CS 10:

Problem solving via Object Oriented
Programming

Client/Server

* Implement a server and a client
through sockets
* Implement multiple threads

2. Server

3. Multithreaded server

4. Chat server

Sockets are a way for computers to

communicate

IP:1.2.3.4
HTTP
Port: 80

Server

Server is listening on
a socket
(socket = address

+ protocol

+ port)

Port 80 = HTTP

Client 1

Client 1 makes
connection over
socket

Server receives
connection, moves
communications
to own socket

Sockets are a way for computers to

communicate

P

IP:1.2.3.4
HTTP »
Port: 80

Server

Server is listening on
a socket
(socket = address

+ protocol

+ port)

Port 80 = HTTP

Client 1

Client 1 makes
connection over
socket

Server receives
connection, moves
communications
to own socket

Server returns to
listening

Server talking to
Client 1 and regdy
for others

Sockets are a way for computers to

communicate

e (Client 2 makes

connection over
socket
IP:1.2.3.4

HTTP Client 1
Port: 80

Server

Server is listening on
a socket
(socket = address

+ protocol

+ port)

Client 2

Port 80 = HTTP ’

Sockets are a way for computers to

communicate

P

IP:1.2.3.4
HTTP »
Port: 80

Server

Server is listening on
a socket
(socket = address

+ protocol

+ port)

Port 80 = HTTP

Client 1

Client 2

Client 2 makes
connection over
socket

Server receives
connection, moves
communications
to own socket

Server returns to
listening

Server talking to
client 1 and 2 7
ready for others

1. Sockets

» 2. Server

3. Multithreaded server

4. Chat server

DEMO HelloServer.java: create our own

server that listens for clients to connect

HelloServer.java

Run HelloServer.java

From terminal type “telnet localhost 4242”

”

Quit telnet session with Control +] then type “quit

Try connecting from multiple terminals

We can create our own server that will

listen for clients to connect and respond

HelloServer.java IP: localhost
TCP

12 public class HelloServer { Port: 4242

13e public static void main(String[] args) throws IOException {

14 // Listen on a server socket for a connection ——

15 System.out.println("waiting for someone to connect");|

16 ServerSocket listen = new ServerSocket(4242); Se rver

17 // When someone connects, create a specific socket for them

18 Socket sock = listen.accept();

19 System.out.println("someone connected");

20

21 // Now talk with them

22 PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

23 BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));

24 out.println("who is it?");

25 String line;

26 while ((line = in.readLine()) != null) {

27 System.out.println("received:" + line);

28 out.println("hi " + line + "! anybody else there?");

29 }

30 System.out.println("client hung up");

31

32 // Clean up shop

33 out.close();

34 in.close();

35 sock.close(Q);

36 listen.close();

37 }

38 }

10

We can also create our own client too

HelloServer.java and HelloClient.java

What is input and what is

output is relative to each Code for HelloServer on last slide

computer
* Input to Server is output HelloServer
from Client
e QOutput from Server is input
to client Socket: in-streant A S out-stream
Server-Side
Client-Side
Socket: out-stream y [n-stream

HelloClient or

Telnet Client

11

DEMO HelloClient.java: our Client that talks

to our Server

HelloClient.java

Run HelloClient.java (waits for Server to come up)

Run HelloServer.java

12

Our Client talks to our Server

HelloClient.java

11 public class’HelloCIient {

12+ public static void main(String[] args) throws Exception {

13 String host = "localhost"; //"localhost" or something like "129.170.212.159"

14 int port = 4242;

15 int connectionDelay = 5000; //in milisecs, 5000 = 5 seconds

16 Scanner console = new Scanner(System.in);

17

18 // Open the socket with the server, and then the writer and reader e —
19 Socket sock = null; .
20 boolean connected = false; CI Ie nt
21 System.out.println("connecting...");

22 while (!connected) {

23 try {

24 //try to connect to server, throws error if server not up (which we catch)

25 sock = new Socket(host,port);

26 connected = true;

27 }

28 catch (Exception e) {

29 //server not up, wait connectionDelay/1000 seconds and try again

30 System.out.println("\t server not ready, trying again in " + connectionDelay/1000 +
31 Thread. sleep(connectionDelay); //wait

