
CS 10:
Problem solving via Object Oriented

Programming

Hierarchies 2: BST

2

Main goals

• Implement binary search trees
• Implement find
• Implement insert
• Implement delete

• Analyze Binary Search Trees

3

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

4

Binary search on an array

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512
Index
Data

Pseudo code
Looking for target = 53
Set min = 0, max = n-1
While (min <= max) {

idx = (min + max)/2
If array[idx] == target
 return idx
else if array[idx] > target

max = idx-1
else

min = idx +1
}

Complexity?

On paper run

5

We can extend binary search to find a Key
and return a Value

0 1 2 3 4 5 6 7 8

1 5 9 14 25 53 107 214 512
Index

Student ID

“Alice”

“Bob”

“Charlie
”

…

Key: Student ID, Value: Student name

6

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

7

BST nodes have a Key and a Value

Key: 5
Value:

Bob

Key: 1
Value:
Alice

Key: 9
Value:
Charlie

Key: Student ID, Value: Student name

Note: Will only show the Key in following slides

8

Binary Search Trees (BSTs) allow for binary
search by keeping Keys sorted

D

B

A C

F

E G

Keys sorted in Binary Search Tree

Binary Search Tree property
• Let x be a node in a binary

search tree such that
• left.key < x.key
• right.key > x.key

• We will maintain this property
for all nodes in the BST as we
add/remove

• We will assume for now
duplicate Keys are not allowed

9

BSTs with same keys could have different
structures and still obey BST property
Two valid BSTs with same keys but different structure

Tree 1 Tree 2

D

B

A C

F

E G

C

A

B

E

D F

G

10

BSTs make searching fast and simple

D

B

A C

F

E G

Find Key

Find Key “C”

11

BSTs make searching fast and simple

D

B

A C

F

E G

Find Key

Find Key “C”

12

BSTs make searching fast and simple

D

B

A C

F

E G

Find Key

Find Key “C”

13

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

14

BST takes at most height+1 checks to find
Key or determine the Key is not in the tree

D

B

A C

F

E G

Find Key “C”

h=2

Height

Can we say
O(log(n))?

15

BSTs do not have to be balanced! Can not
make tight bound assumptions! (yet)

A

B

Find Key “G”

h=6

Height

C

D

E

F

G

16

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

17

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)
• If found, replace Value
• If hit end, add new node as left or right child of leaf

18

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)
• If found, replace Value
• If hit end, add new node as left or right child of leaf

Searching for H

19

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)
• If found, replace Value
• If hit end, add new node as left or right child of leaf

Searching for H

20

Inserting a new Key/Value is easy
(compared with sorted array)

D

B

A C

F

E G

Inserting new node with Key H

Comments
• Search for Key (H)
• If found, replace Value
• If hit end, add new node as left or right child of leaf

D

B

A C

F

E G

H

21

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A
• If found and A has no children, set appropriate left or right

to null on parent

Deleting node A (no children)

22

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A
• If found and A has no children, set appropriate left or right

to null on parent

Deleting node A (no children)

Search for parent of A

23

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A
• If found and A has no children, set appropriate left or right

to null on parent

Deleting node A (no children)

B is
parent
of A

Search for parent of A

24

Deletion is trickier, need to consider
children, but no children is easy

D

B

A C

F

E G

Comments
• Search for parent of A
• If found and A has no children, set appropriate left or right

to null on parent

Deleting node A (no children)

B is
parent
of A

D

B

C

F

E G

Set child of
parent to
null

A is garbage
collected

What
happens to

A?

25

Deleting with one child is not difficult
Deleting node B (1 child)

D

B

C

F

E G

Comments
• Search for parent of B
• If found and B has 1 child, set appropriate left or right on

parent to B’s only child

26

Deleting with one child is not difficult
Deleting node B (1 child)

D

B

C

F

E G

Comments
• Search for parent of B
• If found and B has 1 child, set appropriate left or right on

parent to B’s only child

D is
parent
of B

27

Deleting with one child is not difficult
Deleting node B (1 child)

D

B

C

F

E G

Comments
• Search for parent of B
• If found and B has 1 child, set appropriate left or right on

parent to B’s only child

D is
parent
of B

D

C F

E GB is
garbage
collected

28

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E G

Deleting node F (2 children)

