
CS 10:
Problem solving via Object Oriented

Programming

Lists Part 2 (Array’s Revenge!)

2

Main goals

• Implement growing array list
• Characterize runtime complexity
• Compare list implementations

3

Agenda

1. Growing array List implementation

2. List analysis

3. Iteration

4

Difference between singly linked list and
array

data next

head

“Alice”

data next

“Bob”

data next

“Charlie”

Singly linked list

Array
0 1

“Alice” “Bob” “Charlie”

2 n-1

…

List ADT features

get()/set() element
anywhere in List

add()/remove() element
anywhere in List

No limit to number of
elements in List

5

Random access aspect of arrays makes it
easy to get or set any element

6

Insertion

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

0 0 0 0

0 1 2 3 4 5 6 7 8 9

On paper
example

7

Deletion

16 7 14 2 25 -8

Index

10

Deleting an element is the same
except copy elements to the left
to remove the deleted element

0 0 0

0 1 2 3 4 5 6 7 8 9

8

Arrays are of fixed size, but List ADT allows
for growth

16 7 14 2 25 -8

Index

10 52 -19 6

0 1 2 3 4 5 6 7 8 9

On paper
example

public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {
 private T[] array;
 private int size; // how much of the array is actually filled up so far
 private static final int initCap = 10; // how big the array should be initially

 public GrowingArray() {
 array = (T[]) new Object[initCap]; // java generics oddness – cast array of objects
 size = 0;
 }

 /**
 * Return the number of elements in the List (they are indexed 0..size-1)
 * @return number of elements
 */
 public int size() {
 return size;
 }

9

GrowingArray.java: implements List ADT
using an array instead of a linked list

Run-time complexity?
O(1) for any index!

/**
 * Return item at index idx
 * @param idx index of item to return
 * @return item stored at index idx
 * @throws Exception invalid index
 */
public T get(int idx) throws Exception {
 if (idx >= 0 && idx < size) return array[idx];
 else throw new Exception("invalid index");
}

/**
 * Overwrite item at index idx with item parameter
 * @param idx index of item to get
 * @param item overwrite existing item at index idx with this item
 * @throws Exception invalid index
 */
public void set(int idx, T item) throws Exception {
 if (idx >= 0 && idx < size) array[idx] = item;
 else throw new Exception("invalid index");
}

10

GrowingArray.java: get()/set() are easy and
fast with an array implementation

Run-time complexity?
O(1) for any index!

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

11

GrowingArray.java: With growing trick, can
implement the List interface with an array

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

public void add(T item) throws Exception {
 add(size,item);
}

12

GrowingArray.java: With growing trick, can
implement the List interface with an array

Run-time complexity
O(1)

/**
 * Remove and return the item at index idx. Move items left to fill hole.
 * @param idx index of item to remove
 * @return the value previously at index idx
 * @throws Exception invalid index
 */
public T remove(int idx) throws Exception {
 if (idx > size-1 || idx < 0) throw new Exception("invalid index");
 T data = array[idx];
 // Shift left to cover it over
 for (int i=idx; i<size-1; i++) array[i] = array[i+1];
 size--;
 return data;
}

13

GrowingArray.java: With growing trick, can
implement the List interface with an array

Run-time complexity?
O(n)

14

Agenda

1. Growing array List implementation

2. List analysis

3. Iteration

15

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array
get(i)
set(i,e)
add(i,e)
remove(i)

Worst case run-time complexity

Discussion

16

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array
get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + growth
remove(i) O(n) O(n)

Worst case run-time complexity

17

Amortization is a concept from accounting
that allows us to spread costs over time

Accounting allows us to amortize
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years

Amortized analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Co
st

 $
K/

yr

Year

Cost per year

Actual
Conceptual

18

Amortized analysis shows growing array is
actually only O(1)!

array

Amortized analysis

n items

19

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n items

20

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
4n items

21

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

22

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

New array

23

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

New array

24

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2nn items

New array

25

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n-n = nn items

New array

26

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
nn items

New array

n items

27

Growing array is generally preferable to
linked list

Linked list Growing array
get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + O(1) = O(n)
remove(i) O(n) O(n)

Worst case run-time complexity

28

Summary

• Growing ArrayList implementation
• Runtime complexity analysis
– Get/set O(1)
– Add/remove O(n)
• Amortized analysis for growth operation

• List analysis: SinglyLinkedList vs ArrayList
– Growing array overall more efficient, unless

specific assumptions on operations

• Hierarchical relationships through trees

29

Next

Additional Resources

30

DESCRIPTION OF PROS AND CONS

31

32

At first arrays seem to be a poor choice to
implement the List ADT

List ADT features Linked List Array

get()/set() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Contiguous block of
memory

• Random access aspect
of arrays makes
get()/set() easy and fast

add()/remove() element
anywhere in List

• Start at head and march
down to index in list

• Slow to find element,
but fast once there

• Fast to find element, but
slow once there

• Have to make (or fill)
hole by copying over

No limit to number of
elements in List

• Built in feature of how
linked lists work

• Just create a new
element and splice it in

• Arrays declared of fixed
size

ANNOTATED SLIDES
ArrTest.java

33

34

Random access aspect of arrays makes it
easy to get or set any element

• Array reserves a contiguous
block of memory

• Big enough to hold specified
number of elements (10 here)
times size of each element (4
bytes for integers) = 40 bytes