32 }

33 }

34

35 //set up input and output over socket

36 PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

37 BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
38 System.out.println("...connected");

39

40 // Now listen and respond

41 String line;

42 while ((line = in.readLine()) != null) {

43 // Output what you read

44 System.out.println(line);

45

46 // Get user input from keyboard to write to the open socket (sends to server)

47 String name = console.nextLine();

48 out.println(name);

49 }

50 System.out.println("server hung up™);

51

52 // Clean up shop

53 console.close();

13

Friends can connect to your server if they

connect to the right IP address
Run MylPAdressHelper.java to get your address, edit HelloClient.java

Local Network

.................
‘‘‘‘‘
- -
- -
- -
- .
" b

Use: Public (global) IP Address
of SERVER to connect clients

Local network >, :
outside the local network

router gives inside
computers a unique
: |
Use: Private (local) IP Address local IP address

of SERVER to connect clients \(e.g., 10.10.1.6)
within the local network

Network Address
Translation (NAT) on local
router tells outsiders each
inside machine has a
different IP address (global
. address) from what IP
------------------------- address insiders see (e.g.,
129.170.212.159) e

Use: “localhost” to connect
clients running locally
to the SERVER

DEMO: Connecting from another machine

HelloServer.java and HelloClient.java
 Run MylPAddressHelper on server to get IP
» Start HelloServer.java on server

* Edit HelloClient.java to change localhost to server IP address
e Run HelloClient on client machines and make connection
e Connect from student machine?

15

1. Sockets

2. Server
» 3. Multithreaded server

4. Chat server

16

We can create a “Communicator” on a

separate thread for each connection

One Communicator allocated for a single client

Communicator Object HelloServer

handles the socket
HelloServer A/
Communicator

between Server and Client
Thread
Socket: in-stream & out-stream

Socket: out-stream y n-stream

HelloClient or

Telnet Client

17

We can create a “Communicator” on a

separate thread for each connection

Multiple Communicators allocated for multiple clients

Create a new Communicator Object on
a separate Thread on the server each

time a client connects

HelloServer

Commun|cator S ., ..
job is to 5
manage HelloServer HelloServer HelloServer e HeIIoSe'rver
. Communicator Communicator Communicator Communicator
connection o

with client

Server-Side
Client-Side

HelloClient or

HelloClient or HelloClient or HelloClient or
Telnet Client Telnet Client Telnet Client

Telnet Client

DEMO HelloMultithreadedServer.java:

handle multiple Clients concurrently

HelloMultithreadedServer.java
e Starts new thread with new HelloServerCommunicator on each

connection

HelloServerCommunicator.java
* Extends Thread
e QOverride run

* Tracks thread ID
* Otherwise the same as single threaded version

Run HelloMultithreadedServer.java with multiple telnets

19

By using Threads, one Server can handle

multiple concurrent Clients

HelloMultithreadedServer.java

14 public class HelloMultithreadedServer {

15 private ServerSocket listen; // where clients initially connect

16

17s public HelloMultithreadedServer(ServerSocket listen) {

18 this.listen = listen;

19 }

20

21¢ Viak

22 * Listens to listen and fires off new communicators to handle the clients

23 */

24¢ public void getConnections() throws IOException {

25 System.out.println("waiting for someone to connect");

26

27 // Just keep accepting connections and firing off new threads to handle them.
28 int num = 0;

29 while (true) {

30 //listen.accept in next line blocks until a connection is made

31 HelloServerCommunicator client = new HelloServerCommunicator(listen.accept(), num++);
32 client.setDaemon(true); // handler thread terminates when main thread does
33 client.start(); //start new thread running

34 }

35

36 }

37

38= public static void main(String[] args) throws IOException {

39 new HelloMultithreadedServer(new ServerSocket(4242)).getConnections();

40 }

“1 '} Bjg idea: start a new thread whenever a client connects

47) .] . 20
so this thread can go back to listening for new clients

HelloServerCommunicator runs on its own

Thread, handles one Client’s connection

HelloServerCommunicator.java

9 public class HelloServerCommunicator extends Thread {

10 private Socket sock = null; // to talk with client

11 private int id; // for marking the messages (just for clarity in reading consc
12

13- public HelloServerCommunicator(Socket sock, int id) {

14 this.sock = sock;

15 this.id = 1id;

