CS 10:

Problem solving via Object Oriented
Programming

Synchronization

* Implement mechanisms to handle
threads that are accessing shared
resources at the same time

» 1. Threads and interleaving execution

2. Producer/consumer

3. Deadlock, starvation

Threads are a way for multiple processes to

run concurrently
Threads

MyThread 1

Main program

MyThread n
main () {
MyThread t = new MyThread() ;

//start thread at run method, main
thread keeps running
t.start ()

//halt main until thread finishes
4
t.join ()

Concurrent threads can access the same

resources; this can cause problems

Concurrency

MyThread 1 total+=1

MyThread

static int total

Main program

total+=1
MyThread n

Let’s make it interesting, what is the final

value of total?

Incrementer.java

7 public class Incrementer extends Thread {

8 private static int total = 0; // a variable shared by all incrementers
9 private static final int times = 10@0@221__-.-.-::-22Y-Tfny times to increment total, in each thread
10
11 /% One million (not a trick)
12 * Increments total the specified number of times
13 */
al4e public void run() {
15 for (int 1 = 0; 1 < times; i++) {
16 total++;
17 }
O What will total be at end?
20¢ public static void main(String [] args) throws Exception { Top three guesses?
21 Incrementer incl = new Incrementer();
22 Incrementer inc2 = new Incrementer();
23
24 // Fire off threads and wait for them to complete
25 incl.startQ);
26 inc2.startQ);
27 incl.joinQ);
28 inc2.joinQ);
29
30 System.out.println("total at end = " + total);
31 }
32}

~n

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementer.java

7 public class Incrementer extends Thread {

8 private static int total = 0; // a variable shared by all incrementers
9 private static final int times = 1000000; // how many times to increment total, in each thread
10
11= /**
12 * Increments total the specified number of times
13 */
al4e public void run() {
15 for (int 1 = 0; 1 < times; i++) {
16 total++;
17 }
18 }
19
20¢= public static void main(String [] args) throws Exception {
21 Incrementer incl = new Incrementer();
22 Incrementer inc2 = new Incrementer();
23
24 // Fire off threads and wait for them to complete
25 incl.startQ);
26 inc2.startQ);
27 incl.joinQ);
28 inc2.joinQ);
29
30 System.out.println("total at end = " + total);
31 }
32}

~n

Incrementerinterleaving.java demonstrates

interruptions (sometimes)

Incrementerinterleaving.java

6 public class IncrementerInterleaving extends Thread {

7 private static int total = 0; // a variable shared by all incrementers
8 private static final int times = 5; // how many times to increment total, in each thread
9 private String name; // for display purposes
10
11 public IncrementerInterleaving(String name) {
12 this.name = name;
13 }
14
15¢ /**
16 * Increments total the specified number of times
17 */
218 public void run() {
19 for (int 1 = 0; 1 < times; i++) {
20 int temp = total;
21 System.out.println(name + " gets " + temp);
22 temp = temp + 1;
23 total = temp;
24 System.out.println(name + " puts " + temp);
25 }
26 }
27
28¢ public static void main(String [] args) throws Exception {
29 IncrementerInterleaving incl = new IncrementerInterleaving(“one");
30 IncrementerInterleaving inc2 = new IncrementerInterleaving("two");
31
32 // Fire off threads and wait for them to complete
33 incl.startQ);
34 inc2.startQ);
35 incl.joinQ);
36 inc2.joinQ);
37
38 System.out.println("total at end = " + total);
39 } 3

40 }

A1

. Incrementerinterleaving.java

* Run several times
* Interrupted execution causes tricky bugs
 Sometimes it works as expected

e Sometimes it doesn’t...

Java provides the keyword synchronized to

make some operations “atomic”

IncrementerTotal.java

public class IncrementerTotal {

private 1i = 0;
publigsynchronizedyvoid inc(Q) {
totals+s

¥

¥

e synchronized keyword in front of inc method means only one
thread can be running this code at a time

* If multiple threads try to run synchronized code, one thread
runs, all others block until first one finishes

* Once first thread finishes, OS selects another thread to run

« synchronized makes this code “atomic” (e.g., as if it were one
instruction)

e This synchronized approach is called a “mutex” (or monitor), acts

like a “lock” on static total variable 10

IncrementerSync.java uses atomic

operations to ensure desired behavior

IncrementerSync.java

8 public class IncrementerSync extends Thread {

9 private static IncrementerTotal total = new IncrementerTotal(); // a variable shared by all incrementers
10 private static final int times = 1000000; // how many times to increment total, in each thread
11
12 /**

13 * Increments total the specified number of times

14 */
a]5¢ public void run() {

16 for (int 1 = 0; 1 < times; i++) {

17 total.inc();

18 }

19 }

20

21 public static void main(String [] args) throws Exception {

22 IncrementerSync incl = new IncrementerSync(); -

23 IncrementerSync inc2 = new IncrementerSync(); public class IncrementerTotal {
24 private int total = 0;
25 // Fire off threads and wait for them to complete public synchr'on'i_zed void inc(Q) {
26 incl.startQ; total++;

27 inc2.start(Q); 1

28 incl.joinQ); }

29 inc2.join(Q);

30

31 System.out.println("total at end = " + total.total);

32 }

33 }

11

1. Interleaving execution
» 2. Producer/consumer

3. Deadlock, starvation

12

Producers tell Consumers when ready,

Consumers tell Producers when done

Big idea: keep Producers and Consumers in sync

Producer: Consumer:
e Tell Consumer when item is * Block until woken up by
ready (notify Or notifyall) Producer that item ready (wait)
* Block until woken up by * Process item and tell Producer
Consumer that item handled when done (notify or
(wait) notifyAll)

e Tell Consumer when next item * Block until woken up by
is ready (notify Or notifyall) Producer (wait)

