
CS 10:
Problem solving via Object Oriented

Programming

Streams

2

Main goals

• Define streaming
• Implement in Java streams

3

Agenda

1. Streaming data

2. Java streams

4

Streams allow us to process things “as they
come”
Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced

5

Streams allow us to process things “as they
come”
Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as

desired

6

Streams allow us to process things “as they
come”
Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as

desired
Synchronization Keep producers and

consumers in sync
No need for
synchronization

7

Streams allow us to process things “as they
come”
Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as

desired
Synchronization Keep producers and

consumers in sync
No need for
synchronization

Memory use Not all in memory All in memory (or disk)

8

Streams allow us to process things “as they
come”
Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as

desired
Synchronization Keep producers and

consumers in sync
No need for
synchronization

Memory use Not all in memory All in memory (or disk)
Length Can be infinite Limited

9

Streams allow us to process things “as they
come”
Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as

desired
Synchronization Keep producers and

consumers in sync
No need for
synchronization

Memory use Not all in memory All in memory (or disk)
Length Can be infinite Limited
Fast
forward/reverse

Hard Easy

10

Stream operations can be chained together
to form a pipeline

cat USConstitution.txt | tr 'A-Z' 'a-z' | tr -cs 'a-z' '\n' | sort | uniq | comm -23 – dictionary.txt

Unix pipeline example

1. cat outputs contents of file
2. Pipe (‘|’) passes output to next command
3. tr translates to lower case
4. tr -cs translates non-characters to new lines
5. sort puts words in alphabetical order
6. uniq removes duplicates
7. comm compares pipeline with another file, outputs only lines not

in dictionary.txt (probably means word is misspelled)

Key points:
• One stage produces

output the next stage
consumes

• Operations form a
“pipeline”

Pipeline

11

Agenda

1. Streaming data

2. Java streams

12

Streams are a sequence of elements from a
source that supports aggregate operations

http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html

Sequence of elements
• A stream provides an interface to a sequenced set of values of a

specific element type
• Streams don’t actually store elements; they are computed on

demand; they don’t change Source Object

Source
• Streams consume from a data-providing source such as collections,

arrays, or I/O resources such as a web service streaming stock
quotes

Aggregate operations
• Streams support SQL-like operations and common operations from

functional programing languages, such as filter, map, reduce, find,
match, sorted, and others

13

Two characteristics of Streams make them
different from iterating over collections

http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html

1. Pipelining
• Many stream operations return a stream themselves
• Allows operations to be chained to form a larger pipeline
• Enables optimizations:
• Short-circuiting – stop evaluation once you know the result
• Laziness – wait to evaluate expressions until needed

(sometimes can skip evaluation of items not needed)
• We will see examples shortly

2. Internal iteration
• In contrast to collections, which you explicitly iterate yourself,

stream operations do the iteration behind the scenes for you

Streams vs. iterating collections

14

There are two types of operations,
intermediate and terminal

Terminal Description
• Close a stream pipeline
• Produce a result such as a

List or Integer (any non-
stream type)

Examples:
• collect(toList())
• count
• sum

Types of operations

15

There are two types of operations,
intermediate and terminal

Terminal Description
• Close a stream pipeline
• Produce a result such as a

List or Integer (any non-
stream type)

Examples:
• collect(toList())
• count
• sum

Intermediate • Output is a stream object
• Can be chained together

into a pipeline
• “Lazy”, do not perform any

processing until necessary
• Pipeline can often be

merged into a single pass

• filter
• sorted
• map
• limit
• distinct

Types of operations

16

Common Stream operations
.forEach
Iterate over each element of the Stream

//output hi and there (one per line)
Stream.of("hi", "there") //stream of two strings

 .forEach(System.out::println); //call println for each string

Double colon (::) means call method
on right, using Object on left

Each item in Stream passes down
pipeline of operations one at a time

First “hi” passed to second line, then
“there” is passed to second line

17

Common Stream operations
.forEach
Iterate over each element of the Stream

//output hi and there (one per line)
Stream.of("hi", "there") //stream of two strings

 .forEach(System.out::println); //call println for each string
.map
Map each element to a corresponding result

//output 1 to 9 squared (1,4,9,16,25,36,49,64,81) one per line
IntStream.range(1,10) //integers in range 1…9
 .map(n -> n*n) //map n to n2
 .forEach(System.out::println); //call println for each integer

IntStream produces a Stream of Integers
Range is inclusive of start, exclusive of end
First 1 passed down to second line
1 squared in map command on second line and then passed to third line
1 printed as parameter to System.out::println on third line
Next 2 passed down, squared and printed
…
Notice there is no explicit iteration over Stream items

18

Common Stream operations
.forEach
Iterate over each element of the Stream

//output hi and there (one per line)
Stream.of("hi", "there") //stream of two strings