16 }

17

18 /**

19 * The body of the thread is basically the same as what we had in main() of the single-threade
20 */

a21- public void run(Q) {

22 // Smother any exceptions, to match the signature of Thread.run()

23 try {

24 System.out.println("#" + id + " connected");

25

26 // Communication channel

27 BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
28 PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

29

30 // Talk

31 out.println("who is it?");

32 String line;

33 while ((line = in.readLine()) != null) {

34 System.out.println("#" + id + " received:" + line);

35 out.println("hi " + line + "! anybody else there?");

36 }

37 System.out.println("#" + id + " hung up");

38

39 // Clean up

40 out.close(Q);

41 in.close();

42 sock.close();

43 }

44 catch (IOException e) {

45 e.printStackTrace();

46 }

47 } 21

48 }

1. Sockets
2. Server
3. Multithreaded server

» 4. Chat server

22

DEMO: Chat application

ChatServer.java and ChatClient.java
 Run MylPAddressHelper on server to get IP
e Start ChatSever.java on server

e Edit ChatClient.java to change localhost to server IP address (in
main())

* Run ChatClient.java to connect to ChatServer
* Run ChatClient.java from student machine?

23

Goal: Chat server allows communication

between multiple clients

Client sends message
to server ChatServer

When one Client sends a
message, want to broadcast
it to all other clients

Server coordinates
messages

Server receives message

from Client, then repeats
message to all other Clients

ChatClient (0) ChatClient (1) ChatClient (2) ChatClient(n-1)

Goal: Chat server allows communication

between multiple clients

Server broadcasts
message to all clients ChatServer

What if a message comes
into a Client that is
“blocking” waiting for input
from keyboard

Would like to see message/ o,
3 L L Qo
displayed even if typing é,',b
T

(or not) X

Message

ChatClient (0) ChatClient (1) ChatClient (2) ChatClient(n-1)

Client listens for keyboard on main thread

creates Communicator on second thread

Client
ChatServer

Server-Side

Client-Side

Client uses two threads:
1. Listen for keyboard input (blocks

ChatClient

Communicator Thread until Enter key pressed)

’ 2. Communicates with server on
separate Thread (does not block
ChatClient waiting for keyboard input)
26

ChatServer creates a Communicator for

each client

Server

ChatServer

Server uses
Communicator, one for

each client
ChatServer
Both Server and Client Communicator
side are now multi-
threaded
Server-Side
Client-Side

ChatClient
Communicator

ChatClient

27

ChatServer handles multiple clients and

broadcasts message to each client

Client and server

Server has one Thread per ChatServer
Client
ChatServer ChatServer ChatServer e ChatServer
Communicator Communicator Communicator Communicator
A 4 A
Server-Side
RS Each Client has
two threads:
1. Keyboard
ChatClient ChatClient ChatClient 2. Communicator BRELEUSIERl
Communicator Communicator Communicator Communicator

ecee
ChatClient(n-1)

ChatClient (2)

ChatClient (0)

ChatClient (1)

28

ChatServer manages one Communicator

for each Client

ChatServer.java

14 public class ChatServer {

15
16
17

18=

19
20
21
22

23¢

24
25

26¢

27
28
29
30
31
32
33
34
35

36¢

37
38

39¢

40
41
42

43

44
45

46¢

47
48

A0

private ServerSocket listen; // for accepting connections
private ArraylList<ChatServerCommunicator> comms; // all the connections with clients

public ChatServer(ServerSocket listen) {
this.listen = listen;|
comms = new ArraylList<ChatServerCommunicator>(Q);

}

/**
* The usual loop of accepting connections and firing off new threads to handle them
*/
public void getConnections() throws IOException {
while (true) {
//1listen.accept in next line blocks until new connection
ChatServerCommunicator comm = new ChatServerCommunicator(listen.accept(), this);
comm. setDaemon(true);
comm.startQ);
addCommunicator(comm);

}

/**
* Adds the handler to the list of current client handlers
*/
public synchronized void addCommunicator(ChatServerCommunicator comm) {
comms .add(comm) ;
}

/**
* Removes the handler from the list of current client handlers
*/
public synchronized void removeCommunicator(ChatServerCommunicator comm) {
comms . remove(comm) ;

}

Communicators

Communicator | | | | | |
11

29

ChatServer manages one Communicator

for each Client

ChatServer.java O

Communicators

5 oo [1 I

46¢ public synchronized void removeCommunicator(ChatServerCommunicator comm) {

47 comms . remove(comm);