* There can be multiple * There can be multiple
Producers Consumers

13

Producers and Consumers synchronized

with wait, notify Or notifyAll

wait ()

* Pauses and removes Thread from synchronized method

* Tells Operating System to put this Thread into a list of Threads waiting
to resume execution

« wait () allows another Thread to enter synchronized method

notify ()

* Tells Operating System to pick a waiting Thread and let it run again
(not a FIFO queue, OS decides — take CS58 for more)

* Thread should check that conditions are met for it to continue

notifyall ()
* Wake up all waiting Threads
e Each Thread should check that conditions are met for it to continue

14

Scenario: Producers produce messages for

Consumers, need to keep in sync

Example

Producer

awil

MessageBox

null

15

We can use a semaphore to keep

Producers and Consumers in sync

Example

Producer

awil

MessageBox

null

16

Producer passing messages to Consumer

using semaphore

Example
® |String msg = “message”; String msg;

MessageBox

put(*message’)

’ null

17

Producer passing messages to Consumer

using semaphore

Example
® |String msg = "message”; String msg

MessageBox

message”

18

Producer passing messages to Consumer

using semaphore

Example
® |String msg = “message”; String msg

MessageBox

take()

19

Producer passing messages to Consumer

using semaphore

Example
® |String msg = "message”; String msg;
MessageBox
null
\4
/l msg == "message” |

20

MessageBox.java implements a semaphore

that holds one String
MessageBox.java Producer Q. ,consumer

7 public class MessageBox {

8 private String message = null; MessageBox
9
10= /**
11 * Put m as message once it's okay to do so (current message has been taken)
12 */
13e public synchronized void put(String m) throws InterruptedException {
14 //check to see if message is not null, might have been woken by put() notifyAll
15 while (message != null) {
16 wait();
17 }
18 message = m;
19 notifyAll(); //wakes producers AND consumers
20 }
21
22¢ /**
23 * Takes message once it's there, leaving empty message
24 */
25¢ public synchronized String take() throws InterruptedException {
26 //check to see if message is null, might have been woken by take() notifyAll
27 while (message == null) {
28 wait(Q);
29 }
30 String m = message;
31 message = null;
32 notifyAll(); //wakes producers AND consumers
33 return m;
34 }

353 21

MessageBox.java implements a semaphore

that holds one String
MessageBox.java Producer Q. ,consumer

7 public class MessageBox {

8 private String message = null; MessageBox
9
10= /**
11 * Put m as message once it's okay to do so (current message has been taken)
12 */
13e public synchronized void put(String m) throws InterruptedException {
14 //check to see if message is not null, might have been woken by put() notifyAll
15 while (message != null) {
16 wait();
17 }
18 message = m;
19 notifyAll(); //wakes producers AND
20 }
21
22¢ /**
23 * Takes message once 1 there, leaving empty message
24 */
25¢ public synchronized String take() throws InterruptedException {
26 //check to see if message is null, might have been woken by take() notifyAll
27 while (message == null) {
28 wait(Q);
29 }
30 String m = message;
31 message = null;
32 notifyAll(); //wakes producers AND consumers
33 return m;
34 }

35 3 22

Producers use MessageBox to pass

messages 1o Consumers

Produce r.java Producer Q. , Consumer

6 public class Producer extends Thread { MessageBox
7 private MessageBox box;
8 private int numberToSend;
9
10 public Producer(MessageBox box, int numberToSend) {
11 this.box = box;
12 this.numberToSend = numberToSend;
13 }
14
15¢ /%
16 * Wait for a while then puts a message
17 * Puts "EOF" when # messages have been put
18 */
219 public void run(Q) {
20 try {
21 for (int 1 = @; 1 < numberToSend; i++) {
22 sleep((int)(Math. random()*5000)); //sleep for random time up to 5 seconds
23 box.put("message #" + 1); //put a new message in MessageBox
24 }
25 box.put("EOF"); //EOF means end of file
26 }
27 catch (InterruptedException e) {
28 System.err.println(e);
29 }
30 }

31} 23

Consumers retrieve messages from the

MessageBox

Consumer.java Producer q , Consumer

MessageBox

6 public class Consumer extends Thread {

7 private MessageBox box;
8
Qe public Consumer(MessageBox box) {
10 this.box = box;
11 }
12
13= /**
14 * Takes messages from the box and prints them, until receiving EOF
15 */
alps public void run() {
17 try {
18 String message;
19 while (!(message = box.take()).equals("EOF™)) {
20 System.out.println(message);
21 }
22 }
23 catch (InterruptedException e) {
24 System.err.println(e);
25 }
26 }
27 }

24

ProducerConsumer uses all three

components to pass messages

ProducerConsumer.java Producer

Consumer

8 public class ProducerConsumer {

9 public static final int numMessages = 5; // how many messages to send from produc MessageBox
10 private Producer producer;

11 private Consumer consumer;

12

13« public ProducerConsumer() {

14 MessageBox box = new MessageBox();

15 producer = new Producer(box, numMessages);

16 consumer = new Consumer(box);

17 }

18

19e /**

20 * Just starts the producer and consumer running
21 */

22¢ public void communicate() {

23 producer.start();

24 consumer.start();

25 }

26

27 public static void main(String[] args) {

28 new ProducerConsumer().communicate();

29 System.out.println("Peace out! (threads are still running but I'm done)");
30 }

31 %

Problems @ Javadoc [E) Declaration [Console %5 Debug € Expressions ©]Error Log B Console §3 _Ze Call Hierarchy

