
CS 10:
Problem solving via Object Oriented

Programming

Pattern Recognition

2

Main goals

• Implement Hidden Markov Models
(HMMs) based on finite automata for
pattern recognition
• (More on HMMs in COSC 76 –

Artificial Intelligence)

3

Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

4. Training

Matching Recognition
Looks like a
duck
Quacks like
a duck
Does not
wear cool
eyewear
Is it a duck?

4

Sometimes our input is noisy and does not
exactly match a pattern
Pattern matching vs. recognition

Image: duckrace.com

Is this a duck?

Pattern recognition still accepts this as a
duck, even though not all features match

5

Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

4. Training

6

We can model systems using Finite
Automata

Sunny

Weather model: possible states

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

The State of the
weather can be:
• Sunny
• Cloudy
• Rainy

7

We can model systems using Finite
Automata

Sunny

0.8

Weather model: transitions

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

We can observe
weather patterns and
determine probability
of transition between
states

8

We can model systems using Finite
Automata

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Probability a sunny day is
followed by:
• Another sunny day 80%
• A cloudy day 15%
• A rainy day 5%

Weather model: Sunny day example

Given that we can observe
the state we are in, it
doesn’t really matter how
we got there:
• P(wn|wn-1,wn-2,wn-3) ≈

P(wn|wn-1)

Markov property suggests it doesn’t really
matter how we got into the current State

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given current State, can predict likelihood of future states

Markov property: it doesn’t matter how we got to a state,
the current state is all we need to predict the next state

10

Model works well if we can directly
observe the state, what if we cannot?
Sometimes we cannot directly observe the state

• You’re being held prisoner and want to know the
weather outside. You can’t see outside, but you can
observe if the guard brings an umbrella.

• You observe photos of your friends. You don’t know
what city they were in, but do know something about
the cities. Can you guess what cities they visited?

• You want to ask for a raise, but only if the boss is in a
good mood. How can you tell if the boss is in a good
mood if you can’t tell by looking?

11

Want to ask the boss for raise when the
boss’s state is a Good mood

Good Bad

Gather stats about likelihood of states

Start
0.6 0.4

Hidden
States

Hidden
States

12

In addition to states, find likelihood of
transitioning from one state to another
Gather stats about state transitions

Start
0.6 0.40.7 0.6

0.3

0.4
Good Bad

Hidden
States

13

Once have states and transitions, might
find something we can directly observe
Might be able to observe music playing

Start
0.6 0.40.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

Hidden
States

14

This is a Hidden Markov Model (HMM)
Hidden Markov Model

Start
0.6 0.40.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

Observable
states

Hidden
States

15

So is today a good day to ask for a raise?
So far we have no music observation

Start
0.6 0.40.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

Hidden
States

16

By observing music, we might be able to
get a better sense of the boss’s mood!
Observe Rock music

Start
0.6 0.40.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

Hidden
States

17

Bayes theorem can give us the actual
probabilities of each hidden state
Observe Rock music

Start
0.6 0.4

• Given the boss is playing
Rock music, use Bayes
Theorem:

• P(A|B) = P(B|A)*P(A)
 P(B)

• P(G|R) = P(R|G)*P(G)
P(R)

• P(R|G) = 0.5
• P(G) = 0.6
• P(R)=0.6*0.5+0.4*0.1 =

0.34

• P(G|R) = 0.5*0.6/0.34 =
0.88

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

G=Good, B=Bad, R=Rock

88% likely to be in good mood

18

Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

4. Training

19

We can estimate the most likely hidden
state based on observations

Start

0.6
Good

Bad

0.4

• Viterbi algorithm reconstructs most
likely historical states given a set of
observations
• Computes “forward” the most

likely state given each observation
• Once most likely state computed

for all observations, back track to
find most likely sequence of states

• Can update its prior estimates
based on new observations

• Closely related Forward algorithm
computes probability of being in all
states as observations made

