
CS 10:
Problem solving via Object Oriented

Programming

Web Services

2

Main goals

• Implement GUIs
• Implement methods to get data from

the web
• Define web services and the way they

work
• Implement processing data in

standard format

3

Agenda

1. Creating Graphical User Interfaces (GUIs)

2. Getting data from the web

3. Web services

4. Processing data

5. Finished product

4

Creating Graphical User Interfaces (GUIs)
adds graphical elements and listeners

1. Add graphical
elements

2. Add event
listeners

Two step process to create GUIs

Graphical elements include:
• Buttons
• Text fields
• Combo boxes
• Containers that hold other

elements

We tell Java what graphical elements
to put on the screen and where to
place them

Event listeners call back our code
when a user interacts with a graphical
element

Listeners get detailed information
about the interaction (e.g., which key
was pressed, which button is clicked)

In practice, these two steps are
often done by different teams

5

Java graphical elements consists of
Containers and Components

JFrame

JPanel

Containers Components
JTextField JComboBox JButton

JComponent

• Containers
can hold
components

• Containers
can hold
other
containers

• May be
nested

Adding these elements manually is tedious
Graphic design tools make life easier
Today we do it the old fashioned way

6

Step 1: Add graphical elements

Set up JPanel that holds buttons, text and
drop down box
FlickrSearchCore.java

8

Step 2: Add event listeners that wait for
events on graphical elements

// create button control
JButton search = new JButton("search");

//add listener if action taken on button (e.g., clicked)
search.addActionListener(new AbstractAction() {
 public void actionPerformed(ActionEvent e) {
 // this will run if action taken on button
 System.out.println("search button”);
 }
});

Listeners are called back when event fires
Located in awt.event.* (import this)

Add a listener that will fire when the
button is clicked

Here just print that button was clicked

This declaration is called an anonymous
class – never gets a name, but has
access to instance variables

ActionEvent is an Object that gives
details about the event that just
occurred (e.g., button click)

9

Agenda

1. Creating Graphical User Interfaces (GUIs)

2. Getting data from the web

3. Web services

4. Processing data

5. Finished product

To transfer data between computers we
use pre-defined protocols
• Network protocols define how data will be exchanged so everyone

knows the “rules”
• There are dozens of protocols used for different purposes:
• TCP/IP, FTP
• Wi-Fi, Bluetooth

• HyperText Transfer Protocol (HTTP) is the protocol commonly used
by the World Wide Web to get HyperText Markup Language
(HTML) documents that describe how to render a web page

• We use a Uniform Resource Location (URL) to specify what page
we want to get:
http://www.cs.dartmouth.edu/cs10/index.html

Network protocols

Protocol:
how we will
talk (http)

Computer
that has data

Directory where
data located

File (assume index.html or
index.php if not provided) 10

11

Client makes a request to a Server for a
web page; Server responds to request

Web server

Process

Your browser

Request:
http://www.cs.dartmouth.edu/~albertoq/cs10/index.html

 Response:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<title>CS 10 | Problem solving | Spring 2020</title>
</head>

<body>
<div id="page">
<div id="header">
 <div id="title">CS 10</div>
 <div id="subtitle">Problem Solving via Object Oriented Programming</div>
</div> …

Browser interprets
HTML text and
renders page

A web page is simply a text document with
a description of what to display on the
screen (and maybe some Javascript for
user interaction) in a format called HTML

cs.dartmouth.edu

Big idea:
• Client makes

request to server
for web page

• Server responds
to client’s request

12

Java makes it easy to get HyperText Markup
Language (HTML) from the web
WWWGet.java

Big idea:
• Java abstracts a lot of messy details for connecting over HTTP so

we don’t have to deal with it (take CS 60 for more details)
• Java lets us read data over the web like we read a file on our local

computer

13

DEMO: WWWGet.java

Read data from CS web server

Get HTML at: https://www.cs.dartmouth.edu/cs10/notes21.html

Write HTML to console line by line

Sample code WWWGetTry.java
does the same, but has more
error checking

14

Agenda

1. Creating Graphical User Interfaces (GUIs)

2. Getting data from the web

3. Web services

4. Processing data

5. Finished product

15

We can use web services to get data (as
opposed to HTML) from a server

Web server

Web service process

Your
computer

I’d like to get data on student with id=123:
http://www.cs.dartmouth.edu/cs10/student.php?id=123

