
CS 10:
Problem solving via Object Oriented

Programming

Hierarchies – Binary trees

2

Main goals

• Implement hierarchical data
representation: binary trees
• Implement methods using recursion
• Implement methods using

accumulators
• Identify order of traversal

3

Agenda

1. General-purpose binary trees

2. Accumulators

3. Tree traversal

4

We can represent hierarchical data using a
data structure called a tree

Tree data structure

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

Difference with
singly linked list?

10

5

2 7

25

13 18

5

Each node in a tree can be thought of as
the head of its own subtree

BinaryTree.java

Each node
holds data

Left
child

Right
child

6

Building a BinaryTree
BinaryTree.java

Draw the
corresponding tree

• n! (n factorial)
• Iterative formulation
– n! = 1, if n = 0, and
– n! = n × (n − 1) × (n − 2) ×
⋯ × 1, if n > 0

• Recursive formulation
– n! = 1, if n = 0, and
– n! = n × (n − 1)!, if n > 0

7

Recursion: short review

http://projectpython.net/chapter12/

http://projectpython.net/chapter12/

• Call stack

8

Recursion: short review

http://projectpython.net/chapter12/

3!

3 * 2!

2 * 1!

1 * 0!

Sequence of
recursive calls

1

Return values

1

1*1=1

2*1=2

3*2=6

http://projectpython.net/chapter12/

• General view: need to define
– Base case
– Recursive case

9

Recursion: short review

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

Call size() on root node
BinaryTree.java

On paper example
on the tree

11

height() uses a similar recursive strategy to
calculate the longest path to a leaf

BinaryTree.java

Height 0 Height 1 Height 2

12

equalsTree() uses recursion to see if two
trees have same data and structure

BinaryTree.java

Trees are equal if same
shape and same data

Would tree1 ==
tree2 work?

13

Agenda

1. General-purpose binary trees

2. Accumulators

3. Tree traversal

14

fringe() uses an accumulator pattern to get
the leaves in order

BinaryTree.java 10

5

2 7

25

13 18

The fringe of a
tree is the list
of leaves in
order from
left to right
[2, 7, 13, 18]

Similarly, toString() uses an accumulator to
create a String representation of the tree

BinaryTree.java Want to print Tree indented by
level

 G G
 / \ B
 B F => A
 / \ / \ C
 A C D E F
 D
 E

16

Agenda

1. General-purpose binary trees

2. Accumulators

3. Tree traversal

17

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

preorder()
 visit
 left.preorder()
 right.preorder()

“visit” means
“handle this
node”, might print
it, might do
something else

postorder()
 left.postorder()
 right.postorder()
 visit

inorder()
 left.inorder()
 visit
 right.inorder()

On paper example
on the tree

Visited
4, 2, 5, 1, 6, 3, 7
Drawing a tree
(left to right)

Summary: order in which nodes are visited
depends on the type of traversal

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6, 7
Book chapters

toString()

Preorder

1

2

4 5

3

6 7

Visited
4, 5, 2, 6, 7, 3, 1

Calculate disk space

1

2

4 5

3

6 7

Postorder Inorder

19

Summary

• BinaryTree implementation
• Recursive strategy to visit the tree
• Accumulator+helper method to efficiently

perform operations and store partial results
• Different traversal order for different

operations

• Use of binary tree for binary search

20

Next

Additional Resources

21

TREE DATA STRUCTURE

22

23

We can represent hierarchical data using a
data structure called a tree

Tree data structure

• Root node
• Parent to two children (called left and right)

Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

24

We can represent hierarchical data using a
data structure called a tree

Tree data structure

• Root node
• Parent to two children (called left and right)

Edge
Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

25

We can represent hierarchical data using a
data structure called a tree

Tree data structure

• Root node
• Parent to two children (called left and right)

Edge
Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

• Child node of root (children have
exactly one parent)

• Parent node to children below
• Interior node (nodes also called

vertices)

26

We can represent hierarchical data using a
data structure called a tree

Tree data structure

• Root node
• Parent to two children (called left and right)