20

We can estimate the most likely hidden
state based on observations

Start

0.6
Good

Bad

0.4

No observations yet

21

We can estimate the most likely hidden
state based on observations

Start

0.6*0.5
Good

Bad

Day 1:
Observe
Rock

0.4*0.1

0.3

0.04

22

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

0.3

0.04

0.6*0.5

Most likely State
has highest score

23

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

0.3

0.04

Day 2:
Observe
Jazz

0.6*0.5

24

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

Update rule on new observation:
Current* Transition* Observation

Most likely state has
highest value

0.084

0.6*0.5

25

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.027

0.084

0.6*0.5

New current estimate for Bad if Good yesterday

Good
Do the same for possible
transition from Good to Bad

26

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

0.6*0.5

• Repeat process for
estimate from Bad State

• Keep highest estimate as
most likely State

0.04*0.4*0.4=0.0064 < 0.084
Keep 0.084 as most likely

0.04*0.6*0.3=0.0072 < 0.027 so keep 0.027

Good

Sum for Forward
algorithm

27

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

0.6*0.5

NOTE: score gets smaller
with each observation!

28

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

0.027*0.4*0.1

Day 3:
Observe
Blues

0.6*0.5

29

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.04 *0.6*0.6

0.01512

0.00588

Day 3:
Observe
Blues

0.6*0.5

30

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.04 *0.6*0.6

0.01512

0.00588

Day 3:
Observe
Blues

0.6*0.5

Sometimes path
estimate changes on
new observations

31

Viterbi algorithm back tracks to find most
likely state sequence given observations

Start

0.6*.5
Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.027 *0.6*0.6

0.01512

0.00588

Day 3:
Observe
Blues

Given observations of {Rock, Jazz, Blues}
The boss’s mood mostly likely was {Good, Good, Bad}

Viterbi algorithm:
process all
observations

Start at last
observation and
track back to start

32

Viterbi allow us to determine the most
likely sequence of state transitions

We can’t directly observe the hidden state so we can’t
know the true state with certainty

If there is something we can observe, we might be able
to infer the true state with greater accuracy than
guessing

Given a sequence of observations we can determine the
most likely state transitions over time

Key points

33

Agenda

1. Pattern matching vs. recognition

2. From Finite Automata to Hidden
Markov Models

3. Decoding: Viterbi algorithm

4. Training

34

First we build a model, then we use it to
make predictions on new data

Build Model

Training data annotated
with actual outcome
(e.g., weather was Hot,
I ate 3 ice cream cones)

Want many samples of
training data to learn
system’s behavior

Use Model

New data not
seen in training
(e.g., I ate 2 ice
cream cones,
what was the
weather?)

Prediction

Predict outcome of
new data (e.g., based
on behavior in the
training data, the
weather was most
likely Hot)

Simplified machine learning pipeline

35

To build an HMM we start with previous
observations called training data
Annotated training data gives transition probabilities

Situation:
Have a diary with of number of ice cream cones eaten each
day when the weather was Hot or Cold

Diary provides the annotated training data to build a HMM

Later we will use the model to make predictions (e.g., given
the number of cones eaten on a different set of days,
predict weather for those days)

Cones eaten is observable, weather is the hidden State

36

Identify observable States (cones eaten)
and count number of times each occurs
Annotated training data gives transition probabilities

Diary entries:
1. Hot day today! I chowed down three whole cones.
2. Hot again. But I only ate two cones; need to run to the store and get more

ice cream.
3. Cold today. Still, the ice cream was calling me, and I ate one cone.
4. Cold again. Kind of depressed, so ate a couple cones despite the weather.
5. Still cold. Only in the mood for one cone.
6. Nice hot day. Yay! Was able to eat a cone each for breakfast, lunch, and

dinner.
7. Hot but was out all day and only had enough cash on me for one ice

cream.
8. Brrrr, the weather turned cold really quickly. Only one cone today.
9. Even colder. Still ate one cone.
10. Defying the continued coldness by eating three cones.