• Indices are 0…9

35

Random access aspect of arrays makes it
easy to get or set any element

0 1 2 3 4 5 6 7 8 9Index

36

Random access aspect of arrays makes it
easy to get or set any element

2

0 1 2 3 4 5 6 7 8 9Index

No need to march down list to get or
set element

To find element:
• Start at base address of array (this is

where “numbers” array points)
• Element at index idx is at address:

base addr + idx*size(element)

37

Random access aspect of arrays makes it
easy to get or set any element

2

0 1 2 3 4 5 6 7 8 9Index

No need to march down list to get or
set element

To find element:
• Start at base address of array (this is

where “numbers” array points)
• Element at index idx is at address:

base addr + idx*size(element)
• Index 2 at base addr + 2*4 bytes
• Time to access element is constant

anywhere in array (just simple math
operation to calculate any index)

• With linked list have to march down
list, takes longer to find elements at
end

38

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

39

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What values will a, b and c have?

40

Random access aspect of arrays makes it
easy to get or set any element

2 10

0 1 2 3 4 5 6 7 8 9Index

What values will a, b and c have?

EXAMPLE OF INSERTION IN
ARRAYLIST

41

42

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

0 0 0 0

0 1 2 3 4 5 6 7 8 9

43

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2
• Slide indices ≥ idx to the

right to make a hole
• Copy each element to

next index

0 0 0 0

0 1 2 3 4 5 6 7 8 9

44

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 10

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

45

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 -8 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

46

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 25 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

47

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

48

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 2 2 25 -8

Index

14 Insert 14 at index 2

10

Copy new element
into index

• Slide indices ≥ idx to the
right to make a hole

• Copy each element to
next index

0 0 0

0 1 2 3 4 5 6 7 8 9

49

Because arrays are a contiguous block of
memory, hard to insert (except at end)

16 7 14 2 25 -8

Index

10

• Works, but takes a lot of time (said to be “expensive”)
• Especially expensive with respect to time if the array is

large and we insert at the front
• Linked list is slow to find the right place (have to march

down list starting from head), but fast to insert, just
update two pointers and you’re done

• Linked list is fast, however, if only dealing with head
• With arrays, easy to find right place, but slow afterward

due to copying to make a hole

0 0 0

0 1 2 3 4 5 6 7 8 9

EXAMPLE OF GROWING ARRAYLIST

50

51

Arrays are of fixed size, but List ADT allows
for growth

16 7 14 2 25 -8

Index

10 52 -19 6

0 1 2 3 4 5 6 7 8 9

What do we do when the array is full, but
we want to add more elements?

Answer: create another, larger array, and
copy elements from old array into new array

52

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array

53

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

54

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

55

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

56

Arrays are of fixed size, but List ADT allows
for growth

Old array

New array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new

57

Arrays are of fixed size, but List ADT allows
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old

array will be garbage collected)

Room for more
elements

58

Arrays are of fixed size, but List ADT allows
for growth

array

Grow array
1. Make new array, say 2 times larger than old array
2. Copy elements one at a time from old array to new
3. Set instance variable to point at new array (old

array will be garbage collected)

Room for more
elements

Growing is expensive operation,
but we don’t have to do it
frequently if new array size is
multiple of old array size

ANNOTATED SLIDES
GrowingArray.java

59

public class GrowingArray<T> implements SimpleList<T>, Iterable<T> {
 private T[] array;
 private int size; // how much of the array is actually filled up so far
 private static final int initCap = 10; // how big the array should be initially

 public GrowingArray() {
 array = (T[]) new Object[initCap]; // java generics oddness – cast array of objects
 size = 0;
 }

 /**
 * Return the number of elements in the List (they are indexed 0..size-1)
 * @return number of elements
 */
 public int size() {
 return size;
 }

60

GrowingArray.java: implements List ADT
using an array instead of a linked list

Implements SimpleList and Iterable from last class

Array is now the data structure used to
store elements in List

• Array initially sized to 10 Objects (note the funky Java
allocation syntax, must cast to array of generic type)

• Remember, arrays are of fixed size, but the List ADT
does not specify a size

Track size
Will increment on each add and
decrement on each remove
Run-time complexity?
O(1)

/**
 * Return item at index idx
 * @param idx index of item to return
 * @return item stored at index idx
 * @throws Exception invalid index
 */
public T get(int idx) throws Exception {
 if (idx >= 0 && idx < size) return array[idx];
 else throw new Exception("invalid index");
}

/**
 * Overwrite item at index idx with item parameter
 * @param idx index of item to get
 * @param item overwrite existing item at index idx with this item
 * @throws Exception invalid index
 */
public void set(int idx, T item) throws Exception {
 if (idx >= 0 && idx < size) array[idx] = item;
 else throw new Exception("invalid index");
}

61

GrowingArray.java: get()/set() are easy and
fast with an array implementation

Get and set are easy, just make sure
index is valid, then return or set item

Notice: no curly braces!