Web service responds
with data corresponding
to query string parameters

Parameters in
query string
provided to

server

Protocol and location Web service
name

REST
(Representational
State Transfer) uses
HTTP to transfer data

Big idea:
• Client makes request to server for data
• Server responds to client’s request
• Intent of web service is for a program rather

than a human (or a browser) to get data

16

Server-side REST web service can return
data that does not have to be HTML
Enter the following addresses in web browser
http://cs.dartmouth.edu/cs10/student.php?id=123

Query string begins after “?”
Format: param=value
Can have more than one parameter,
separate them by &

Request causes student.php code
to run on the “server side”
• Reads parameter id=123 from query string
• Looks up data on student with id=123
• Returns information about student with

that id

Web server

Student Information
Name: Alice
ID: 123
Major: CS
Grades:

CS1: A
CS10: A
CS11: A-

• Student information
returned to client

• Information is not
HTML, just text

• Would prefer a
consistent format for
data returned

http://cs.dartmouth.edu/cs10/student.php?id=123

17

Agenda

1. Creating Graphical User Interfaces (GUIs)

2. Getting data from the web

3. Web services

4. Processing data

5. Finished product

18

JSON is a popular way for web services to
format data when responding to requests

JSON (JavaScript Object Notation) has two high-level structures

1. Objects: collection of name/value pairs
Objects are unordered name/value pairs
Begin with { and end with }
Name/value pairs separated by commas

2. Arrays: ordered list of values

Source: www.json.org

Arrays are ordered
Begin with [and end with]
Items separated by commas

• Values can be strings, numbers,
booleans, objects, or arrays

• Very powerful “nesting”

Does this format look familiar to other
structures we’ve seen in this class?
Finite Automata

19

JSON provides a consistent way to send
data between clients and servers

{
"Student" : {

"Name" : "Alice",
"ID" : 123,
"Major" : "CS",
"Grades" : [

{"CS1" : "A"},
{"CS10" : "A"},
{"CS11" : "A-"}

]
}

}

JSON version of
student.php data

Web services that return data provide documentation
describing how the data is formatted – read the docs!

JSON formatted data returned is simply text document,
must parse it to convert to Java ADTs we know and love

20

Java parses JSON text into familiar data
structures

JSON Java
String String
Number Number
True/false Boolean
Null Null
Array List

(JSONArray)
Object Map

(JSONObject
subclass of
HashMap)

{
"Student" : {

"Name" : "Alice",
"ID" : 123,
"Major" : "CS",
"Grades" : [

{"CS1" : "A"},
{"CS10" : "A"},
{"CS11" : "A-"}

]
}

}

Student object is a Java Map
We can retrieve items with get()
student.get(“Name”) returns “Alice”

Grades is a List
We can retrieve Grades with student.get(“Grades”)
We can loop through the the array items using an
iterator or a standard “for” loop

NOTE: Follow instructions on course web page to install JSON parser

21

Flickr can use JSON to return information
about photos it stores
Simplified Flickr JSON data from search

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance
&per_page=10&format=json

Querying Flickr for “dartmouth” URL (protocol, server, location)

Query string:
method = search photos (flickr.photos.search)
api_key = find on Canvas under Pages (identifies us to Flickr)
text = find photos matching this text (dartmouth)
sort = by relevance, by date, etc (relevance)
per_page = how many photos to return (10)
format = return data in this format (json)

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key

22

Flickr can use JSON to return information
about photos it stores

jsonFlickrApi({
"photos": {

"page": 1,
 "pages": 266788,
 "perpage": 10,
 "total": "2667876",
 "photo": [{"id": "5340131446", "secret": "3b7c380bea","server": "5244","farm": 6, …}
 {"id": "5338762379", "secret": "59f7435b93","server": "5284","farm": 6, …},
 ...
 ...
]
 },
 "stat": "ok"
 })