48 }

49

50¢= /**

51 * Sends the message from the one client handler to all the others (but not echoing
52 */

53¢ public synchronized void broadcast(ChatServerCommunicator from, String msg) {
54 for (ChatServerCommunicator c : comms) {

55 if (c != from) {

56 c.send(msg);

57 }

58 }

59 }

00

6l= public static void main(String[] args) throws Exception {

62 System.out.println("waiting for connections™);

63 new ChatServer(new ServerSocket(4242)).getConnections();

64 }

65 }

~r

30

Each ChatServerCommunicator runs on

own Thread and talks with one Client

ChatServerCommunicator.java

9 public class ChatServerCommunicator extends Thread {

Communicator

10 private Socket sock; // each instance is in a different thread and has its own socket

11 private ChatServer server; // the main server instance

12 private String name; // client's name (first interaction with server) Communicator
13 private BufferedReader in; // from client

14 private PrintWriter out; // to client .
: ciee [[I
16= public ChatServerCommunicator(Socket sock, ChatServer server) {

17 this.sock = sock;

18 this.server = server;

19 }

20
~21 public void run(Q) {

22 try {

23 System.out.println("someone connected");

24

25 // Communication channel

26 in = new BufferedReader(new InputStreamReader(sock.getInputStream()));

27 out = new PrintWriter(sock.getOutputStream(), true);

28

29 // Identify -- first message is the name

30 name = in.readLine();

31 System.out.println("it's "+name);

32 out.println("welcome "+name);

33 server.broadcast(this, name + " entered the room");

34

35 // Chat away

36 String line;

37 while ((line = in.readLine()) != null) {

38 String msg = name + ":" + line;

39 System.out.println(msg);

40 server.broadcast(this, msg);

41 }

42

43 // Done

44 System.out.println(name + " hung up");

45 server.broadcast(this, name + " left the room");

46

47 // Clean up -- note that also remove self from server's list of handlers so it doesn't broadcas
48 server.removeCommunicator(this);

49 out.close();

50 in.close(Q);

51 sock.close(Q); 31
52 }

co mmdbale FTACw mamdd;am -\ €

Each ChatServerCommunicator runs on

own Thread and talks with one Client

ChatServerCommunicator.java

58¢ [**

59 * Sends a message to the client
60 * @param msg

61 */

62¢< public void send(String msg) {
63 out.println(msg);

64 }

65 }

06

32

ChatClient manages keyboard input and

creates a ChatClientCommunicator

ChatCIient.java Server

1r

Communicators
11 public class ChatClient {

12 private Scanner console; // input from the user

13 private ChatClientCommunicator comm; // communication with the server Communi
14 private boolean hungup = false; // has the server hung up on us?
15 Client
16¢ public ChatClient(Socket sock) throws IOException {

17 // For reading lines from the console

18 console = new Scanner(System.in);

19

20 // Fire off a new thread to handle incoming messages from server

21 comm = new ChatClientCommunicator(sock, this);

22 comm. setDaemon(true);

23 comm.start();

24

25 // Greeting; name request and response

26 System.out.println("Please enter your name");

27 String name = console.nextLine(); //blocks until keyboard input

28 comm. send(name) ;

29 }

30

31 /**

32 * Get console input and send it to server;

33 * stop & clean up when server has hung up (noted by hungup)

34 */

35¢ public void handleUser() throws IOException {

36 while (!hungup) {

37 //console.nextLine() blocks until text is entered

38 comm. send(console.nextLine());

39 }

40 }

41

42+ /**

43 * Notes that the server has hung up (so handleUser loop will terminate)

44 */

45e public void hangUp() {

46 hungup = true;

47

48

49¢ public static void main(String[] args) throws IOException {

50 new ChatClient(new Socket("localhost", 4242)).handleUser();

a0 33

52 }

-

ChatClientCommunicator runs on its own

Thread to communicate with Server

ChatClientCommunicator.java

10 public class ChatClientCommunicator extends Thread {

11 private Socket sock; // the underlying socket for communication
12 private ChatClient client; // for which this is handling communication
13 private BufferedReader in; // from server

14 private PrintWriter out; // to server

15

16¢ public ChatClientCommunicator(Socket sock, ChatClient client) throws IOException {
17 this.sock = sock;