ProducerConsumer [Java ILibrary/J 1.8.0_112.jdk/C (Feb 22, 2018, 11:55:46 AM)

Peace out! (threads are still running but I'm done)
message #0@ \
message #1
e main() ends, but Producers and Consumers run to completion
message #4
’ (daemon not set to true)

25

1. Interleaving execution
2. Producer/consumer

» 3. Deadlock, starvation

26

Synchronization can lead to two problems:

deadlock and starvation

Deadlock Starvation

* Objects lock resources * Thread never gets

* Execution cannot proceed resource it needs
because object needs a * Thread A needs
resource another locked resource 1 to complete

 Object A locks resource 1 * Other threads always

 Object B locks resource 2 take resource 1 before

* A needs resource 2 to A can get it

proceed but B has it locked <+ We say A is starved
* B needs resources 1to

proceed but A has it locked
* Aand B are deadlocked

27

Dinning Philosophers explains deadlock

and starvation
Dining Philosophers

Problem set up
* Five philosophers (Py,-P,) sit at

-U

N\ a table to eat spaghetti
* There are forks between each
/ of them (five total forks)
7 5 * Each philosopher needs two
} forks to eat

* After acquiring two forks,
philosopher eats, then puts
e both forks down
* Another philosopher can then
pick up and use fork previously
put down (gross!)

28

Dinning Philosophers explains deadlock

and starvation
Dining Philosophers

P Naive approach
= * Each philosopher picks up fork
on left
* Then picks up fork on right
‘ e Deadlock occurs if all
J philosophers get left fork, none
get right fork

29

For deadlock to occur four conditions must

be met

Deadlock conditions

1. Mutual exclusion
At least one resource class must have non-sharable access. That is:
 Either one process is using a resource (and others wait), or
* Resource is free

2. Hold and wait
 Atleast one process is holding a resource instance, while also waiting to be
granted another resource instance. (e.g., Each philosopher is holding on to
their left fork, while waiting to pick up their right fork)

3. No preemption
 Resources cannot be pre-empted; a resource can be released only voluntarily
by the process holding it (e.g., can't force philosophers to drop their forks.)

4. Circular wait
 There must exist a circular chain of at least two processes, each of whom is
waiting for a resource held by another one. (e.g., each Philosopher]i] is
waiting for Philosopher[(i+1) mod 5] to drop its fork.) 30

From Coffman, 1971

Three ways to ensure deadlock does not

OCCUr

1. Ensure circular wait cannot occur by numbering Forks
and reaching for smallest numbered Fork first

2. Prevent circular wait by making one of the philosophers
wait until at least one other philosopher is finished

3. Prevent hold and wait by making Fork acquisition an
atomic operation (e.g., must get both Forks in one step)

31

We can break the deadlock by ensuring the

“circular wait” does not occur

Dinning Philosophers Eliminate circular wait

* Number each fork in circular
fashion

* Make each philosopher pick up
lowest numbered fork first

* All pick up right fork, except P,
who tries to pick up left fork 0

* Either P,or P, get fork O

* If Py gets it, P, waits for fork O
before picking up fork 4, so P,
eats

* P; eventually releases both forks
and P, eats

* Others eat after P,

* Cannot deadlock

Could also force one of the

Philosophers to wait at first .

Fork.java models forks in the Dining

Philosophers problem

Fork.java

6 public class Fork {

7 private boolean available = true;

8

9= public synchronized void acquire() throws InterruptedException {
10 while (l!available) {

11 wait(Q);

12 }

13 available = false;

14 }

15

16= public synchronized void release() {
17 available = true;

18 notifyAll(Q);

19 }

20 }

33

Philosophers try to eat by getting both the

left and right Forks

Philosopher.java

public class Philosopher extends Thread {

6
7 private int num; // for message printout
8 private Fork left, right; // the resources
9
10 public Philosopher(int num, Fork left, Fork right) {
11 this.num = num;
12 this.left = left;
13 this.right = right;
14 }
15
16 /**
17 * Waits a bit -- 1 to 5 seconds
18 */
19 private void randPause() throws InterruptedException {
20 sleep(1000 + (int)(Math.random()*4000));
21 }
22
23 Y o
24 * Start the rounds of resource acquisition
25 */
~26= public void run O {
27 for (int meal = @; meal < 3; meal++) {
28 eatQ);
29 System.out.println(num + " finished meal " + meal);
30 }
31 System.out.println(num + " all done");
32 }
33
34¢ /**
35 * One round
36 */
37- public void eat() {
38 try {
39 System.out.println(num + " contemplating the universe, working up an appetite");
40 randPause();
41 System.out.printlnCnum + " hungry; going for left fork");
42 left.acquireQ);
43 System.out.println(num + " got left fork");
44 randPause();
45 System.out.println(num + " going for right fork");
46 right.acquireQ);
47 System.out.println(num + " got right fork; chowing down");
48 randPause();
49 System.out.println(num + " finished eating; dropping forks");
50 right.release();
51 left.release();
52 } 34
53 catch (InterruptedException e) {

54 System.err.println(e);

DiningPhilosophers.java uses five

Philosophers and five Forks

L3 L3 L3 L3 P
DiningPhilosopher.java RO ¢
L R
o Py P4
8 public class DiningPhilosophers {
9 private ArraylList<Philosopher> philosophers; R L
19 \ R
11= /**
12 * Creates the forks and philosophers
2 y p p P, R L P3
14e public DiningPhilosophers() {
15 ArraylList<Fork> forks = new ArraylList<Fork>(Q);
16 for (int fork = @; fork < 5; fork++) {
17 forks.add(new Fork());
18 }
19
20 philosophers = new ArraylList<Philosopher>();
21 for (int phil = @; phil < 5; phil++) {
22 philosophers.add(new Philosopher(phil, forks.get(phil), forks.get((phil+1)%5)));
23 }
24 }
25
26¢ /**
27 * Gets each philosopher started at the table
28 */
29s public void dine() {
30 for (Philosopher phil : philosophers) {
31 phil.startQ);
32 }
33 }
34
35s public static void main(String[] args) {
36 new DiningPhilosophers().dine();
37 }
38 }