Simplified Flickr JSON data from search

Querying Flickr for “dartmouth”

Returns JSON with information about photos of Dartmouth

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance
&per_page=10&format=json

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key

jsonFlickrApi({
"photos": {

"page": 1,
 "pages": 266788,
 "perpage": 10,
 "total": "2667876",
 "photo": [{"id": "5340131446", "secret": "3b7c380bea","server": "5244","farm": 6, …}
 {"id": "5338762379", "secret": "59f7435b93","server": "5284","farm": 6, …},
 ...
 ...
]
 },
 "stat": "ok"
 })

23

Flickr can use JSON to return information
about photos it stores
Simplified Flickr JSON data from search

Querying Flickr for “dartmouth”

Returns JSON with information about photos of Dartmouth
Flickr adds a non-standard header “jsonFlickrApi(” :-|

“photos” object contains “photo” array with information
describing each matching photo and where to find it

This information is not the photo itself!
It is how to find the photo on Flickr’s servers

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance
&per_page=10&format=json

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key

24

Flickr can use JSON to return information
about photos it stores
Simplified Flickr JSON data from search

Flickr documentation says that photos can be retrieved with:
http://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}.jpg

http://farm6.staticflickr.com/5244/5340131446_3b7c380bea.jpg

Querying Flickr for “dartmouth”

Returns JSON with information about photos of Dartmouth

Download actual
photo from this web
location

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance
&per_page=10&format=json

jsonFlickrApi({
"photos": {

"page": 1,
 "pages": 266788,
 "perpage": 10,
 "total": "2667876",
 "photo": [{"id": "5340131446", "secret": "3b7c380bea","server": "5244","farm": 6, …}

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key

25

Agenda

1. Creating Graphical User Interfaces (GUIs)

2. Getting data from the web

3. Web services

4. Processing data

5. Finished product

26

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java Get API key from Canvas (don’t abuse it!)

Key here

27

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java

28

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java

29

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java Search query entered by user

30

31

Summary

• GUI built in two steps:
• 1. Add graphical elements
• 2. Add event listeners

• Web services based on requests to server in a
specific format, to which the server will respond
returning a String

• Data in a standard format to process data in a
standardized way, e.g., JSON

Additional Resources

32

ANNOTATED SLIDES
FlickrSearchCore.java

33

34

Step 1: Add graphical elements
FlickrSearchCore.java Extends JFrame

JFrame creates a blank
window with a title,
same as DrawingGUI

JFrame Content Pane
holds Containers

Create JComponent
container hold
images

Will add code here to display
images in JComponent

Set
JComponent
size

Create a panel to hold
buttons (setupGUI() is our
method on next slide)

Add JPanel (button panel)
and JComponent (images)
to Content Pane

Common
boilerplate

Set up JPanel that holds buttons, text and
drop down box
FlickrSearchCore.java Creates JPanel to hold

buttons and dropdown
control

Create “prev” Jbutton and
listener that fires when
button clicked

Create drop down list

Create JTextField
Will search for photos with
keywords entered here

Create “search” JButton and listener
Will search for photos with
keywords from JTextField

Finally add all elements to
JPanel and return

36

Step 2: Add event listeners that wait for
events on graphical elements

// create button control
JButton search = new JButton("search");

//add listener if action taken on button (e.g., clicked)
search.addActionListener(new AbstractAction() {
 public void actionPerformed(ActionEvent e) {
 // this will run if action taken on button
 System.out.println("search button”);
 }
});

Listeners are called back when event fires
Located in awt.event.* (import this)

Create “search” JButton
graphical element

Add a listener that will fire when the
button is clicked

Here just print that button was clicked

This declaration is called an anonymous
class – never gets a name, but has
access to instance variables

ActionEvent is an Object that gives
details about the event that just
occurred (e.g., button click)