18 this.client = client;

19 in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
20 out = new PrintWriter(sock.getOutputStream(), true);
21 }

22

23 public void send(String msg) {

24 //called when have keyboard input

25 this.out.println(msg);

26 }

27
228 public void runQ) {

29 // Get lines from server; print to console

30 try {

31 String line;

32 while ((line = in.readLine()) != null) {

33 System.out.println(line);

34 }

35 }

36 catch (IOException e) {

37 e.printStackTrace();

38 }

39 finally {

40 client.hangUpQ;

41 System.out.println("server hung up");

42 }

43

44 // Clean up

45 try {

46 out.closeQ);

47 in.closeQ);

48 sock.close();

49 }

50 catch (I0Exception e) {

51 e.printStackTrace();

52 }

1

Communicator

34

Summary

 Sockets are used to allow communication between
a server and a client
e Port number is necessary (+ IP address)
 Reading and writing similar to files
 Multiple threads for concurrent code execution
 Extends Thread
* needs to override run
 Have a main that can instantiate new threads

35

Additional Resources

HelloServer.java

ANNOTATED SLIDES

We can create our own server that will

listen for clients to connect and respond

HelloServer.java Create new ServerSocket listening on port 4242 IP: localhost

: TCP

Port chosen because nothing else there Port: 4242
12 public class HelloServer { ort:
13e public static void main(String[\ args) throws IOException {
14 // Listen on a server socket Xor a connection ——
15 System.out.println("waiting fok, someone to connect");| S
16 ServerSocket listen = new ServerSocket(4242); . erver
17 // When someone connects, create a specific socket for them Pause here untll someone
18 Socket sock = listen.accept(); qgmmm connects, then create Socket
19 System.out.println("someone connected");
20 sock for them
21 // Now talk with them
22 PrintWriter out = new PrintWriter(sock.getOutputStream(), true);
23 BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
24 out.println("who is it?"); .
25 String line: * Create output writer and

26 while ((line = in.readLine()) != null) { input reader using SOCk

27 System.out.println("received:" + line);
28 out.println(C"hi " + line + "! anybody else there?"); e Send output to whomever
29 }
30 System.out.println("client hung up"); connected
31
32 // Clean up shop
33 out.close(); ClOSE uP
34 in.EIOTEOé) €——_ °* Reader and writer Read input from client
sock.close(); . .
36 listen.close(Q); e Sockets until client hangs up
37 o
38 } ’ (connection lost)
This code can only handle one in.readLine() is null on

connection at a time hang up 38

HelloClient.java

ANNOTATED SLIDES

Our Client talks to our Server

HelloClient.java @ = ~ Setup scanner to read

11 public class ’HelloCIient {‘

H ’
12= public static void main(String[] args) throws Exception { CIlent S keyboa rd
13 String host = "localhost"; //"localhost" or something like ~170.212.159"
14 int port = 4242;

15 int connectionDelay = 5000; //in milisecs, 500! seconds

16 Scanner console = new Scanner(System.in);

17

18 // Open the socket with the server, and then the writer and reagder . e —
19 Socket sock = null; oop until Server answers .

20 boolean connected = false; <_, CI Ie nt
21 System.out.println("connecting...");

22 wite Cicomected) { Create Socket sock on same

24 //try to connect to server, throws error if servpm

25 sock = new Socket(host,port); port as Server (4242)

26 connected = true;

27 } . . .

28 catch (Exception &) { sock will throw exception if

29 //server not up, wait connectionDelay/1000 seconds and try again

30 System.out.println("\t server not ready, trying again in " + connectionDelay/1000 +

31 Thread. sleep(connectionDelay); //wait Server nOt upl try every 5

32 } L] .]

33 } seconds until it is up

34

35 //set up input and output over socket

36 PrintWriter out = new PrintWriter(sock.getOutputStream(), true); o

37 BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream())); &= Got Server COﬂﬂECtIOh, setup
38 System.out.println("...connected");

39 H

40 // Now listen and respond reader and erter

41 String line;

42 while ((line = in.readLineQ)) != null) { &= OUtPUt to COhSO|e

43 // Output what you read . :

44 System.out.println(line); What the Server Sald GEt InPUt from scanner
45

46 // Get user input from keyboard to write to the open socket (sends.ta = and Send to Server

47 String name = console.nextLine();

48 out.println(name); ’ . .