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

29

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E G

Deleting node F (2 children)

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

30

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E G

Deleting node F (2 children)

Found F
Successor is smallest on right (G here)

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

31

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E

Deleting node F (2 children)

Found F
Successor is smallest on right (G here)
Delete successor

G

32

Deleting node with 2 children requires
finding the node’s “successor”

D

C F

E

Deleting node F (2 children)

Found F
Successor is smallest on right (G here)
Delete successor
Replace F Key and Value with G Key and Value

G

Comments
• Search for F
• If found and F has 2 children, find successor (smallest on right)
• Successor will be greater than E and less than or equal to G
• May have to traverse down right child’s left descendants
• Delete successor, but save successor's Key and Value
• Replace F with Key and Value of successor

33

PS-2

https://www.cs.dartmouth.edu/cs10/PS-2.html

Example of applications

Implement quadtree

Source: wikipedia

Source: [Yahja et al., 1998, ICRA]

Robot path planning

Image compression

https://www.cs.dartmouth.edu/cs10/PS-2.html

34

Agenda

1. Binary search

2. Binary Search Trees (BST)

3. BST find analysis

4. Operations on BSTs

5. Implementation

35

Binary Search Tree with Key and Value –
Key extends comparable
BST.java

/**
 * Compare this blob with another blob
 * @param comparePoint point to compare to this point
 * @return 0 if same,
 * 1 if this point is higher up than comparePoint,
 * -1 otherwise */
public int compareTo(PointWithCompareTo comparePoint) {
 if (this.y < comparePoint.getY())
 return 1; //this Point is higher up, so it’s bigger
 else if (this.y > comparePoint.getY())
 return -1; //this Point is lower, so it’s smaller
 else return 0; //at same height, so same
}

36

Need to implement compareTo() if using
custom class as Key

In Class declaration add
“implements Comparable” so
Java knows class follows
interface (not shown)

PointWithCompareTo.java
If you use your own class as a Key, then must implement compareTo()
Can’t use your class as Key in BST.java if you do not

• Return values not limited to just -1, 0 or 1
• Only need to be negative, positive or zero integers

• Compare this Point with another
Point using whatever metric you
decide makes one bigger

• Return a positive integer if this
Point > compared Point

• Return negative integer if this
Point < compared Point

• Return 0 if equal

37

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

t= Node “D”
V value = t.find(“C”)

On paper run

38

Comparable also helps inserting new
Nodes
BST.java

39

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

40

Summary

• Binary search tree is very powerful for binary
search and differently from arrays, BST can be
easily modified
– It has more efficient look-up than lists

• Information retrieval

41

Next

Additional Resources

42

ANNOTATED SLIDES
PointWithCompareTo.java

43

/**
 * Compare this blob with another blob
 * @param comparePoint point to compare to this point
 * @return 0 if same,
 * 1 if this point is higher up than comparePoint,
 * -1 otherwise */
public int compareTo(PointWithCompareTo comparePoint) {
 if (this.y < comparePoint.getY())
 return 1; //this Point is higher up, so it’s bigger
 else if (this.y > comparePoint.getY())
 return -1; //this Point is lower, so it’s smaller
 else return 0; //at same height, so same
}

44

Need to implement compareTo() if using
custom class as Key

In Class declaration add
“implements Comparable” so
Java knows class follows
interface (not shown)

PointWithCompareTo.java
If you use your own class as a Key, then must implement compareTo()
Can’t use your class as Key in BST.java if you do not

• Return values not limited to just -1, 0 or 1
• Only need to be negative, positive or zero integers

• Compare this Point with another
Point using whatever metric you
decide makes one bigger

• Return a positive integer if this
Point > compared Point

• Return negative integer if this
Point < compared Point

• Return 0 if equal

ANNOTATED SLIDES
BST.java

45

46

Binary Search Tree nodes each take a Key
and Value, also have left and right children
BST.java

47

BST Keys extend Comparable so we can
evaluate generic Keys
BST.java

ANNOTATED SLIDES
BST.java - find

48

49

Using Comparable makes finding a Key in a
BST easy
BST.java

50

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

t= Node “D”