Edge
Data

Data

Data Data

Data

Data Data

Meant for hierarchical data where there is a relationship
between the data each node holds

• Child node of root (children have
exactly one parent)

• Parent node to children below
• Interior node (nodes also called

vertices)

• Leaf (or external) node
• Right child of parent node

27

We can represent hierarchical data using a
data structure called a tree

Tree data structure

• Root node
• Parent to two children (called left and right)

• Child node of root (children have
exactly one parent)

• Parent node to children below
• Interior node (nodes also called

vertices)

• Leaf (or external) node
• Right child of parent node

Edge

Subtree

Anc
es

to
rs

Des
ce

ndan
ts

Meant for hierarchical data where there is a relationship
between the data each node holds

Each node
can be
thought of as
the root of a
subtree

Data

Data

Data Data

Data

Data Data

BINARY TREE DATA STRUCTURE

28

29

In a Binary Tree, each nodes has data plus
0, 1, or 2 children

Binary Tree data structure

Each node
holds data

Left
child

Right
child

• Leaf nodes have left and right
children too, they are both just null

• We will commonly talk about them,
however, as having no children

• An interior node has at least one
non-null child

• It could have two non-null
children

10

5

2 7

25

13 18
0, 1, or 2
children in
BinaryTree

30

A Binary Tree does not need to be
balanced

Binary Tree data structure

• This is a valid Binary Tree, each
node has 0, 1, (or 2) children

• For now we make no guarantees
a tree is balanced

• Later we will look at ways to
ensure balance

• Balance will allow us to make
stronger statements about run
time performance

10

5

2

ANNOTATED SLIDES
BinaryTree.java

31

10

5

2 7

25

13 18

32

Each node in a tree can be thought of as
the head of its own subtree

BinaryTree.java

Each node
holds data

Left
child

Right
child

• Define a Tree with data element of generic type E plus left and right children
• Children are (sub) Trees themselves, so their type is BinaryTree
• No need to define a Tree Class and separate TreeNode Class
• Because of this structure, most Tree code is recursive

10

5

2 7

25

13 18

33

Each node in a tree can be thought of as
the head of its own subtree

BinaryTree.java

Each node
holds data

Left
child

Right
child

Two constructors
• One for leaf node
• One for interior node

ANNOTATED SLIDES
BinaryTree.java – main example

34

35

Building a BinaryTree

G

root

Create root node
BinaryTree.java

36

Building a BinaryTree

G

root

Set left and right children

B F

BinaryTree.java

37

Building a BinaryTree

G

Make temp node and traverse
down to left child

B F

temp

• What would happen if didn’t
create temp = root.left, but
instead set root = root.left

• Would lose pointer to root
node (root would be garbage
collected)

BinaryTree.java

root

38

Building a BinaryTree

G

Set left and right children

B F

temp

A C

BinaryTree.java

root

39

Building a BinaryTree

G

Move temp to root’s right child

B F

temp

A C

BinaryTree.java

root

40

Building a BinaryTree

G

Add children

B F

temp

A C D E

BinaryTree.java

root

41

Building a BinaryTree

G

• Print tree from root
• Implicitly calls toString()
• Will define in a few slides
• Note: Nodes are not required

to be in alphabetical order in
this tree (check F and E)

B F

temp

A C D E

G
 B
 A
 C
 F
 D
 E

BinaryTree.java

root

ANNOTATED SLIDES
BinaryTree.java – size

42

43

Use recursion to calculate tree size from
any given node = size of both children +1

One to account for this node

Ask each child to return its size
and add to num

hasLeft() and hasRight() return
true if node has those children
Only make recursive call if node

 has child

Return size of this subtree
If leaf node, will return 1
Recursion will then “bubble up” until it gets back to the original
node on which size() was called
In that node num will then have the size of the entire subtree

