
CS 10:
Problem solving via Object Oriented 

Programming

String Finding
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Main goals

• Implement finding substrings
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Agenda

1. Boyer-Moore algorithm

2. Tries
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Matching/recognizing patterns in 
sequences is a common CS problem
String Finding: Overview

6 6Travis W. Peters Dartmouth College - CS 10

• Matching/recognizing patterns in sequences is a very relevant problem in CS
• DNA Sequencing 

• ex. find GAGATGCTCCAGAAC in Example: Find pattern in DNA data

Task
Find a substring 
in this large 
string

Query string of 
length m

Text of length n

Generally assume m << n 
(but doesn’t have to be)
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A brute force approach starts at index 0 
and works forward
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch

Try 0
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Compare each character in text and query 
string, move right if match
Find query of length m, in text of length n 

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch
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Compare each character in text and query 
string, move right if match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch
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Compare each character in text and query 
string, move right if match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch
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If find characters that do not match, move 
query right one space in text and try again
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Mismatch, slide query one space right and try again

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch
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Another mismatch, move query right one 
space again
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Mismatch, slide query one space right and try again (and again…)

Try 0

Brute force approach
• Start query string and text at index 0
• Loop over length of query string
• Look for match
• Move query string right one space if find mismatch
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Continue until hit end of text less length of 
query string or find match
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

1

…

n-m

Match found after n-m+1 checks
Each check of length m
Run time complexity O(nm)

Try 0
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A brute force approach is inefficient, O(nm)
BoyerMoore.java
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Boyer-Moore algorithm is more efficient 
and works backwards
Find query of length m(=6), in text of length n(=12)

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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Boyer-Moore algorithm is more efficient 
and works backwards
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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Boyer-Moore algorithm is more efficient 
and works backwards
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

Index

Text

Try 0

• Z not in query, so any matches prior 
to Z must all fail

• No need to check those
• Move query string one space past 

character not in query string (Z here)
• Avoids checks at indices 0-2

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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On mismatch, slide query to last 
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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On mismatch, slide query to last 
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Mismatch, but D in query string so move the 
last occurrence of D in query to this index

Try 0

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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On mismatch, slide query to last 
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

Try 0

1

2

If had moved to first occurrence 
of text in query string, might 
cause a move too far right, have 
to move to last occurrence

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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On mismatch, slide query to last 
occurrence of text, or past mismatch
Find query of length m, in text of length n

0 1 2 3 4 5 6 7 8 9 10 11

A B C Z E F A B C D E F

A B C D E F

A B C D E F

A B C D E F

Index

Text

1

Match found

2

Try 0

3 checks vs. 7 for brute force
Not greatly different for small strings, 
but very different for large strings!

Boyer-Moore
• Start at index i=m-1
• Loop backward over query string, starting at k=m-1
• If match decrement both i and k
• If mismatch:

• If text not in query string, move query past current index, updating i=i+m and 
resetting k

• If text in query string, move query to last occurrence of text
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Boyer-Moore can be O(n)

• Our version is simplified version of original Boyer-Moore 

• Full Boyer-Moore algorithm is O(m+n), but since normally 
n >> m, O(n) on “reasonable” text (e.g., not long strings of 
same character)

• Does require pre-processing step to store last index of 
each character in query.  Easy way:
• Loop over each character in query string
• Store characters in Map with current index as value
• At end, Map will have the last index for each character



21

Boyer-Moore algorithm
BoyerMoore.java
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Agenda

1. Boyer-Moore algorithm

2. Tries
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How would you implement autocomplete?

• Consider autocomplete text boxes

• A user starts typing, autocomplete 
shows possible words user might 
want given only a couple of 
characters

• How would you implement that?

• One way is with a Trie  
(pronounced “try” to differentiate 
from Tree, comes from “retrieve”)

Typed in “compu” into Google,
Google guesses what I want
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Tries can find all substrings in text that 
begin with a prefix string
Alphabet of d characters, and string length n • Trie is a multi-way tree 

where each node is a letter 
• Store set of words S in Trie 

with one node per letter 
and one leaf for each word

• To match prefix, start at 
root and follow children 
until find stop character ($)

• Example: type “ca” and find 
cart, car, and cat

• To find string of length m, 
must go down m levels

• If alphabet has d = |Σ| 
characters, then O(dm) to 
find or insert

• Height is length of longest string
• Can be used to implement Set or 

Map, not just autocomplete
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Compressed tries save memory
Alphabet of d characters, and string length n • Compressed trie stores 

substrings if no branches (e.g., 
no branches after “ant” so put 
“ibody” in one node, not five)

• Number of nodes reduced 
from O(|n|) – total length of 
strings in set of words S, to 
O(|s|) – number of words in S

• Saves memory, book shows 
how to store indices

• Can be used for sorting
• Add all words into trie
• Do a pre-order traversal
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Tries works on prefixes, we can also work 
on suffixes with a Suffix trie

Suffix tries
• Store data by suffixes (end of words)
• Add node for each substring X[j..n-1], for j=0,1,..n-1
• Use compressed trie (algorithm complicated, stores in O(n) time)
• Search for suffixes; start at root and work downward
• See course web page for more details



Additional Resources
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ANNOTATED SLIDES
Brute force and Boyer Moore
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A brute force approach is inefficient, O(nm)
BoyerMoore.java

Look for pattern in text

• Loop over all characters in 
text where pattern can fit

• No need to check beyond 
n-m, pattern of length m 
can’t fit in remaining text

•  O(n-m+1) = O(n) if n >> m

Loop over all characters in 
pattern O(m)

If pattern matches text, then 
found match, return index in 
text where pattern found

Return -1 if loop over text 
and do not find pattern

Overall O(nm)
We can do better!
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Boyer-Moore algorithm
BoyerMoore.java Look for pattern in text

Preprocess: create Map last 
and set all distinct characters 
in text to -1

Update to hold last occurrence 
of character in pattern

Loop backward over pattern

Return index in text if 
pattern found

Jump past character not in pattern (i += m-0) 
or move by min of index into query (k) and 
last position of text character in patternReturn -1 if not found