35

DiningPhilosophers.java

* Run several times
e Sometimes deadlocks

* Try adjusting pause time to longer to make
it less likely to deadlock

36

Another approach is to prevent “hold and

wait” by picking up both forks atomically

Dinning Philosophers Eliminate hold and wait

* Make picking up both forks an
atomic operation

* Forks no longer control their
destiny as in prior code

 Now we lock both with a mutex

* Could lead to starvation if one
philosopher always picks up
before another

* |n this case starvation will
eventually end because the
philosophers only eat a limited
number of meals

37

Prevent deadlocks by makin

Forks an atomic operation

MonitoredDiningPhilosopher.java

9 public class MonitoredDiningPhilosophers {

10 private ArraylList<MonitoredPhilosopher> philosophers;

11

12¢] /*4

13 * Creates the forks and philosophers

14 */

15 public MonitoredDiningPhilosophers() {

16 ArrayList<MonitoredFork> forks = new ArraylList<MonitoredFork>();
17 for (int fork = @; fork < 5; fork++) {

18 forks.add(new MonitoredFork());

19 }

20

21 philosophers = new ArraylList<MonitoredPhilosopher>();

22 for (int phil = @; phil < 5; phil++) {

23 philosophers.add(new MonitoredPhilosopher(this, phil, forks.get(phil), forks.get((phil+1)%5)));
24 }

25 }

26

27+ /**

28 * Gets each philosopher started at the table

29 */

30 public void dine() {

31 for (MonitoredPhilosopher phil : philosophers) {

32 phil.start(Q);

33 3}

34 3}

35

36¢ /**

37 * Simultaneously acquires both resources

38 */

39= public synchronized void acquire(MonitoredFork left, MonitoredFork right) throws InterruptedException {
40 while (!left.available || !right.available) {

41 waitQ);

42 }

43 left.available = false;

44 right.available = false;

45 3}

46

47 /**

48 * Releases both resources

49 */

50 public synchronized void release(MonitoredFork left, MonitoredFork right) {
51 left.available = true;

52 right.available = true;

53 notifyAll1Q);

54 3}

55

56= public static void main(String[] args) { 38

57 new MonitoredDiningPhilosophers().dine(Q);

Exercises

This short assignment will build up a core piece of a graphical editor that we'll expand upon in PS-6. The next problem set will flesh it out and
make it concurrent (like a shared canvas, with multiple people drawing on it). Now we'll just get some basic user interface machinery in place.

This core part only supports drawing and modifying a single ellipse. When the “"draw" radio button is selected, an ellipse is drawn by pressing the
mouse button for one corner of the ellipse (well, the bounding box around it) and dragging to the other corner. When the "move" radio button is
selected, the ellipse can be moved by clicking on it and dragging. It can likewise be deleted or recolored by first selecting the appropriate radio
button and then clicking on the shape.

Most of the GUI is given in this scaffold: EditorOne.java; there are places for you to plug in some code to make it all work. The ellipse itself is
handled by a separate class, Ellipse.java implementing an interface, Shape.java, which will have a number of other implementations in the
problem set. The shape stuff is a bit wedded to the Java AWT Graphics machinery (i.e., combining the state and the presentation), in a manner
analogous to AWT's own Geometry classes. But those classes have both more and less than we need here, and it's more fun to do our own anyway.

While the task is really just to translate comments to Java, do make sure you understand how it all fits together. I've put some print statements
to help. Try printing the current ellipse too — | provided a convenient toString.

A few notes (largely echoed in the comments):

* The GUI elements and canvas largely follow the style of the Flickr search tool. The JColorChooser illustrates how much can be packaged
up in a widget, with a callback to tell us what color was clicked on.

* The mode variable indicates which of the radio buttons has been selected. An enum is just a nice and safe way to have a bunch of related
constant values. Various other actions (e.g., does a drag expand the ellipse or move it?) depend on the setting of this variable. For
example, you can say “if (mode == Mode.DRAW)...".

¢ The shape variable holds either the one and only ellipse drawn, or null.

* The drawFrom variable should indicate where the mouse was first pressed to begin a new ellipse. The moveFrom variable likewise should
indicate where it last was during dragging.

 Recall that the repaint method can be invoked to cause a refresh of the display after things have changed (recoloring, etc.) You'll need
to sprinkle it around, but think about when you really want to do that.

Submission Instructions

Turn in your completed Java code and a snapshot of a most beautiful ellipse.

https://www.cs.dartmouth.edu/cs10/SA-10.html

39

https://www.cs.dartmouth.edu/cs10/SA-10.html

Client-Side

SketchServer

(Master)
Sketch

Editor (0)

(Local)
Sketch

Editor (1)

(Local)
Sketch

Editor (2)

(Local)
Sketch

SketchServer SketchServer SketchServer o008 SketchServer
Communicator Communicator Communicator Communicator
Editor Editor Editor Editor
Communicator Communicator Communicator Communicator

eoee

Editor (n-1)