Hidden states: Hot (4 days) or Cold (6 days)
Observations: 1, 2, or 3 ice cream cones eaten

Real world: normally have
to pre-process data to get
something like:
1 | Hot | 3 cones
2 | Hot | 2 cones
3 | Cold| 1 cone

37

Begin at Start, add vertex for each hidden
State with counts from training data
Count observations: 4 Hot days, 6 Cold days

Start
4 6

Hot ColdHidden
States

1 | Hot | 3 cones
2 | Hot | 2 cones
3 | Cold| 1 cone
4 | Cold | 2 cones
5 | Cold | 1 cone
6 | Hot | 3 cones
7 | Hot | 1 cone
8 | Cold | 1 cone
9 | Cold | 1 cone
10 | cold | 3 cones

38

Add transitions between hidden States
using count of next day’s hidden State
Count observations: transitions between hidden states (e.g., Hot->Hot)

Start
4 6

Hot Cold

2 4

2

1

Hidden
States

1 | Hot | 3 cones
2 | Hot | 2 cones
3 | Cold| 1 cone
4 | Cold | 2 cones
5 | Cold | 1 cone
6 | Hot | 3 cones
7 | Hot | 1 cone
8 | Cold | 1 cone
9 | Cold | 1 cone
10 | cold | 3 cones

39

For each hidden State, count the number
of occurrences of each observation
Count observations: cones eaten when Cold

Start
4 6

Hot Cold

1
cone

2
cones

3
cones

1 1 2 4 1 1

2 4

2

1

Hidden
States

1 | Hot | 3 cones
2 | Hot | 2 cones
3 | Cold| 1 cone
4 | Cold | 2 cones
5 | Cold | 1 cone
6 | Hot | 3 cones
7 | Hot | 1 cone
8 | Cold | 1 cone
9 | Cold | 1 cone
10 | cold | 3 cones

40

Convert observations counts into
probabilities by dividing by total count
Convert to probabilities

Start
4 6

Hot Cold

1
cone

2
cones

3
cones

1 1 2 4 1 1

2 4

2

1

Hidden
States

Probability = count/total count

41

Convert observations into probabilities by
dividing count by total count
Probabilities based on observations

Start
0.4 0.6

Hot Cold

1
cone

2
cones

3
cones

0.25 0.25 0.5 0.17

0.5 0.8

0.5

0.2

Hidden
States

0.66 0.17

Problem in using probabilities in
Viterbi algorithm: repeatedly
multiplying numbers less than 1
quickly leads to numerical
precision problems

42

Use logarithms to help with numerical
precision problem
Log probabilities based on observations

Start
-0.4 -0.22

Hot Cold

1
cone

2
cones

3
cones

-0.6 -0.6 -0.3 -0.77

-0.3 -0.97

-0.3

-0.7

Hidden
States

-0.18 -0.77

A fact about logarithms can help
us avoid precision issues:

log(mn) = log(m) + log(n)

To calculate score, add logs of
each factor instead of
multiplying probabilities

Take log (base 10 here, natural
log in PS-5) of each probability

Negative numbers are ok, we
will soon choose largest score
(least negative)

43

Model built: given number of cones eaten,
calculate most likely weather on each day

Observations {Two cones, three cones, two cones}

Day 1:
Two cones

Weather
Hot or Cold?

Day 2:
Three cones

Weather
Hot or Cold?

Day 3:
Two cones

Weather
Hot or Cold?

New set of observations

44

Begin at Start State with 0 current score

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

Observations {Two cones, three cones, two cones}

45

First observation is two cones eaten,
calculate score for each possible next State

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

Observations {Two cones, three cones, two cones}
Most likely {Cold} (largest score)

Best
guess is
first day
is Cold

46

Next observation is three cones eaten,
calculate score for each possible next State

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot }

47

Next observation is two cones eaten,
calculate score for each possible next State

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 -3.81

Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 -3.37

Hot Hot -1.6-0.3-0.6 -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

48

Because estimates can change, start at end
and work backward to find most likely path

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 -3.81

Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 -3.37

Hot Hot -1.6-0.3-0.6 -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Back track to largest
where nextState is Hot

Most likely nextState at end
was Hot

Previous came from Hot

49

The weather was most likely Hot, Hot, Hot

Day 1:
Two cones

Weather
Hot

Day 2:
Three cones

Weather
Hot

Day 3:
Two cones

Weather
Hot

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Best estimates of hidden State given new set of observations

50

PS-5 due on 5/23 at 11:59pm ET

The Fulton County Grand
Jury said Friday an
investigation of
Atlanta's recent
primary election
produced `` no evidence
'' that any
irregularities took
place .