BinaryTree.java size() returns the number of nodes in the (sub) tree

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

Call size() on root node
BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

10

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

10

• Has left child
• Make recursive call on left child

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

10

5

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

105

• Has left child
• Make recursive call on left child

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

num=1

105

2

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

num=1

1052

• No children

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1

num=1

• No children
• Return 1 back to node 5

105

2

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=1+1=2

105

• Increment num on Node 5

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2

10

5

• Has right child
• Make recursive call on right child

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2

num=110

5

7

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2

• No children
• Return 1 back to node 5

num=110

5

7

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=2+1=3

10

Increment num on Node 5

5

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1

num=3

• Node 5 is done
• Return 3 to root

10

5

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=1+3=4

• Increment num on root

10

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

10

• Has right child
• Make recursive call on right child

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

10

25

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

10

25

• Has left child
• Make recursive call on left child

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

num=1

10

25

13

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1

num=1

• No children
• Return 1 back to Node 25

10

25

13

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=1+1=2

10

25

• Increment num on Node 25

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2

1025

• Has right child
• Make recursive call on right child

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2

num=1

1025

18

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2

num=1

1025

18

• No children
• Return 1 to Node 25

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=2+1=3

• Increment num on Node 25

1025

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4

num=3

• Node 25 is done
• Return 3 back to root

10

25

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=4+3=7

10

Increment num on root

BinaryTree.java

Use recursion to calculate tree size from
any given node = size of both children +1

10

5

2 7

25

13 18

num=7

Done!
Return 7

10

BinaryTree.java

72

height() uses a similar recursive strategy to
calculate the longest path to a leaf

BinaryTree.java • Height is the number of edges on the
longest path from root to leaf

• By convention, a tree with one node (a leaf
by definition) has height 0

• Recursively compute the height on
the left and right child

• Keep the max

• Add one for this node
• This node isn’t a leaf because if it was

it would have returned zero in line 89Height 0 Height 1 Height 2

ANNOTATED SLIDES
BinaryTree.java – equalsTree

73

74

equalsTree() uses recursion to see if two
trees have same data and structure

BinaryTree.java To see if two trees are equal, can we just check
if tree1 == tree2?
No, that would only check to see if they are at
the same memory address
Instead we traverse the tree, comparing node
by node with the tree passed in as a parameter

First check if same number number
of children

Next compare data is the same in
each node

Finally, ask each child to compare
itself

Trees are equal if same
shape and same data

Right way to
compare objects is
the equals() method

ACCUMULATORS PATTERN

75

The fringe of a tree is the list of leaves in order from left to right
Here the fringe is [2, 7, 13, 18]
An efficient way to compute the fringe is to traverse the Tree
and use an accumulator (course web page talks about an
inefficient solution)
An accumulator keeps track of a variable during recursion

76

Accumulators are commonly used with
trees for efficient operations

10

5

2 7

25

13 18

ANNOTATED SLIDES
BinaryTree.java – fringe

77

78

fringe() uses an accumulator pattern to get
the leaves in order

BinaryTree.java fringe() method creates a variable f
that will be used to accumulate
results of tree traversal

Here we create a new ArrayList f as
the accumulator, then pass it to a
helper function that does recursion

Helper function uses
accumulator during
recursion
Node data added to

fringe if leaf

NOTE: addFringe() does not have a return value, it doesn’t need one!
Descend recursively

After addToFringe() completes,
f has fringe of Tree

79

fringe() uses an accumulator pattern to get
the leaves in order

BinaryTree.java • Why use a helper method here?
• Why not just recursively call

fringe()?
• Because we’d new an ArrayList

at each recursive call
• Here we create a new ArrayList

in fringe() and pass it to
addToFringe()

• addToFringe updates ArrayList
 as it goes

• More notes on course web page

ANNOTATED SLIDES
BinaryTree.java – toString

80

Similarly, toString() uses an accumulator to
create a String representation of the tree

BinaryTree.java toString() called by Java if object
is in println statemen
Want to print Tree indented by

level
 G G
 / \ B
 B F => A
 / \ / \ C
 A C D E F
 D
 E

Note: toString() doesn’t take a parameter
How can we keep an accumulator?
Use a helper method!