(Local)
Sketch

40

Summary

 Unexpected behavior when working with threads
as they can be interrupted at any point
 Use of synchronized to make the operation
atomic
* Producers/consumers paradigm with notifying and
waiting for synchronization
 Synchronization can lead to deadlock and

starvation
 Ensure to make atomic operations

. Limit resource use

41

Additional Resources

Concurrency and shared resources

ANNOTATED SLIDES

Threads are a way for multiple processes to

run concurrently

Threads

MyThread 1

MyThread n

main () {
MyThread t = new MyThread() ;

//start thread at run method, main
thread keeps running
t.start ()

//halt main until thread finishes
t.join ()

Assume MyThread IS a

class that extends
Thread

MyThread must a
implement a run
method

Execution begins by
calling start on a
MyThread object, run
method then executes

Can call 50in to halt
main program until
thread finishes

44

Concurrent threads can access the same

resources; this can cause problems

Concurrency

MyThread 1 total+=1

MyThread

static int total

Main program

* Remember a static variable is a
Class variable, there is only one MyThread n
* Every Object of MyThread Class
references the same static variable

* Threads can be interrupted at any time by the Operating System
and another Thread may run

* When each Thread tries to increment total, it gets a current copy
of total, adds 1, then stores it back in memory

 What can go wrong? 45

total+=1

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementer.java

total is static so it is a Class variable
(one total for all Incrementer Objects)

7 public class Incrementer extends Thre

8 private static int total = 0; // a variable shared by all incrementers

9 private static final int times = 1000000; // how many times to increment total, in each thread
1@ o L] o

1. e Increment total one million times:

12 * Increments total the specified number of times ° Get value Of total from memory
13 */

14 public void runQ) { / Add one to total
15 for (int 1 = 0; 1 < times; i++) {

16 total++; * Write total back to memory

17 }

18 } .

19 Two Incrementer Objects that

20¢= public static void main(String [] args) throws Exception {

21 Incrementer incl = new Incrementer(); / eXtend Thread (SO must

gé Incrementer inc2 = new Incrementer(); implement run() method)

24 // Fire off threads and wait for them to complete

25 incl.startQ); . H

i incZ. startey, G e start() begins Thread running and calls run() method

g; ?ncj;_-jO?ng; * main() continues running after inc1.start(), so inc2
inc2.joinQ);

29 starts immediately after inc1 (main() does not block

30 Syktem.out.println("total at end = " + total); . . -

313 and wait for inc1 to finish)

32 }

~n

* incl.join() causes main() to block until inc1.run() finishes
* inc2.join() causes main() to block until inc2.run() finishes 46

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementer.java

7 public class Incrementer extends Thread {

8 private static int total = 0; // a variable shared by all incrementers

9 private static final int times = 1000000; // how many times to increment total, in each thread
1@ o L] o

1. e Increment total one million times:

12 * Increments total the specified number of times ° Get value Of total from memory
13 */

14 public void runQ) { / Add one to total
15 for (int 1 = 0; 1 < times; i++) {

16 total++; * Write total back to memory

17 }

18 }

19

20¢ public static void main(String [] args) throws Exception {

21 Incrementer incl = new Incrementer(); . . . k.
- Incrementer inc2 — new Incrementer¢y, OP€rating System might interrupt a Thread at any point:
23 , , * jnc1 reads value of total from memory (say it’s 10)

24 // Fire off threads and wait for them to complete

25 incl.start(; * inc1 gets interrupted and inc2 begins running

26 inc2.startQ); . . .

27 incl.join(); * inc2 reads value of total (10), increments and writes
- tnez. join0; back (total=11)

.y CystemoutprintinCitotal at end = © +etot§3y inc2 runs for 5 iterations (total=15)

32 } e inc2 interrupted and inc1 resumes running

~n

* jncl increments total to 11 and writes it back
* total now 11 not 16 as expected 47

Incrementerinterleaving.java demonstrates

interruptions (sometimes)

Incrementerinterleaving.java

6 public class IncrementerInterleaving extends Thread {

7 private static int total = 0; // a variable shared by all incrementers

8 private static final int times = 5; // how many times to increment total, in each thread

9 private String name; // for display purposes

10

11 public IncrementerInterleaving(String "‘m total static as before

5o Will loop 5 times in run() method

15- /% Each Thread gets a name for clarity

16 * Increments total the specified number of times

17 */
218 public void run() { e e .

19 for (int i = 0; i < times; i++) { * Printing to console is slooowwww

20 int temp = total; . . .

21 System.out.println(name + " gets " + temp); ¢ lees more time for OS to |nterrupt

22 temp = t 1; .
- totul = temp: * Console output shows when read and write
;451) System.out.println(name + " puts " + temp); total

S * Might expect total to be 10 (5 from inc1
28 public static void main(String [] args) throws Exception { H

29 IncrementerInterleaving incl = new IncrementerInterleaving(“one"); and 5 from InCZ)

30 IncrementerInterleaving inc2 = new IncrementerInterleaving("two");

31

25 /7 iir: oftfz)thr'eads and wait for them to complete o Sometimes totalis 10

incl.start(Q); . L.
N @nci.stqrg); * Most of the time it is not
incl.join(Q); .

36 inc2.joinO; * Bugs caused by multiple threads can be

37 . . .

38 System.out.println("total at end = " + total); dEVIIIShly tr|Cky to find

9} 48

40 }

A1

Java provides the keyword synchronized to

make some operations “atomic”

IncrementerTotal.java .