Input

Input

Output

The/DET Fulton/NP County/N Grand/ADJ Jury/N said/VD
Friday/N an/DET investigation/N of/P Atlanta's/NP
recent/ADJ primary/N election/N produced/VD ``/`` no/DET
evidence/N ''/'' that/CNJ any/DET irregularities/N took/VD
place/N ./.

Trained
HMM

Training

Trained HMM
train-sentences

train-tags

your work is beautiful .

PRO N V ADJ .

Training

Testing

51

Summary

• Hidden Markov models for recovering the most
likely hidden state given a sequence of
observations
• Markov property: it doesn’t matter how we got

to a state, the current state is all we need to
predict the next state

• Modeling similar to finite automata
• Viterbi Algorithm to find the most likely

sequence
• Training is necessary to build the model

Additional Resources

52

ANNOTATED SLIDES
Weather model

53

Given that we can observe
the state we are in, it
doesn’t really matter how
we got there:
• Probability of weather

at time n, given the
weather at time n-1,
and at n-2, and n-3 …

• Is approximately equal
to the probability of
weather at time n given
only the weather at n-1

• P(wn|wn-1,wn-2,wn-3) ≈
P(wn|wn-1)

Markov property suggests it doesn’t really
matter how we got into the current State

Sunny

0.8

Cloudy

Adapted from: https://pdfs.semanticscholar.org/b328/2eb0509442b80760fea5845e158168daee62.pdf

Rainy

0.15

0.05

0.5

0.3

0.2

0.6

0.2 0.2

Given current State, can predict likelihood of future states

Markov property: it doesn’t matter how we got to a state,
the current state is all we need to predict the next state

ANNOTATED SLIDES
Good/bad mood example

55

56

Want to ask the boss for raise when the
boss’s state is a Good mood

Good Bad

Gather stats about likelihood of states

Start
0.6 0.4

• Can’t know boss’s mood
for sure simply by
looking (state is hidden)

• Want to know current
state (Good or Bad)

• Could ask everyday and
record statistics about it

• Assume boss answers
truthfully:
• Ask 100 times
• 60 times good
• 40 times bad

• Boss slightly more likely
to be in good mood
(60% chance)

Hidden
States

Hidden
States

57

In addition to states, find likelihood of
transitioning from one state to another
Gather stats about state transitions

Start
0.6 0.4

• Watch boss on day
after asking about
mood, ask again next
day

• Calculate probability
of staying in same
mood or transitioning
to another mood
(hidden state)

• Similar to how
weather transitioned
states

0.7 0.6

0.3

0.4
Good Bad

Hidden
States

58

This is a Hidden Markov Model (HMM)
Hidden Markov Model

Start
0.6 0.4

• States (boss’s mood)
are hidden, can’t be
directly observed

• But we can observe
something (music)
that can help us
calculate the most
likely hidden state

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

Observable
states

Hidden
States

59

So is today a good day to ask for a raise?
So far we have no music observation

Start
0.6 0.4

• Given no other
information, it’s a
pretty good bet the
boss in Good mood

• Good mood = 0.6

• Bad mood = 0.4

• Yes, on any given day
boss is slightly more
likely to be in a good
mood

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

Hidden
States

60

By observing music, we might be able to
get a better sense of the boss’s mood!
Observe Rock music

Start
0.6 0.4

• Say today we observe
the boss is playing
Rock music

• Should we ask for a
raise?

• Good mood =
0.6*0.5 = 0.3

• Bad mood =
0.4*0.1 = 0.04

• Most likely a good day
to ask!

0.7 0.6

0.3

0.4

Blues Jazz Rock

Good Bad

0.1 0.4 0.5

0.6
0.3 0.1

61

We can estimate the most likely hidden
state based on observations

Start

0.6
Good

Bad

0.4

Given no observations,
can make a guess at true
state

Guess state with highest
score

62

We can estimate the most likely hidden
state based on observations

Start

0.6*0.5
Good

Bad

Day 1:
Observe
Rock

0.4*0.1

0.3

0.04

If we make an
observation, we might be
able to increase our
accuracy

Multiply previous score
by likelihood of
observation

Most likely in a Good
mood (~8X more likely)

Ask for a raise?
Yes!