ANNOTATED SLIDES
Web page request

37

38

Client makes a request to a Server for a
web page; Server responds to request

Web server

Process

Your browser

Request:
http://www.cs.dartmouth.edu/~albertoq/cs10/index.html

 Response:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<title>CS 10 | Problem solving | Spring 2020</title>
</head>

<body>
<div id="page">
<div id="header">
 <div id="title">CS 10</div>
 <div id="subtitle">Problem Solving via Object Oriented Programming</div>
</div> …

Browser interprets
HTML text and
renders page

A web page is simply a text document with
a description of what to display on the
screen (and maybe some Javascript for
user interaction) in a format called HTML

cs.dartmouth.edu

Big idea:
• Client makes

request to server
for web page

• Server responds
to client’s request

39

Java makes it easy to get HyperText Markup
Language (HTML) from the web
WWWGet.java Tell Java where to look for HTML document

Location called URL – Uniform Resource Location
URL:
• Protocol – https (secure version of http)
• Server – cs.dartmouth.edu
• Location– /~albertoq/cs10/notes21.html

Create
BufferedReader to
read from URL like
reading from file

Read HTML line by line

Close reader
in finally
block

Big idea:
• Java abstracts a lot of messy details for connecting over HTTP so

we don’t have to deal with it (take CS 60 for more details)
• Java lets us read data over the web like we read a file on our local

computer

ANNOTATED SLIDES
JSON

40

41

JSON provides a consistent way to send
data between clients and servers

{
"Student" : {

"Name" : "Alice",
"ID" : 123,
"Major" : "CS",
"Grades" : [

{"CS1" : "A"},
{"CS10" : "A"},
{"CS11" : "A-"}

]
}

}

JSON version of
student.php data Start with JSON object to hold data

Declare name/value as Student with an
object as value

Name/value pairs separated by commas
ID has numeric value

• Name/value pair for Grades, where
value is an array of objects

• Array has one object for each course this
student has taken

• Objects are course name/grade received

Web services that return data provide documentation
describing how the data is formatted – read the docs!

JSON formatted data returned is simply text document,
must parse it to convert to Java ADTs we know and love

ANNOTATED SLIDES
FlickrSearchJSON.java

42

43

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java Get API key from Canvas (don’t abuse it!)

Will load all Flickr images into
ArrayList of BufferedImages
called images

curr will hold the index of
image currently displayed

• If we have some images (images.size > 0) draw
the image at index curr in the canvas
JComponent

• paintComponent() runs on repaint()
• Just like with WanderingImage Blobs

Key here

44

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java

• Setup previous graphical button as
before, but now add program logic

• If “prev” button pressed, go to prior
image (loop to last if at image 0)

• repaint() causes canvas to redraw and
display the image in ArrayList images
at index curr

• Next button similar to previous button

45

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java

• Setup drop down combo box to track
how Flickr should sort photos

• Each time drop down changes, sort
instance variable updates

• When “search” button clicked, get
search text in queryF JTextField

• Then call loadImages method passing
query text from queryF to get images
from Flickr (next slide)

• Set current image to 0 and repaint()

46

FlickrSearchJSON.java: finished product
expands upon FlickrSearchCore.java
FlickrSearchJSON.java Search query entered by user

Get rid of Flickr’s annoying header, to get
standard JSON

Build request URL with query string parameters
Use URLEncoder to handle spaces in String query

Create new BufferedReader and read Flickr’s
response to request, just like reading a file

Loop over
all photos
returned
using List
photosList

Extract farm, server, and secret data
elements about each photo from Map

Fetch photo and add to images ArrayList

Parse JSON and get list of photos
JSONArrays are Lists
 JSONObjects are Maps

ADDITIONAL RESOURCE
XML

47

48

eXtensible Markup Language (XML) is a
popular way of representing data

<enrollment>
 <course department="CS" number="1" term=”18W">
 <student name="Alice" year="20" />
 <student name="Bob" year="19" />
 <student name="Charlie" year="18" />
 </course>
 <course department="CS" number="10" term=”18W">
 <student name="Delilah" year="19" />
 <student name="Elvis" year="00" />
 <student name="Flora" year="20" />
 </course>
</enrollment>

