can estimate the most likely hidden

state based on observations

0.04

If we make an
observation, we might be
able to increase our
accuracy

Multiply previous score
by likelihood of
observation

Most likely in a Good
mood (~8X more likely)

Ask for a raise?
Yes! 62



We can estimate the most likely hidden

state based on observations

Day 1: Most likely State
Observe has highest score

If we make an
observation, we might be
able to increase our
accuracy

Multiply previous score
by likelihood of
observation

Most likely in a Good
mood (~8X more likely)

0.04 Ask for a raise?
YES! 63



We can estimate the most likely hidden

state based on observations

Day 1: Day 2:
Observe Observe
Rock Jazz

0.04

64



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Transition probability
Observe Observe from Good to Good
Rock Jazz /

Observation Jazz| Good
0.3*0.7%0.4 #—
>
New current estimate for
P if
0osa  Good if Good yesterday

Update rule on new observation:
Current* Transition™ Observation
Most likely state has

highest value

0.04

65



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Transition probability
Observe Observe from Good to Bad
Rock Jazz

0 .

Observation Jazz|Bad
3*0.7*44
0.3*0.3%0.3 Do th.e.same for possible
0.0sa transition from Good to Bad

Update rule on new observation:
Current* Transition™ Observation
Most likely state has
highest value

0.04 0.027

New current estimate for Bad if Good yesterday °°



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: * Repeat process for
Observe Observe estimate from Bad State
Rock Jazz * Keep highest estimate as

most likely State

0.04*0.4*0.4=0.0064 < 0.084
&

0.0ss  Keep 0.084 as most likely

Sum for Forward
Update rule:  ,56ithm

Current* Transition* Observation
Most likely state has
0.04 / 0.027
V.

highest value
0.04*0.6*0.3=0.0072 < 0.027 so keep 0.027 v

0.3*0.7*0.4
ﬂ

0.3*0.3*0.3




We can estimate the most likely hidden

state based on observations

Day 1: Day 2: * Most likely current State
Observe Observe has highest score
Rock Jazz  Most likely path given

Observations of Rock
then Jazz was Good
mood yesterday, Good

mood today
Update rule:

Current* Transition* Observation
Most likely state has
highest value

0.3*0.7*0.4

—

0.3*0.3*0.3

0.084

* Now only about 3X more
0.04 0.027 likely to be in Good mood

NOTE: score gets smaller * Previously 8X more Ii6I§er

with each observation! e Structure called a trellis



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Day 3:
Observe Observe Observe
Rock Jazz Blues

0.3*0.7*0.4

—

0.3*0.3*0.3

69



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Day 3:
Observe Observe Observe
Rock Jazz Blues

0.3*0.7*0.4
ﬁ

0.3*0.3*0.3

0.084*0.7*0.1
—>

0.084*0.3*0.6

0.00588

0.04 0.027 0.01512

70



We can estimate the most likely hidden

state based on observations

Day 1: Day 2: Day 3: Sotr.netltme; path
Observe Observe Obserye > 'Mate changes on

new observations
Rock Jazz Blues

0.3*0.7*0.4
ﬂ

0.3*0.3*0.3

0.084*0.7*0.1
—>

0.084*0.3*0.6

0.00588

0.04 0.027 0.01512
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Viterbi algorithm back tracks to find most

likely state sequence given observations
Viterbi algorithm:

Day 1: Day 2: Day 3: I
Observe Observe Observe processa!

observations
Rock Jazz Blues

0.3*0.7*0.4

—

0.3*0.3*0.3

0.084*0.7*0.1
o

0.084*0.3*0.6

0.00588
Start at last

observation and
track back to start

0.04 0.027 0.01512
Given observations of {Rock, Jazz, Blues}

The boss’s mood mostly likely was {Good, Good, Bad}
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Temperature/cones example

ANNOTATED SLIDES



Begin at Start, add vertex for each hidden

State with counts from training data
Count observations: 4 Hot days, 6 Cold days

There were a total of 10
observations:

* 4 Hot days

6 Cold days

Hidden
States

74



Add transitions between hidden States

using count of next day’s hidden State

Count observations: transitions between hidden states (e.g., Hot->Hot)

When it was Hot:

 How many times was the

4 next day also Hot (2)

* How many times was the
next day Cold (2)

2

Hidden'

States

When it was Cold:

* How many times was the
next day also Cold (4)

* How many times was the
next day Hot (1)

Note: one fewer Cold transitions
because last day was Cold and
no observation for the following
day