63

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

0.3

0.04

If we make an
observation, we might be
able to increase our
accuracy

Multiply previous score
by likelihood of
observation

Most likely in a Good
mood (~8X more likely)

Ask for a raise?
Yes!

0.6*0.5

Most likely State
has highest score

64

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

0.3

0.04

Day 2:
Observe
Jazz

0.6*0.5

65

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

Update rule on new observation:
Current* Transition* Observation

Most likely state has
highest value

0.084

0.6*0.5

Current

Transition probability
from Good to Good

Observation Jazz|Good

New current estimate for
Good if Good yesterday

66

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

Update rule on new observation:
Current* Transition* Observation

Most likely state has
highest value

0.027

0.084

0.6*0.5

Current

Transition probability
from Good to Bad

Observation Jazz|Bad

New current estimate for Bad if Good yesterday

Good
Do the same for possible
transition from Good to Bad

67

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Update rule:
Current* Transition* Observation

Most likely state has
highest value

0.6*0.5

• Repeat process for
estimate from Bad State

• Keep highest estimate as
most likely State

0.04*0.4*0.4=0.0064 < 0.084
Keep 0.084 as most likely

0.04*0.6*0.3=0.0072 < 0.027 so keep 0.027

Good

Sum for Forward
algorithm

68

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Update rule:
Current* Transition* Observation

Most likely state has
highest value

0.6*0.5

• Most likely current State
has highest score

• Most likely path given
Observations of Rock
then Jazz was Good
mood yesterday, Good
mood today

• Now only about 3X more
likely to be in Good mood

• Previously 8X more likely
• Structure called a trellis

NOTE: score gets smaller
with each observation!

69

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

0.027*0.4*0.1

Day 3:
Observe
Blues

0.6*0.5

70

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.04 *0.6*0.6

0.01512

0.00588

Day 3:
Observe
Blues

0.6*0.5

71

We can estimate the most likely hidden
state based on observations

Start

Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.04 *0.6*0.6

0.01512

0.00588

Day 3:
Observe
Blues

0.6*0.5

Sometimes path
estimate changes on
new observations

72

Viterbi algorithm back tracks to find most
likely state sequence given observations

Start

0.6*.5
Good

Bad

Day 1:
Observe
Rock

0.4*0.1

Good

Bad

Day 2:
Observe
Jazz

Good

0.3

0.04

0.3*0.7*0.4

0.3*0.3*0.3

0.04*0.4*0.4

0.04 *0.6*0.3

0.027

0.084

Good

Bad

0.084*0.7*0.1

0.084*0.3*0.6

0.027*0.4*0.1

0.027 *0.6*0.6

0.01512

0.00588

Day 3:
Observe
Blues

Given observations of {Rock, Jazz, Blues}
The boss’s mood mostly likely was {Good, Good, Bad}

Viterbi algorithm:
process all
observations

Start at last
observation and
track back to start

ANNOTATED SLIDES
Temperature/cones example

73

74

Begin at Start, add vertex for each hidden
State with counts from training data
Count observations: 4 Hot days, 6 Cold days

Start
4 6

Hot ColdHidden
States

There were a total of 10
observations:
• 4 Hot days
• 6 Cold days

75

Add transitions between hidden States
using count of next day’s hidden State
Count observations: transitions between hidden states (e.g., Hot->Hot)

Start
4 6

Hot Cold

2 4

2

1

Hidden
States

When it was Hot:
• How many times was the

next day also Hot (2)
• How many times was the

next day Cold (2)

When it was Cold:
• How many times was the

next day also Cold (4)
• How many times was the

next day Hot (1)

Note: one fewer Cold transitions
because last day was Cold and
no observation for the following
day

76

For each hidden State, count the number
of occurrences of each observation
Count observations: cones eaten when Cold