Only next line in if statement

Run-time complexity?
O(1) for any index!
Just two math operations to compute
memory address

array.length is how many
elements array can hold

size has how many elements
array does hold

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

62

GrowingArray.java: With growing trick, can
implement the List interface with an array

add() makes a new,
larger array if needed

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

63

GrowingArray.java: With growing trick, can
implement the List interface with an array

Copy elements one at a
time into new array

array.length is how many
elements array can hold

size has how many elements
array does hold

add() makes a new,
larger array if needed

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

64

GrowingArray.java: With growing trick, can
implement the List interface with an array

Copy elements one at a
time into new array

array.length is how many
elements array can hold

size has how many elements
array does hold

add() makes a new,
larger array if needed

Update instance
variable to new array

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

65

GrowingArray.java: With growing trick, can
implement the List interface with an array

• Here we know we have enough
room to add a new element

• Now do insert
• Start from last item and copy

to one index larger
• Stop at index idx
• Set item at idx to item

public void add(int idx, T item) throws Exception {
 if (idx > size || idx < 0) throw new Exception("invalid index");
 if (size == array.length) {
 // Double the size of the array, to leave more space
 T[] copy = (T[]) new Object[size*2];
 // Copy it over
 for (int i=0; i<size; i++) copy[i] = array[i];
 array = copy;
 }
 // Shift right to make room
 for (int i=size-1; i>=idx; i--) array[i+1] = array[i];
 array[idx] = item;
 size++;
}

public void add(T item) throws Exception {
 add(size,item);
}

66

GrowingArray.java: With growing trick, can
implement the List interface with an array

Add an item at the end is easy
Just call add with size as index

What did we call it when two
methods have the same name but
different variables?
Overloading

Run-time complexity
O(1)

/**
 * Remove and return the item at index idx. Move items left to fill hole.
 * @param idx index of item to remove
 * @return the value previously at index idx
 * @throws Exception invalid index
 */
public T remove(int idx) throws Exception {
 if (idx > size-1 || idx < 0) throw new Exception("invalid index");
 T data = array[idx];
 // Shift left to cover it over
 for (int i=idx; i<size-1; i++) array[i] = array[i+1];
 size--;
 return data;
}

67

GrowingArray.java: With growing trick, can
implement the List interface with an array

remove() slides
elements left one slot
for index > idx

Run-time complexity?
O(n)

LIST ANALYSIS

68

69

Growing array is generally preferable to
linked list, except maybe growth operation

Linked list Growing array
get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + growth
remove(i) O(n) O(n)

• Start at head and march down to find
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operation at tail
• add() might cause expensive

growth operation
• How should be think about that?

Worst case run-time complexity

70

Amortization is a concept from accounting
that allows us to spread costs over time

Accounting allows us to amortize
costs over several years
• Buy $70K truck on year 1
• Truck is good for 7 years
• Can think of the cost as

$10K/year instead of one
payment of $70K on year 1

• Actually pay $70K on year 1, but
this is equivalent to paying
$10K/year for 7 years

• Idea is to spread the cost
(“amortize” the cost) over the
lifetime of the truck

• We will use this concept to “pre-
pay” for expensive growth
operation

Amortized analysis

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Co
st

 $
K/

yr

Year

Cost per year

Actual
Conceptual

71

Amortized analysis shows growing array is
actually only O(1)!

array

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation

Amortized analysis

n items

72

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation

73

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
4n items

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation

74

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank

n items

75

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array

n items

New array

76

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array

77

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array

n items

New array

78

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
2n-n = n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank

n items

New array

79

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent

growth operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces

n items

New array

n items

80

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation

n items

New array

n items

81

Amortized analysis shows growing array is
actually only O(1)!

array

Bank
n

Each time add an item to array, conceptually charge 3 “tokens”
• One token pays for current add()
• Two tokens go into “Bank”
• We are spread out (amortizing) the cost of the expensive, but infrequent growth

operation
After n add() operations, array is full, but have 2n tokens in bank
Allocate new 2X larger array
Copy elements from old array to new array
Have to copy n items, so charge n pre-paid tokens from bank
Remaining n items in bank “pay for” empty n spaces
Charging a little extra for each add spreads out cost for infrequent growth operation
The charge, however, is a constant, so O(3) = O(1)

n items

New array

n items

82

Growing array is generally preferable to
linked list

Linked list Growing array
get(i) O(n) O(1)
set(i,e) O(n) O(1)
add(i,e) O(n) O(n) + O(1) = O(n)
remove(i) O(n) O(n)

• Faster get()/set() than linked list
• Tie with linked list on remove()
• Best case: all operations on tail
• add() might cause expensive

growth operation

Amortized analysis shows
infrequent growth operation
is constant time

Pay a constant amount more
on each add() to pay for the
occasional expensive growth

Worst case run-time complexity

• Start at head and march down to find
index i

• Slow to get to index, O(n)
• Once there, operations are fast O(1)
• Best case: all operations on head