IncrementerTotal Class keeps

. a total instance variable
public class IncrementerTotal { e Value of total incremented

private i al = 0; via inc() method
publig(synchronized)void inc() { . inc() method is synchronized
totale+;

so only one Thread at a time
¥ can be inside inc()
¥ * IncrementerTotal Class used

. on next slide
e synchronized keyword in front of inc method means only one

thread can be running this code at a time

* If multiple threads try to run synchronized code, one thread
runs, all others block until first one finishes

* Once first thread finishes, OS selects another thread to run

« synchronized makes this code “atomic” (e.g., as if it were one
instruction)

e This synchronized approach is called a “mutex” (or monitor), acts
like a “lock” on static total variable

49

IncrementerSync.java uses atomic

operations to ensure desired behavior

IncrementerSync.java

total now an IncrementerTotal Object

total.inc() is synchronized
8 public class IncrementerSync extends Thregd {

9 private static IncrementerTotal total = new IncrementerTotal(); // a variable shared by all incrementers
10 private static final int times = 1000000; // how many times to increment total, in each thread
11
12- /**
13 * Increments total the specified number of times
14 */ . .
215 public void run® { * Synchronized total.inc() ensures only one
16 for (int 1 = 0; 1 < times; i++) {
i fotal.incO; < Thread inside inc() at a time
18 o L]
Ny * inc() runs to completion before another
20 .
21- public static void main(String [] args) throws Exception { Thread allowed in
22 IncrementerSync incl = new IncrementerSync(); -
23 IncrementerSync inc2 = new IncrementerSync(); public C:LCISS I_nCI"ementer‘TOtal {
24 private int total = 0;
25 // Fire off threads and wait for them to complete public synchronized void inc(Q) {
26 incl.start(Q); total++;
27 inc2.startQ); }
28 incl.joinQ); }
29 inc2.join(Q);
30
31 System.out.println("total at end = " + total.total);

32 }
33 %} ‘QL.--"‘-.---.

total.total now always 2 million

50

Producers/consumers

ANNOTATED SLIDES

Scenario: Producers produce messages for

Consumers, need to keep in sync

Example

® e Consumers receive
messages from
Producers
MessageBox .
g e Can be multiple
Consumers
- processing
Producer
messages
* Need a way to make sure Producers don’t create
messages faster than Consumers can process them
* If Producers are too fast, need to make them wait
v until Consumers are ready

* Business school termis “WIP” (work'in process) to
describe items built up if Producers generate items
faster than Consumers handle them

52

We can use a semaphore to keep

Producers and Consumers in sync

Example

3

0]
Producers check if Consumers check for
MessageBox empty, wait message, wait if empty,
if not empt otherwise consume

MR, MessageBox .
otherwise message in box
produce message
null

* MessageBox Class is acting as a semaphore
 Semaphore can contain data (here one message)
* Unlike a semaphore, a mutex does not contain data

v A mutex is like a lock — a process takes the lock and

no other process can enter until fock returned

53

Producer passing messages to Consumer

using semaphore

Example
- Corsumer [
® |String msg = “message”; String msg;
MessageBox empty, Consumers wait for
Producer puts message MessageBox notificatio
in MessageBox
. M
Object essageBox
MessageBox
put(*'message”) > ul holds String
produced by a
Producer and will
MessageBox put provide it t°_ d
method synchronized so Consumer via
only one Producer take method
v Thread can be in put
method at a time

54

Producer passing messages to Consumer

using semaphore

Example

Producer

String msg = "message”;
* A Producer placed a
message in MessageBox

awil

using put

| Consumer [

String msg

Consumers wait for

MessageBox
put calls
notifyAll to let .
other processes .
message

check if they
should run

All Producers

wake up and check box,
see full box, wait until

box empty again

MessageBox notificatio

All Consumers
wake up on put
notifyAll and

try to take
message

55

Producer passing messages to Consumer

using semaphore

Example
® |String msg = “message”; String msg
Producers wait until All waiting Consumers
MessageBox is empty try to access message
One succeeds and
MessageBox
removes message
others wait
take()
‘message” | % (
MessageBox take method synchronized so
only one Consumer Thread can be in take
method at a time
v take removes message from MessageBox

Once message removed, take calls notifyall
to let other processes check if they should run e

Producer passing messages to Consumer

using semaphore

Example
® |String msg = "message”; String msg;
Producer waits until Consumers wait until
MessageBox is empty MessageBox is full
MessageBox
null
take notifies all threads waiting for MessageBox
access using notifyall
* All Producers and Consumers wake up
v * Consumer see empty box and go back to waiting
i * Producers wake up and may put message // msg == ‘message” |

now, one succeeds and others go back to waiting
* Process repeats with Producers and Consumer in sync 57

MessageBox.java implements a semaphore

that holds one String

MessagEBOX.java Producer Q' , Consumer
7 public class MessageBox { MessageBox holds one String called message

8 private String message = null; MessageBox
9MessageBox is empty, fill it Producers will fill message using put() method

10 Consumer will process message using take() method

11 Put m as message once it's okay to do so (current message has been taken)

12

13e public synchronized void put(String m) throws InterruptedException {

14 //check to see iwt null, might have been woken by put() notifyAll

s hile (nessage |- mull) { Synchronized put() makes sure only one Producer at a
17 , time can store message

18 essage = m; . . .

19 notifyAll(); //wakes producers AND consumers * Wait until MessageBox IS empty

2.} #Notify all Threads (Producersand * If woken up (resume running at wait), make
22- s+ Consumers) to check MessageBox sure to check if MessageBox is empty

23 * Takes message once it's there, leaving empty message

24 */

25¢ public synchronized String take() throws InterruptedException {

26 //check to see if message is null, might have been woken by take() notifyAll

27 while (message == null) {

28 wait(); * It could be the case that many Producers
29 }

30 String m = message: were woken up and another Producer

o1 message = null; already filled the MessageBox

32 notifyAl1(); //wakes producers AND consumers . , .

