
CS 10:
Problem solving via Object Oriented

Programming

String Finding

2

Main goals

• Implement finding substrings

3

Agenda

1. Boyer-Moore algorithm

2. Tries

4

Matching/recognizing patterns in
sequences is a common CS problem
String Finding: Overview

6 6Travis W. Peters Dartmouth College - CS 10

• Matching/recognizing patterns in sequences is a very relevant problem in CS
• DNA Sequencing

• ex. find GAGATGCTCCAGAAC in Example: Find pattern in DNA data

Task
Find a substring
in this large
string

Query string of
length m

Text of length n

Generally assume m << n
(but doesn’t have to be)

5

A brute force approach starts at index 0
and works forward
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Try 0

6

Compare each character in text and query
string, move right if match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

7

Compare each character in text and query
string, move right if match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

8

Compare each character in text and query
string, move right if match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

9

If find characters that do not match, move
query right one space in text and try again
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Mismatch, slide query one space right and try again

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

10

Another mismatch, move query right one
space again
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Mismatch, slide query one space right and try again (and again…)

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

11

Continue until hit end of text less length of
query string or find match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

1

…

n-m

Match found after n-m+1 checks
Each check of length m
Run time complexity O(nm)

Try 0

12

A brute force approach is inefficient, O(nm)
BoyerMoore.java

13

Boyer-Moore algorithm is more efficient
and works backwards
Find query of length m(=6), in text of length n(=12)

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

14

Boyer-Moore algorithm is more efficient
and works backwards
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

15

Boyer-Moore algorithm is more efficient
and works backwards
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

• Z not in query, so any matches prior
to Z must all fail

• No need to check those
• Move query string one space past

character not in query string (Z here)
• Avoids checks at indices 0-2

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

16

On mismatch, slide query to last
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

17

On mismatch, slide query to last
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Mismatch, but D in query string so move the
last occurrence of D in query to this index

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

18

On mismatch, slide query to last
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

Try 0

1

2

If had moved to first occurrence
of text in query string, might
cause a move too far right, have
to move to last occurrence

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

19

On mismatch, slide query to last
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Match found

2

Try 0

3 checks vs. 7 for brute force
Not greatly different for small strings,
but very different for large strings!

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and
resetting k

• If text in query string, move query to last occurrence of text

20

Boyer-Moore can be O(n)

• Our version is simplified version of original Boyer-Moore

• Full Boyer-Moore algorithm is O(m+n), but since normally
n >> m, O(n) on “reasonable” text (e.g., not long strings of
same character)

• Does require pre-processing step to store last index of
each character in query. Easy way:
• Loop over each character in query string
• Store characters in Map with current index as value
• At end, Map will have the last index for each character

21

Boyer-Moore algorithm
BoyerMoore.java

22

Agenda

1. Boyer-Moore algorithm

2. Tries

23

How would you implement autocomplete?

• Consider autocomplete text boxes

• A user starts typing, autocomplete
shows possible words user might
want given only a couple of
characters

• How would you implement that?

• One way is with a Trie
(pronounced “try” to differentiate
from Tree, comes from “retrieve”)

Typed in “compu” into Google,
Google guesses what I want

24

Tries can find all substrings in text that
begin with a prefix string
Alphabet of d characters, and string length n • Trie is a multi-way tree

where each node is a letter
• Store set of words S in Trie

with one node per letter
and one leaf for each word

• To match prefix, start at
root and follow children
until find stop character ($)

• Example: type “ca” and find
cart, car, and cat

• To find string of length m,
must go down m levels

• If alphabet has d = |Σ|
characters, then O(dm) to
find or insert

• Height is length of longest string
• Can be used to implement Set or

Map, not just autocomplete

25

Compressed tries save memory
Alphabet of d characters, and string length n • Compressed trie stores

substrings if no branches (e.g.,
no branches after “ant” so put
“ibody” in one node, not five)

• Number of nodes reduced
from O(|n|) – total length of
strings in set of words S, to
O(|s|) – number of words in S

• Saves memory, book shows
how to store indices

• Can be used for sorting
• Add all words into trie
• Do a pre-order traversal

26

Tries works on prefixes, we can also work
on suffixes with a Suffix trie

Suffix tries
• Store data by suffixes (end of words)
• Add node for each substring X[j..n-1], for j=0,1,..n-1
• Use compressed trie (algorithm complicated, stores in O(n) time)
• Search for suffixes; start at root and work downward
• See course web page for more details

Additional Resources

27

ANNOTATED SLIDES
Brute force and Boyer Moore

28

29

A brute force approach is inefficient, O(nm)
BoyerMoore.java

Look for pattern in text

• Loop over all characters in
text where pattern can fit

• No need to check beyond
n-m, pattern of length m
can’t fit in remaining text

• O(n-m+1) = O(n) if n >> m

Loop over all characters in
pattern O(m)

If pattern matches text, then
found match, return index in
text where pattern found

Return -1 if loop over text
and do not find pattern

Overall O(nm)
We can do better!

30

Boyer-Moore algorithm
BoyerMoore.java Look for pattern in text

Preprocess: create Map last
and set all distinct characters
in text to -1

Update to hold last occurrence
of character in pattern

Loop backward over pattern

Return index in text if
pattern found

Jump past character not in pattern (i += m-0)
or move by min of index into query (k) and
last position of text character in patternReturn -1 if not found