 .forEach(System.out::println); //call println for each string
.map
Map each element to a corresponding result

//output 1 to 9 squared (1,4,9,16,25,36,49,64,81) one per line
IntStream.range(1,10) //integers in range 1…9
 .map(n -> n*n) //map n to n2
 .forEach(System.out::println); //call println for each integer

.filter
Eliminate elements based on a criteria

//output even numbers 1 to 9 tripled (6,12,18,24) one per line
IntStream.range(1, 10) //integers in range 1…9

 .filter(i -> i%2 == 0)
 .map(i -> i*3)
 .forEach(System.out::println);

• Only even numbers pass filter on
second line

• Odd numbers do not make it to map
on third line, Java doesn’t waste time
tripling odd numbers (“lazy”)

19

Common Stream operations
.limit
Reduce the size of the Stream

//output first three items
IntStream.range(1, 10) //exclusive of 10, so 1..9 here

 .limit(3) //stop after three items
 .forEach(System.out::println);

Limit on second line stops pipeline once limit reached
Items 4…9 never evaluated because pipeline stop early (short circuits)

20

Common Stream operations
.limit
Reduce the size of the Stream

//output first three items
IntStream.range(1, 10) //exclusive of 10, so 1..9 here

 .limit(3) //stop after three items
 .forEach(System.out::println);

.sorted
Sort the Stream

//words sorted alphabetically
List<String> words = Arrays.asList("the", "quick", "brown", "fox”);
words.stream() //Stream of words

.sorted() //sort words
 .forEach(System.out::println); //brown, fox, quick, the
Can provide own Comparator
If Object has compareTo(), can use that (can also reverse with Comparator.reverseOrder())
Must wait for all input before proceeding

21

Common Stream operations
.limit
Reduce the size of the Stream

//output first three items
IntStream.range(1, 10) //exclusive of 10, so 1..9 here

 .limit(3) //stop after three items
 .forEach(System.out::println);

.sorted
Sort the Stream

//words sorted alphabetically
List<String> words = Arrays.asList("the", "quick", "brown", "fox”);
words.stream() //Stream of words

.sorted() //sort words
 .forEach(System.out::println); //brown, fox, quick, the
Collectors
Combine results into a collection such as a List or String
List<String>strings = Arrays.asList("abc", "defg", "");
List<String> filtered = strings.stream() //Stream of words
 .filter(string -> !string.isEmpty()) //filter empty
 .collect(Collectors.toList()); //return List

Also available:
• toSet()
• toMap()

22

Lazy computation and short circuiting save
time by not evaluating all data
Short circuiting

Stop once two items have been
through the pipeline – “Short circuit”

Square the even
numbers in the Stream

First 1 starts down pipeline
Its not even, so filtered out
Then 2 starts down pipeline
It passes all the way through
Map computes only on those
items that reach its level
“Lazy” evaluation – only
compute value when needed,
don’t compute if not needed

• 3 filtered out, 4 goes through
• Numbers > 4 not evaluated because pipeline stops when

limit reached
• “Short circuit” saves execution time by stopping early
• NOTE: can’t short circuit sorting, need all elements in

place in order to sort

23

Example: Get IDs of credit card Grocery
transactions sorted by amount spent

• Given list of transactions on a credit card

• Extract purchases of Groceries

• Sort Grocery purchases by amount spent

• Return ID of Grocery transactions

Based on: http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html

24

Create a Transaction Object will hold
details about credit card purchases

Start with a Class that tracks a single
purchase made on a Credit Card:
• Has transaction ID
• Type (e.g., groceries, fuel, beer)
• Amount (monetary amount spent

on this transaction)
• Getters for instance variables

Also has compareTo() for sorting and
toString() for printing

Transaction.java

25

The traditional approach involves several
iterations over transaction data

ID Type Amount

123 Fuel 33.33

124 Groceries 120.12

125 Beer 175.75

126 Groceries 152.52

127 Groceries 12.12

… … …

Transactions on Credit Card Traditional steps:
1. Extract Grocery

purchases from
other purchases in
transactions
ArrayList

2. Sort Grocery
purchases by
amount spent

3. Get IDs of top
purchases

Assume a number of Transaction
Objects have been loaded into
ArrayList of Transaction objects called
transactions

26

The traditional approach involves several
iterations over transaction data

Extract Grocery
items from all
transactions

Sort by descending value

Extract transaction IDs

Add a number of
Transactions to
transactions ArrayList

TransactionList.java

Explicitly iterate over
collection two times
(plus a sort)

Create two different
ArrayLists during
process

27

Java’s Streams do the iteration for us

Use transactions ArrayList as stream Source
• Filter on type (groceries)
• Sort by amount in reverse order
• Extract IDs with map
• Return List
Stream handles implicit iteration for us