75



For each hidden State, count the number

of occurrences of each observation

Count observations: cones eaten when Cold

From each hidden State count
how many times we see each

4 observation

2
Hidden. Hot:
States e 1 coneseenltime
e 2 cones seen 1 time

e 3 cones seen 2 times

Cold

* 1 cones seen 4 times
e 2 cones seen 1time
e 3 conesseenltime

76



Convert observations counts into

probabilities by dividing by total count

Convert to probabilities

2

Hidden'

States

Probability = count/total count

Example from Hot days:

Total of 4 cones eaten when Hot
e 1coneeatenltime
e 2 cones eaten 1time
* 3 cones eaten 2 times

 Total 4 cones eaten

Probability:
* 1cone=1/4=0.25
e 2cones=1/4=0.25
* 3cones=2/4=0.5

Convert all transitions to
probabilities

77



Convert observations into probabilities by

dividing count by total count

Probabilities based on observations

All counts now converted into
probabilities

We would like to use the
probabilities in the update rule
covered previously:
(current*transition*observation)

Problem: repeatedly multiplying
numbers less than 1 quickly
leads to numerical precision
problems

78



Use logarithms to help with numerical

precision problem

Log probabilities based on observations

A fact about logarithms can help
us avoid precision issues:

-0.97 log(mn) = log(m) + log(n)

To calculate score, add logs of
each factor instead of
multiplying probabilities

Take log (base 10 here, natural
log in PS-5) of each probability

Negative numbers are ok, we

will soon choose largest score
(least negative)

79



Begin at Start State with O current score

H# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0

Observations {Two cones, three cones, two cones} .



First observation

IS two cones eaten,

calculate score for each possible next State

H# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0
0 Two cones Cold Start 0-0.22-0.77 -0.99 Best
Hot Start 0-0.4-0.6 1.0 8uessis
A A first day
T \ is Cold

Could transition to Cold or to Hot
keep track of both possibilities

Observations {Two cones, three
Most likely {Cold} (largest score)

from Start,

Calculate nextScore for each
hidden State by adding
logarithms

Store nextScore for
each hidden State,
largest score is

most likely (Cold)

cones, two cones} 81



Next observation is three cones eaten,

calculate score for each possible next State

# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0
0 Two cones Cold Start 0-0.22-0.77 -0.99
Hot\\\ Start 0-0.4-0.6 -1.0
1 Three cones Cold ‘Cold —0.99@ 273
Cold Hot -1-0.3-0, -2.07
Hot Cold -0.99-0 -1.99
Hot Hot -1-0.3-0.3 -1.6
T Keep largest score for
Current State could be Cold or Hot, next State could each nextState
be Cold or Hot, keep track of all possibilities Largest most likely (Hot)
Calculate nextScore for each hidden State by Prior was also Hot
adding logarithms Estimate of prior day
Observations {Two cones, three cones, two cones} changed from Cold to

Most likely {Hot Hot } Hot



Next observation is two cones eaten,

calculate score for each possible next State

# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0
0 Two cones Cold Start 0-0.22-0.77 -0.99
Hot Start 0-0.4-0.6 -1.0
1 Three cones Cold Cold -0.99-0.97-0.77 273
Cold Hot -1-0.3-0.77 -2.07
Hot Cold -0.99-0.7-0.3 -1.99
Hot Hot -1-0.3-0.3 -1.6
2 Two cones Cold Cold -2.07-0.97-0.77 381
Current State could
I H -1.6-0.3-0.77 -2.67
be Cold or Hot, next /CO d ot 6-0.3-0 6
State could be Cold Hot COId -2.07-0.7-0.6 337
or Hot, keep track Hot Hot -1.6-0.3-0.6 2.5
of all possibilities Largest most likely (Hot)
Observations {Two cones, three cones, two cones} Prior was also Hot then
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Most likely {Hot Hot Hot } Prior prior also Hot



Because estimates can change, start at end

and work backward to find most likely path

# Observation nextState currrentState currScore + transScore nextScore
+ observation
Start n/a Start n/a 0 0
0 Two cones Cold Start 0-0.22-0.77 -0.99
Previ f Hot
revious came trom Hot 1ot Start 0-0.4-0.6 ‘1.0
SNr” &
1 Three cones Cold Cold -0.99-0.97-0.77 273
Back track to largest  Cold Hot -1-0.3-0.77 -2.07
where nextState is Hot
Hot Cold -0.99-0.7-0.3 -1.99
Hot Hot -1-0.3-0.3 -1.6 N
N’
2 Two cones Cold Cold -2.07-0.97-0.77 381
Cold Hot -1.6-0.3-0.77 -2.67
Hot Cold -2.07-0.7-0.6 337
Hot <___ Hot -1.6-0.3-0.6 @
— /
Observations {Two cones, three cones, two cones} Most likely nextState at e&d

Most likely {Hot Hot Hot } was Hot