49 } _ * |If Server hangs up, don’t know it until you
50 System.out.println("server hung up™); ?

51

= 1) Clean u shop press enter on keyboard. Why?

53 console.close();

* console.nextLine() “blocks” execution 40

Threads

ANNOTATED SLIDES

Currently our server can only handle one

client at a time

Using Java’s Thread mechanism to overcome single client issue

We would like our server to talk to multiple clients at the
same time (called concurrent users)

Trick is to give each client its own socket

That way the server can talk “concurrently” with multiple
clients

Java provides a Thread class to handle concurrency
(multiple processes running at same time)

Threads are much lighter than running multiple instances
of a program (more on threads next class)

Inherit from Thread class and override run method

Start thread using start method (calls run method)

42

By using Threads, one Server can handle

multiple concurrent Clients

HelloMultithreadedServer.java
Create a ServerSocket to listen for

B incoming connections
14 public class HelloMultithreaded

15 private ServerSocket listen;// where clients initially connect * num keeps track of how
16 .

17s public HelloMultithreadedServer(ServerSocket listen) { many connections have

18 this.listen = listen;

9 3 been made

S * Loop forever

22 * Listens to listen and fires off new com Cators to handle the clients ®* Put new connections on
23 */ . .

24¢ public void getConnections() thro OException { thEIr own Thread Wlth

25 System.out.println("waiti or someone to connect™); Communicator

26

27 // Just keep a ing connections and firing off new thr‘ea to handle, them.

28 int num = 0; Baemon(true) means stop this Thread
29 while (true) {

30 //listen.accept in next 11ne bloc a connectthgmme maln Thread ends

31 HelloServerCommunicato = new HelloServerCommunicator(listen.accept(), num++);

32 client.setDaemon(true)} // handler thread terminates when main thrégd dgels . .

33 client.start(); //start new thread running OCk Untll Cllent connects,
2‘5‘ ¥ e . . then return new Socket
SN start() causes a Thread to begin running

37 in Thread Object’s run() method

38= public static void main(String[] args) throws IOException { g * Pass new ServerSocket on
39 new HelloMultithreadedServer(new ServerSocket(4242)).getConnections(); port 4242 to constructor
40 }

‘L 1 Big idea: start a new thread whenever a client connects °* Then call getConnectioggs()
so this thread can go back to listening for new clients

HelloServerCommunicator runs on its own

Thread, handles one Client’s connection

HelloServerCommunicator.java * Extends Thread

/ When start() called on Thread, it

9 public class HelloServerCommunicator extends Thread {

10 private Socket sock = null; // to talk with client calls Thread’s run() method
11 private int id; // for marking the messages (just for clarity in reading consc

12

13 public HelloServerCommunicator(Socket sock, int id) {

14 this.sock = sock; .

s, thisid-id Save socket to talk to Client and

o keep id for convenience

19 * The body of the thread is basically the same as what we had in main() of the single-threade

20 */ o .

.21- public void runQ { Print id number so we can
22 // Smother any exceptions, to match the signature of Thread.run() .

23 try 1 e trackwhois

24 System.out.println("#" + id + " connected"); . .

i _— communicating

26 // Communication channel

27 BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));

28 PrintWriter out = new PrintWriter(sock.getOutputStream(), true); o

29 Setup run() to function the same as
30 // Talk E . .

31 out.println("who is it?"); Slngle-threadEd version

32 String line;

33 while ((line = in.readLine()) != null) {

34 System.out.println("#" + id + " received:" + line);

35 out.println("hi " + line + "! anybody else there?"); Now this Thread runs independently
36 }

37 System.out.println("#" + id + " hung up");

i’ of other Threads

39 // Clean up

40 out.close();

41 in.close(); . o

42 sock. close(); Handles one Client connection

43 }

44 catch (IOException e) {

45 e.printStackTrace(); .

I Stops when main Thread stops "

483 (daemon true)

Chat

ANNOTATED SLIDES

ChatServer manages one Communicator

for each Client

ChatServer.java . o
Set up ServerSocket to listen for

Communicators

14 public class ChatServer { Cllent connections - - I__.I:I_I_'.t_l_ I:]:I_ .