TransactionList.java

Pipeline

filter sorted map collecttransactions

Predicate Comparator Function

28

Graphical depiction of grocery transaction
example

123
Fuel

33.33

124
Groceries

120.12

125
Beer

175.75

126
Groceries

152.52

127
Groceries

12.12

Transactions
Stream

124
Groceries

120.12

126
Groceries

152.52

127
Groceries

12.12

126
Groceries

152.52

124
Groceries

120.12

127
Groceries

12.12

126 124 127

126 124 127

.filter(t -> t.getType() == “Groceries”)

.sorted(Comparator.reverseOrder())

.map(Transaction::getId())

.collect(Collectors.toList())

Stream<Transaction>

Stream<Transaction>

Stream<Transaction>

Stream<Integer>

List<Integer>

X X

Wait for sort

Sort when have
all elements

29

More examples in code for today

1. Initiate a stream with a fixed list of strings, terminate it by printing each out. Note the Java 8 syntax for passing a defined method, here
the println method of System.out, which takes a string and returns nothing, as appropriate for termination here.

2. Now we have an intermediate operation, consuming a string and produces a number (its length), passing the String member function
length to do that.

3. A different intermediate, here a static method in this class, which consumes a string and produces a transformed string.
4. The intermediate passes forward only some of the things it gets, discarding those that don't meet the predicate. It uses an anonymous

function as we discussed in comparators and events.
5. Other predefined intermediates process the stream to sort it, eliminate duplicates, etc. Some of these can take arguments (e.g., how to

sort).
6. A reimplementation of the frequency counting stuff from info retrieval, now letting streams do all the work. "Collector" terminal

operations collect whatever is emerging from the stream, into a list, set, map, etc. Here we collect into a map, from word to count. The
first argument is a method to specify for each object a value on which to group (things with the same value are grouped). Here we
group by the word itself, so all copies of the word get bundled up. The second argument then says how to produce a value from the
group; here, by counting.

7. Similar, but now grouping by the first letter in the word.
8. Assuming we already have a list of words, now we want to count the letter frequencies. (For illustration, this doesn't count whitespace

frequencies, as the words are pre-extracted.) Split each word into characters. But now we've got a stream of arrays of characters, and
we want just a single stream of characters. So we make a stream of streams (characters within words), and "flatten" it into a single
stream (characters) by essentially appending the streams together.

9. Same thing could come directly from a file, producing a stream of lines that we flatten into a stream of words. Note another
intermediate operation keeps only the first 25 it gets.

10. A new final operation counts how many things ultimately emerged from the stream.
11. A comparator for sorting.
12. Partway through, we convert from a generic Stream to a specalized DoubleStream that deals with double values (not boxed Double

objects) and lets us do math. Interestingly, the average operation recognizes that it could be faced with an empty stream to average.
Rather than throwing an exception, it uses the Optional class to return something that may be a double or may be null. We could test,
but here, just force it to be a double (an exception will be thrown if it isn't).

StringStreams.java

30

More examples in code for today

1. Rather than enumerating explicit objects to initiate a stream, we can implicitly enumerate numbers with a range. (Might be familiar
from other languages...). Note that this is the specialized IntStream, working on raw int values.

2. And we can do appropriate intermediate processing of the numbers.
3. Illustrates the very important general stream processing pattern reduce (the other keyword in the map-reduce architecture; we've

already done plenty of mapping). The idea is to "wrap up" all the elements in a stream, pair-by-pair. Reduce takes an initial value and a
function to combine two values to get a result. So sum essentially starts at 0, adds that to the first number, adds that result to the
second number, etc. Importantly, though, if the operation is associative (doesn't matter where things are parenthesized), it need not be
done sequentially from beginning to end, but intermediate results can be computed and combined. That's key in parallel settings.

4. See how general reduce is? Could also combine strings with appending, etc.
5. As mentioned, streams only evaluate something when there's a need to. It's like the demand comes from the end of the stream, and

that demand propagates one step up asking to produce something to be consumed, and so forth. Since there's a limit of 3 things being
produced, the demand for the rest of the range never comes, and the range isn't fully produced.

6. An infinite stream, with the iterate method starting with some number and repeatedly applying the transform to get from current to
next. So produce 0, from 0 iterate to 1 and produce it, from 1 to 2, from 2 to 3, etc. Since limited to 10, the whole iteration isn't realized
(fortunately!).

7. Exponentially increasing steps.
8. Filling the stream by generating random numbers "independently" each time.
9. Requesting parallel processing of a stream is as simple as inserting the method. Whether or not that's a good idea, and how it will play

out, depends very much on the processing. Here we do have a bunch of independent maps and filters, and as discussed above,
reducing with an associative operation (sum) can be done in parallel. Sorting would be a bottleneck, for example. Note from print
statements that the stuff is going on in non-sequential order.

10. Parallel beats sequential on my machine in this non-scientific test.

NumberStreams.java

31