Start
4 6

Hot Cold

1
cone

2
cones

3
cones

1 1 2 4 1 1

2 4

2

1

Hidden
States

From each hidden State count
how many times we see each
observation

Hot:
• 1 cone seen 1 time
• 2 cones seen 1 time
• 3 cones seen 2 times

Cold
• 1 cones seen 4 times
• 2 cones seen 1 time
• 3 cones seen 1 time

77

Convert observations counts into
probabilities by dividing by total count
Convert to probabilities

Start
4 6

Hot Cold

1
cone

2
cones

3
cones

1 1 2 4 1 1

2 4

2

1

Hidden
States

Probability = count/total count

Example from Hot days:
Total of 4 cones eaten when Hot

• 1 cone eaten 1 time
• 2 cones eaten 1 time
• 3 cones eaten 2 times
• Total 4 cones eaten

Probability:
• 1 cone = 1/4 = 0.25
• 2 cones = 1/4 = 0.25
• 3 cones = 2/4 = 0.5

Convert all transitions to
probabilities

78

Convert observations into probabilities by
dividing count by total count
Probabilities based on observations

Start
0.4 0.6

Hot Cold

1
cone

2
cones

3
cones

0.25 0.25 0.5 0.17

0.5 0.8

0.5

0.2

Hidden
States

0.66 0.17

All counts now converted into
probabilities

We would like to use the
probabilities in the update rule
covered previously:
(current*transition*observation)

Problem: repeatedly multiplying
numbers less than 1 quickly
leads to numerical precision
problems

79

Use logarithms to help with numerical
precision problem
Log probabilities based on observations

Start
-0.4 -0.22

Hot Cold

1
cone

2
cones

3
cones

-0.6 -0.6 -0.3 -0.77

-0.3 -0.97

-0.3

-0.7

Hidden
States

-0.18 -0.77

A fact about logarithms can help
us avoid precision issues:

log(mn) = log(m) + log(n)

To calculate score, add logs of
each factor instead of
multiplying probabilities

Take log (base 10 here, natural
log in PS-5) of each probability

Negative numbers are ok, we
will soon choose largest score
(least negative)

80

Begin at Start State with 0 current score

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

Observations {Two cones, three cones, two cones}

81

First observation is two cones eaten,
calculate score for each possible next State

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

Observations {Two cones, three cones, two cones}
Most likely {Cold} (largest score)

Could transition to Cold or to Hot from Start,
keep track of both possibilities

Calculate nextScore for each
hidden State by adding
logarithms

Store nextScore for
each hidden State,
largest score is
most likely (Cold)

Best
guess is
first day
is Cold

82

Next observation is three cones eaten,
calculate score for each possible next State

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot }

Current State could be Cold or Hot, next State could
be Cold or Hot, keep track of all possibilities

Calculate nextScore for each hidden State by
adding logarithms

Keep largest score for
each nextState
Largest most likely (Hot)
Prior was also Hot
Estimate of prior day
changed from Cold to
Hot

83

Next observation is two cones eaten,
calculate score for each possible next State

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 -3.81

Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 -3.37

Hot Hot -1.6-0.3-0.6 -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Current State could
be Cold or Hot, next
State could be Cold
or Hot, keep track
of all possibilities Largest most likely (Hot)

Prior was also Hot then
Prior prior also Hot

84

Because estimates can change, start at end
and work backward to find most likely path

Observation nextState currrentState currScore + transScore
+ observation

nextScore

Start n/a Start n/a 0 0

0 Two cones Cold Start 0-0.22-0.77 -0.99

Hot Start 0-0.4-0.6 -1.0

1 Three cones Cold Cold -0.99-0.97-0.77 -2.73

Cold Hot -1-0.3-0.77 -2.07

Hot Cold -0.99-0.7-0.3 -1.99

Hot Hot -1-0.3-0.3 -1.6

2 Two cones Cold Cold -2.07-0.97-0.77 -3.81

Cold Hot -1.6-0.3-0.77 -2.67

Hot Cold -2.07-0.7-0.6 -3.37

Hot Hot -1.6-0.3-0.6 -2.5

Observations {Two cones, three cones, two cones}
Most likely {Hot Hot Hot }

Back track to largest
where nextState is Hot

Most likely nextState at end
was Hot

Previous came from Hot