Idea: keep an accumulator of
how many spaces to indent

Similarly, toString() uses an accumulator to
create a String representation of the tree

BinaryTree.java toString() passes empty indent
accumulator String to helper
function

indent will be the number of
spaces before element so that
String output looks like a tree
(e.g., first level not indented,
second level indented 2 spaces,
third level indented 4 spaces…)

Helper function does recursion
using indent variable

Adds 2 extra spaces to indent every
time go down a level in treeNOTE: “\n” means new line

Add indent spaces and data from this node to String

83

Similarly, toString() uses an accumulator to
create a String representation of the tree

G

B

A C

F

D E

Output of System.out.println(tree)
G
 B
 A
 C
 F
 D
 E

Tree

Each level in tree printed
two spaces indented from
parent level in tree

Each time toString()
descended a level, it
added two spaces to
indent

DIFFERENT TREE TRAVERSALS
preorder

84

85

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

preorder()
 visit
 left.preorder()
 right.preorder()

Examples:
File directory structure
Table of contents in book
toString()

“visit” means
“handle this
node”, might print
it, might do
something else

86

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

87

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

88

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

89

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

90

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

91

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

92

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

93

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

94

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

95

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

96

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

97

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

98

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Visited
1, 2, 4, 5, 3, 6, 7

Examples:
File directory structure
Table of contents in book
toString()

preorder()
 visit
 left.preorder()
 right.preorder()

DIFFERENT TREE TRAVERSALS
postorder

99

100

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

postorder()
 left.postorder()
 right.postorder()
 visit

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

101

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

postorder()
 left.postorder()
 right.postorder()
 visit

102

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

postorder()
 left.postorder()
 right.postorder()
 visit

103

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

postorder()
 left.postorder()
 right.postorder()
 visit

104

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4

postorder()
 left.postorder()
 right.postorder()
 visit

105

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4

postorder()
 left.postorder()
 right.postorder()
 visit

106

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4

postorder()
 left.postorder()
 right.postorder()
 visit

107

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5

postorder()
 left.postorder()
 right.postorder()
 visit

108

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5

postorder()
 left.postorder()
 right.postorder()
 visit

109

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

110

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

111

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

112

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2

postorder()
 left.postorder()
 right.postorder()
 visit

113

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6

postorder()
 left.postorder()
 right.postorder()
 visit

114

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6

postorder()
 left.postorder()
 right.postorder()
 visit

115

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6

postorder()
 left.postorder()
 right.postorder()
 visit

116

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6, 7

postorder()
 left.postorder()
 right.postorder()
 visit

117

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6, 7, 3

postorder()
 left.postorder()
 right.postorder()
 visit

118

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Compute disk space (not
sure how many bytes in
each directory until you
search all children)

Visited
4, 5, 2, 6, 7, 3, 1

postorder()
 left.postorder()
 right.postorder()
 visit

DIFFERENT TREE TRAVERSALS
inorder

119

120

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

inorder()
 left.inorder()
 visit
 right.inorder()

Example:
Drawing a tree

121

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

inorder()
 left.inorder()
 visit
 right.inorder()

122

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

inorder()
 left.inorder()
 visit
 right.inorder()

123

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4

inorder()
 left.inorder()
 visit
 right.inorder()

124

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2

inorder()
 left.inorder()
 visit
 right.inorder()

125

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5

inorder()
 left.inorder()
 visit
 right.inorder()

126

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5

inorder()
 left.inorder()
 visit
 right.inorder()

127

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1

inorder()
 left.inorder()
 visit
 right.inorder()

128

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1

inorder()
 left.inorder()
 visit
 right.inorder()

129

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1

inorder()
 left.inorder()
 visit
 right.inorder()

130

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1, 6

inorder()
 left.inorder()
 visit
 right.inorder()

131

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1, 6, 3

inorder()
 left.inorder()
 visit
 right.inorder()

132

There are different ways to traverse a tree,
depending on what needs to be done

1

2

4 5

3

6 7

Example:
Drawing a tree

Visited
4, 2, 5, 1, 6, 3, 7

inorder()
 left.inorder()
 visit
 right.inorder()