15 private ServerSocket listen; // for accepting connections Communicator

16 private ArraylList<ChatServerCommunicator> comms; // all the connections with clients I - - -

17 Client

18¢ public ChatServer(ServerSocket listen) {\

19 this.listen = listen;| . .

20 comms = new ArrayList<ChatServerCommunicator>()® Create one Communicator for each Client

21y . : .

S * Keep Communicators in comms ArraylList

23, % %

24 * The usual loop of accepting connections and firing off new threads to handle them

25 */

26+ puerc1 \lloig getgo?nectionso throws IOException { Block until Client connection, then create new

27 while (true

28 //listen.accept in next line blocks until new connection JCommunicator running on its own Thread

29 ChatServerCommunicator comm = new ChatServerCommunicator(listen.accept(), this);

30 comm. setDaemon(true); mon r .

3 com StartQ; W _?_ﬁt dade on, sta tdd * Returns new socket for this
addCommunicator(comm)} read runnin a .

B! A g’l' Communicator

34 to comms Arraylist .

5 . y e Also pass reference to this

37 * Adds the handler to the list of current client handlers Chatserver iject

38 */

39s public synchronized void addCommunicator(ChatServerCommunicator comm) {

AR comms . add(comm) ; €*—— Add or remove Communicator

Y e P Object from comms ArraylList

44 * Removes the handler from the list of current client handlers

45 */

46¢ public synchronized void removeCommunicator(ChatServerCommunicator comm) {

47 comms . remove(comm) ;

48 } 46

A0

ChatServer manages one Communicator

for each Client

ChatServer.java

45

46-

47
48
49

50¢

51
52

53¢

54
55
56
57
58
59
60

61l=

62
63
o4
65

~r

Synchronized keyword makes sure that if two @

ommunicators

messages arrive at the same time, that broadcas - I__I:I_I_LI_ I:tl_ .
finishes the first message before the second Communicator

*/ Topic of next class Client - - -

public synchrpnized void removeCommunicator(ChatServerCommunicator comm) {
comms . refiove(comm);

/**
* Sends tpe message from the one client handler to all the others (but not echoing
*/

public synchronized void broadcast(ChatServerCommunicator from, String msg) {

for (ChatServerCommunicator c : comms) {
if (c 1= from) { $—____ (Clients will ask Server to broadcast message to all

.send ; : i
, Cosendm Clients, loop over each Communicator (except

¥ Client that sent message) and ask it to send a

message to its Client
public static void main(String[] args) throws Exception {

System.out.println("waiting for connections™);
new ChatServer(new ServerSocket(4242)).getConnections();

}

}
\ main() set up ServerSocket listening on port 4242

47

Each ChatServerCommunicator runs on

own Thread and talks with one Client

ChatServerCommunicator.java Extend Thread to run in own thread

9 public class ChatServerCommunicator extends Thread {

Communicator

10 private Socket sock; // each instance is in a different thread and has its own socket

11 private ChatServer server; // the main server instance

12 pr@vate String name;) // client's name (first interaction with server) Communicator

13 private BufferedReader in; // from client

14 private PrintWriter out; // to client Client - - -
15

16= public ChatServerCommunicator(Socket sock, ChatServer server) {

17 this.sock = sock; H H H

15 ¢his.server = server; <\ Save socket to communicate with Client
19 } L] .

20 e Save ChatServer to communicate with
~21 public void run(Q) {

TR ject (()
23 System.out.println("someone connected"y; Chatserver Ob]eCt e'g" Ca" broadCGSt
24

25 // Communication channel H

26 in = new BufferedReader(new InputStreamReader(sock.getInputStream())); run() CB"Ed When Thread IS Sta rted
27 out = new PrintWriter(sock.getOutputStream(), true);

28

29 // Identify -- first message is the name

30 name = in.readLine();

31 System.out.println("it's "+name);

32 out.println("welcome "+name);

33 server.broadcast(this, name + " entered the room");

Set up in reader and out writer as before

35 // Chat away

36 String line;

37 while ((line = in.readLine()) != 1) {

38 String msg = name + ":" + line;

39 System.out.println(msg); . .

ioi | servr brodcaseCthis, s \ On any input from Client, call broadcast() on Server

b L bone broadcast() on Server will call send() on each
System. rintln(name + " hung up™); . .

jg sZr:er t‘:g:aans:(thls name + ’glegt the room) Communlcator (next Sllde)

46

47 // Clean up -- note that also remove self from server's list of handlers so it doesn't broadcas

48 server.removeCommunicator(this);

49 out.close(); . .