33 return m; e An if statement wouldn’t suffice, need a
34 }

35 3 while to go back to sleep if box filled ss

MessageBox.java implements a semaphore

that holds one String
MessageBox.java Producer Q. ,consumer

7 public class MessageBox {

8 private String message = null; MessageBox

9

10 /**

11 * Put m as message once it's okay to do so (current message has been taken)

12 */

13e public synchronized void put(String m) throws InterruptedException {

14 //check to see if message is not null, might have been woken by put() notifyAll

1(55 while (rzgsage = null) { Synchronized ensures only one Consumer
wait(Q);

17 } can take message

18 message = m;

19 nOtI'FYA].l(); //wakes pr‘Oducer'S AND If Woken up’ check message:

20} "

21 * If empty, go back to waiting (another

22¢ /** :

> * Takes message once i Consumer already took it)

24 */ * If not, return message and set to null

25¢ public synchronized String take() thr InterruptedException {

26 //check to see if message is , might have been woken by take() notifyAll

27 while (message = null) { MessageBox now empty, notify all

28 wait(Q);

29 } Threads to wake up and check

30 String m = message;

31 message = null; MessageBox

32 notifyAll(Q); wakes producers AND consumers

33 return m;

34 }

353 59

Producers use MessageBox to pass

messages 1o Consumers

H Producer Consumer
Producer.java MessageBox as parameter Q. ,
If multiple Producers, all

6 public class Producer extends Thread would get the same MessageBox

7 private MessageBox box;

8 private int numberToSend; MessageBox

9

10 public Producer(MessageBox box, int numberToSend) {

11 this.box = box;

g) this.numberToSend = numberToSend; o \When Thread starts, try to put a message in the
14 MessageBox using put() after random interval
15¢ Vi R

o * Wait for a while then pwt€ a message f)ut() will cause this Producer to wait() if there
17 * Puts "EOF" when # sages have been put IS already da message

18 */ That will remove this Thread from put() and
219 public void run(Q) { . . . p ()

206end EOFY 1 add it to a list of Threads waiting to run

leen EO for (int 1 = @; 1 < numberToSend; i++) {

22when all sleep((int)(Math. random()*5000)); //sleep for random time up to 5 seconds

23 box.put("message #" + 1); //put a new message in MessageBox

s,messages }

25sent box.put("EOF"); //EOF means end of file

26 } * When notifyAll() received, this Thread will wake
27 catch (InterruptedException e) { ndr me running in meth f

28 System.err.println(e); up a d resume ru g pUt() ethod o

29 } MessageBox

30 } °

If MessageBox is empty it will store it’s message

31 }
and return here

Consumers retrieve messages from the

MessageBox

1 Producer Consumer
Consumer.java Store same MessageBox that Q. ,

Producers use

MessageBox

6 public class Consumer extends Thread

7

8

9,
10
11
12
13=
14
15
ales
17
18
19
20
21
22
23
24
25
26
27 }

private MessageBox box;

public Consumer(MessageBox box) {
this.box = box;

}

/**
* Takes messages from the box and prints them, until receiving EOF
*/

public void runQ) { Take message from MessageBox

try {
while (!(message = box.take()).equals("EOF™)) {

System.out.println(message); Thread to wait
} } If this Thread retrieves message,
catch (InterruptedException e) { check for EOF and exit
System.err.println(e);
}

61

ProducerConsumer uses all three

components to pass messages

ProducerConsumer.java Create a MessageBox, a Producer, producer Q. , Consumer
and a Consumer

8 public class ProducerConsumer {

9 public static final int numMessages = 5; // how manf messages to send from produc MessageBox
10 private Producer producer;

11 ivate C 5 H

[, Privete Tonsumer consumer Pass the same MessageBox Object to
13« public ProducerConsumer() {

14 MessageBox box = new MessageBox(); both the Producer and the Consumer
15 producer = new Producer(box, numMessages);

16 = C b 5

16 consumer = new Consuner (b0 (here 1 producer and 1 consumer)

18

19= /**

20 * Just starts the producer and consumer ruming - Producer run() will wait a random period, then put a message

21 */

o "“b‘j,ﬁo;ﬁi‘;rf‘;':m};‘;zo{/ in MessageBox, then wait until MessageBox empty

24 consumer.start(); . .

5} Consumer will wake up on notifyAll() from MessageBox and
Zre public static vold main(Stringll arge) { take() message

29 System.oz7int1n(“Peace out! (threads are still running but I'm done)");

30 }

31}

After creating

ProducerConsum)))
main() thread will complete after starting both

Object, call i
Ject, . Producer and Consumer Objects
camﬁgﬂ'caﬁg‘)q 1 Expressions ‘:U,o«ch & Console 53 Call Hierarchy

.8.0_112.jdk/Cq (Feb 22, 2018, 11:55:46 AM)
Peace out! (threads are still running but I'm done)

message #0
message #1
message #2

message #3 main() ends, but Producers and Consumers run to completion
message #4
’ (daemon not set to true)

take() issues notifyAll() after taking message, waking
Producer to put() next message
er

62

Deadlock and starvation

ANNOTATED SLIDES

Dinning Philosophers explains deadlock

and starvation
Dining Philosophers

Problem set up
* Five philosophers (Py,-P,) sit at

-U

N\ a table to eat spaghetti
* There are forks between each
/ of them (five total forks)
7 5 * Each philosopher needs two
} forks to eat

* After acquiring two forks,
philosopher eats, then puts
e both forks down
* Another philosopher can then
pick up and use fork previously
put down (gross!)