Sample XML for course enrollment

Start of enrollment tag begins with “<”

End of enrollment tag
begins with “</”

XML
• XML groups data with an opening and closing tag

<enrollment>
 <course department="CS" number="1" term=”18W">
 <student name="Alice" year="20" />
 <student name="Bob" year="19" />
 <student name="Charlie" year="18" />
 </course>
 <course department="CS" number="10" term=”18W">
 <student name="Delilah" year="19" />
 <student name="Elvis" year="00" />
 <student name="Flora" year="20" />
 </course>
</enrollment>

49

eXtensible Markup Language (XML) is a
popular way of representing data
Sample XML for course enrollment

Nested tag called “course”
for CS 1

XML
• XML groups data with an opening and closing tag
• Tags can be nested

Start of enrollment tag begins with “<”

End of enrollment tag
begins with “</”

<enrollment>
 <course department="CS" number="1" term=”18W">
 <student name="Alice" year="20" />
 <student name="Bob" year="19" />
 <student name="Charlie" year="18" />
 </course>
 <course department="CS" number="10" term=”18W">
 <student name="Delilah" year="19" />
 <student name="Elvis" year="00" />
 <student name="Flora" year="20" />
 </course>
</enrollment>

50

eXtensible Markup Language (XML) is a
popular way of representing data
Sample XML for course enrollment

Nested tag called “course”
for CS 1

XML
• XML groups data with an opening and closing tag
• Tags can be nested

Another nested tag called
“course” for CS 10

Start of enrollment tag begins with “<”

End of enrollment tag
begins with “</”

<enrollment>
 <course department="CS" number="1" term=”18W">
 <student name="Alice" year="20" />
 <student name="Bob" year="19" />
 <student name="Charlie" year="18" />
 </course>
 <course department="CS" number="10" term=”18W">
 <student name="Delilah" year="19" />
 <student name="Elvis" year="00" />
 <student name="Flora" year="20" />
 </course>
</enrollment>

51

eXtensible Markup Language (XML) is a
popular way of representing data
Sample XML for course enrollment

XML
• XML groups data with an opening and closing tag
• Tags can be nested
• Tags can have attributes

Course tag attributes: department = “CS”, number = 1, term = “18W”

<enrollment>
 <course department="CS" number="1" term=”18W">
 <student name="Alice" year="20" />
 <student name="Bob" year="19" />
 <student name="Charlie" year="18" />
 </course>
 <course department="CS" number="10" term=”18W">
 <student name="Delilah" year="19" />
 <student name="Elvis" year="00" />
 <student name="Flora" year="20" />
 </course>
</enrollment>

52

eXtensible Markup Language (XML) is a
popular way of representing data
Sample XML for course enrollment

XML
• XML groups data with an opening and closing tag
• Tags can be nested
• Tags can have attributes

Course tag attributes: department = “CS”, number = 1, term = “18W”

Student tags attributes: name=“Flora”, year=“20”

XML
• XML groups data with an opening and closing tag
• Tags can be nested
• Tags can have attributes
• Typically web services provide documentation to help you interpret the attributes

eXtensible Markup Language (XML) is a
popular way of representing data

<enrollment>
 <course department="CS" number="1" term=”18W">
 <student name="Alice" year="20" />
 <student name="Bob" year="19" />
 <student name="Charlie" year="18" />
 </course>
 <course department="CS" number="10" term=”18W">
 <student name="Delilah" year="19" />
 <student name="Elvis" year="00" />
 <student name="Flora" year="20" />
 </course>
</enrollment>

Sample XML for course enrollment

54

FlickrSearchXML.java: finished product
expands upon FlickrSearchCore.java
FlickrSearch.java

Start with search query entered by user

Follow Oracle’s example to set up XML parser

Build request URL with query string parameters
Use URLEncoder to handle spaces in String query

• Create new BufferedReader and read
Flickr’s response to request

• Clean up non-standard XML in
collectString() – this is a hack!

Loop
over all
photos
returned

Extract farm, server, and secret data
elements about each photo

Fetch photo and add to images ArrayList