50 in-closeO; S~ When Client hangs up, call removeCommunicator() on i

> Y e i Server and shut down this Thread

Each ChatServerCommunicator runs on

own Thread and talks with one Client

ChatServerCommunicator.java

58¢=

59
60
6l

62¢

63
04
65
06

ir

§ s—

Communicator

Communicator

oo [1 I

/**
* Sends a message to the client
* @param msg
*/
public void send(String msg) {
out.println(msg);
} \
When another Client sends a message
to the Server via broadcast() method,
the Server will call send() on each
Communicator to broadcast the
message to all Clients

49

ChatClient manages keyboard input and

creates a ChatClientCommunicator

ChatClient.java

Server

Set up scanner for keyboard input L

Communicators

11 public class ChatClient {

12 private Scanner console; // jfiput from the user

13 private ChatClientCommunicator comm; //fcommunication with the server Communi

14 private boolean hungup = false; // has the server hung up on us?

15 . , _ Client

16¢ public ChatClient(Socket sock) throws IfException {

17 // For reading lines from the congfle

18 console = new Scanner(System.in);

19

20 // Fire off a new thread to handle incoming messages from server

21 comm = new ChatClientCommunicator(sock, this);

22 comm. setDaemon(true); .

23 comn. start(); — Create Communicator on another

24 .

25 // Greeting; name request and response Thread (So not Stopped by bIOCk|ng

26 System.out.println("Please enter your name");

27 String name = console.nextLine(); //blocks until keyboard inp:) H

o o i romes, ‘$canner), start Thread running

29 }

30

31 /** ° . o

32 % Get console input and send it to server; While Server is connected, tell Communicator to
33 * stop & clean up when server has hung up (noted by hu

v send keyboard messages to Server

35¢ public void handleUser() throws IOException {

36 while (!hungup) {

37 //console.nextLine() blocks un, text is entered

38 comm. send(console.nextLine()); . .
B0 If Server hangs up, Communicator will
41 .o .o o
SR call this method to inform ChatClient
43 * Notes that the server has hung up (so handleUs Will terminate) .

44 */ Object

45e public void hangUp() {

o hungup = true; main() calls constructor passing socket on

47 }

48

49¢ public static void main(String[] args) throws IOException { / |Oca|hOSt pOrt 4242 then handleuser()

50 new ChatClient(new Socket("localhost", 4242)).handleUser();

51 3
52 3} 50

ChatClientCommunicator runs on its own

Thread to communicate with Server

ChatClientCommunicator.java Run on own Thread so not blocked by server
scanner =

10 public class ChatClientCommunicator extends Thread Communicators
11 private Socket sock; // the underlying socket for communication

1r

12 private ChatClient client; // for which this is handling communication .

13 private BufferedReader in; // from server Communicator

14 private PrintWriter out; // to server

15

16¢ public ChatClientCommunicator(Socket sock, ChatClient client) throws IOException {

17 this.sock = sock;

18 this.client = client; \ . .
19 in = new BufferedReader(new InputStreamReader(sock.getInputStream())); i Save SOCket to Communlcate Wlth Chatserver
20 out = new PrintWriter(sock.getOutputStream(), true); S I' t t . t 'th Ch tCI' t
21} * Save client to communicate wi atClien
22

23 public void send(String msg) { H

24 //called when have keyboard input ObJeCt

25 this.out.println(msg);

26 }

27

28 public void run0) { \ Send keyboard message passed by
29 // Get lines from server; print to console . .

30 try { ChatClient Object to Server

31 String line;

32 while ((line = in.readLine()) != null) {

33 System.out.println(line);

34 }

35 H

3 atch CL0Exception) { ~ Read data from ChatServer and write

37 e.printStackTrace();

3 } to console

39 finally {

40 client.hangUpQ;

41 System.out.println("se hung up");

42 H

s } If ChatServer hangs up, tell ChatClient

44 // Clean up .

45 try 1 Object, then end Thread

46 out.closeQ);

47 in.closeQ);

48 sock.close();

49 }

50 catch (I0Exception e) {

51 e.printStackTrace(); 51
52 }

5.3