64

Fork.java models forks in the Dining

Philosophers problem

Fork.java available tracks if this Fork
Object is being used
6 public class Fork { /
7 private boolean available = true;
8
9= public synchronized void acquire() throws InterruptedException {
10 while (l!available) {
E } wait(); <\ Synchronized acquire() causes
13 available = false; wait if Fork is not available
ol If acquire Fork, set available false
16= public synchronized void release() {
17 available = true;
18 notifyAll(Q); .
19 3} YARO \ * release() makes Fork available to others
20 } * Use notifyAll() to tell Philosophers a Fork is

free

65

Philosophers try to eat by getting both the

left and right Forks

I?h,llosopher.java Philosopher runs on a Thread and is
P ivare int mumgy e T e message pri passed left and right Fork (also passed a
8 private Fork left, right; // the resources R
l(?)— public.Philosopher(int num, Fork left, Fork right) { phllosopher number)
12 this Lot = Tobt;
13 this.right = right;
14 }
15
16 /**
17 * Waits a bit -- 1 to 5 seconds
18 */
19 private void randPause() throws InterruptedException {
20 sleep(1000 + (int)(Math.random()*4000));
21 °
2 i Philosophers try to eat three meals
23e k%
Szzt :/Star't the rounds of resource acquisitior/
~26= public void run O {
27 for (int meal = @; meal < 3; meal++) {
Sg g;:iz;.out.println(num + " finished meal " + meal); . Y .
e outorintingnn + * 11 done, * eat() tries to acquire() the left and right fork
B (after universe contemplation of course)
34 /¢
B e round / * Always tries to get Fork on left first (could be
37- ublic void eat() { °
s ey e . ,, . ‘ . .. aproblem if Forks not numbered properly)
39 Ez:;:z;gggi?rlntln(num + " contemplating the universe, working up an appetite");
g ?y;:em.ou.t.égvtln(num + " hungry; going for left fork"); ¢ GCQU”'E() W|" cause a Walt If Fork I‘IOt
ﬁ Ezzsézl.‘ggggriatln(num + " got left fork™); available
e Haheracasires T oo for e foric; * Once philosopher has both Forks, he can eat
47 System.out.println(num + " got right fork; chowing down"); . .
ig ;;Z:ZZ?Zzg?érintln(num + " finished eating; dropping forks"); ¢ Phllosopher rEIeases bOth Forks after eatlng
s Teft.release(y)
52 } 66

53 catch (InterruptedException e) {
54 System.err.println(e);

DiningPhilosophers.java uses five

Philosophers and five Forks

. . . . PO
. . . . L

DiningPhilosopher.java Will hold multiple Philosophersin * .

. / ArraylList P, P,

8 public class DiningPhilosophers

9 private ArraylList<Philosopher> philosophers; R L

10 \ R

11= /**

g :/Creates the forks and philosophers Set up five Fork PZ . L P3

14< public DiningPhilosophers() { Objects in

15 ArraylList<Fork> forks = new ArraylList<Fork>(Q);

16 for (int fork = @; fork < 5; fork++) { ArrayList

17 forks.add(new Fork());

18 }

19

20 philosophers = new ArraylList<Philosopher>();

21 for (int phil = @; phil < 5; phil++) {

22 philosophers.add(new Philosopher(phil, forks.get(phil), forks.get((phil+1)%5)));

y ! \

24 . .

SO Create five Philosophers and pass the left

26, /** . .

27 * Gets each philosopher started at the table and rlght Fork Ob]eCts

28 */ - : -

29- public void dine() { Po left = Fo, r'ght =F

30 for (Philosopher phil : philosophers) { - H -

2 Sl oonty: P, left = F,, right = F,

S } Could deadlock!

34 Reverse Forks for P, and won’t deadlock

35e public static void main(String[] args) {

36 new DiningPhilosophers().dine();

i) } Start each Philosopher dining

(calls run() on previous slide) 67

Prevent deadlocks by making getting both

Forks an atomic operation

MonitoredDiningPhilosopher.java

9 public class MonitoredDiningPhilosophers {

10 private ArraylList<MonitoredPhilosopher> philosophers;

11

12¢] /*4

13 * Creates the forks and philosophers

14 */

15 public MonitoredDiningPhilosophers() {

16 ArrayList<MonitoredFork> forks = new ArraylList<MonitoredFork>();

17 for (int fork = @; fork < 5; fork++) {

18 forks.add(new MonitoredFork());

19 }

20

21 philosophers = new ArraylList<MonitoredPhilosopher>();

22 for (int phil = @; phil < 5; phil++) {

23 philosophers.add(new MonitoredPhilosopher(this, phil, forks.get(phil), forks.get((phil+1)%5)));

24 }] .
53 Move acquire() and release() to main program,
26

277 /** L] o o

28 * Gets each philosopher started at the table nOt contrO"ed by IndIVIduaI Forks now
29 */

30 public void dine() {
31 for (MonitoredPhilosopher phil : philosopher
32 phil.start(Q);
33 3}

34 3}

e Synchronized only allows one Philosopher in
acquire() at a time, wait if left and right Forks
not available

36 /**

37 * Simultaneously ac S both resources - -
B i | ~» Pick up both Forks while here
39= public synchronized void acquire(MonitoredFork left, MonitoredFork right) throws InterruptedExteption {

40 while (!left.available || !right.available) {

41 waitQ);

42 }

43 left.available = false;

44 right.available = false; .
R * release() also synchronized
47 /** .

48 * Releases both resources ® Drop both Forks Whlle here
49 */

g? publ%gf:)./xz:({zbl:d:vgiﬂer;elease(Monitor‘edFor‘k left, MonitoredFork right) { ¢ notifyA II() Wh en Fo rks are ava i Ia b I e

52 right.available = true;

53 notifyAll1Q);

54 }

55

56= public static void main(String[] args) { 68

57 new MonitoredDiningPhilosophers().dine(Q);