51

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

52

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” < “D”
compare = -1

53

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” < “D”
compare = -1
Traverse left

54

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” > “B”
compare = 1

B

55

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” > “B”
compare = 1
Traverse right

B

56

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” = “C”
compare = 0

B

C

57

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

“C” = “C”
compare = 0
Return Value of node “C”

B

C

58

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

Return Value of node C

B

Value of node “C”

59

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

D

Return Value of node C
Value of node “C”

60

Using Comparable makes finding a Key in a
BST easy
BST.java

D

B

A C

F

E G

V value = t.find(“C”)

Done
Value of node “C”
returned

Value of node “C”

ANNOTATED SLIDES
BST.java - insert

61

62

Comparable also helps inserting new
Nodes
BST.java Inserting new K key and V value

63

Comparable also helps inserting new
Nodes
BST.java Inserting new K key and V value

• If find key, replace it’s value

64

Comparable also helps inserting new
Nodes
BST.java

• Traverse left if key < this
node’s key

• If no left child, create a
new node as the left child

Inserting new K key and V value
• If find key, replace it’s value

65

Comparable also helps inserting new
Nodes
BST.java

• Traverse right if
key > this node’s
key

• If no right child,
create a new Node
as the right child

• Traverse left if key < this
node’s key

• If no left child, create a
new node as the left child

Inserting new K key and V value
• If find key, replace it’s value

66

Comparable also helps inserting new
Nodes
BST.java

D

BST<String, Integer> t = new BST<String, Integer>(“D”,v1);

67

Comparable also helps inserting new
Nodes
BST.java

DB

t.insert(“B”,v2);

68

Comparable also helps inserting new
Nodes
BST.java

DB

D “B” < “D”
compare = -1

t.insert(“B”,v2);

69

Comparable also helps inserting new
Nodes
BST.java

D

“B” < “D”
compare = -1
No left child
Add “B” as left

D

B

t.insert(“B”,v2);

70

Comparable also helps inserting new
Nodes
BST.java t.insert(“C”,v3)

D “C” < “D”
compare = -1

D

B

C

71

Comparable also helps inserting new
Nodes
BST.java

D

“C” < “D”
compare = -1
Has left
traverse left

D

B

C

t.insert(“C”,v3)

72

Comparable also helps inserting new
Nodes
BST.java

D

“C” > “B”
compare = 1

D

B

C

B

t.insert(“C”,v3)

73

Comparable also helps inserting new
Nodes
BST.java

D

“C” > “B”
compare = 1
No right child
Add “C” as
right

D

B

C

B

t.insert(“C”,v3)

74

Comparable also helps inserting new
Nodes
BST.java

“C” > “B”
compare = 1
No right child
Add “C” as
right

B ends

D

B

C

B

D

t.insert(“C”,v3)

75

Comparable also helps inserting new
Nodes
BST.java

D

“C” > “B”
compare = 1
No right child
Add “C” as
right

B ends
D ends

D

B

C

t.insert(“C”,v3)

76

Comparable also helps inserting new
Nodes
BST.java

“C” > “B”
compare = 1
No right child
Add “C” as
right

B ends
D ends

Done

D

B

C

t.insert(“C”,v3)

ANNOTATED SLIDES
BST.java - delete

77

78

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java Delete node with Key search

Return updated tree (or throw
exception if Key not found)

79

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

A C

F

E G

t = Node “D”

80

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

A C

F

E G

t = t.delete(“A”)

81

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Search for “A”

D

82

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Search for “A”

D

83

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Search for “A”

D
B

84

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Found “A”

A

D
B

85

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

Return right
(null)

A

D
B

86

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

A C

F

E G

B.left = null

DB

87

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

B.left = null

DB

88

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

B.left = null
Return self

D

B

89

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

D.left = B

D

90

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

D.left = B
Return self

D

91

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

t = t.delete(“A”)

D

B

C

F

E G

D.left = B
Return self

D

92

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = Node “D”

93

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

94

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D

Search for “B”

95

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D

Found “B”

B

96

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D

Found “B”
Return C

B

97

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

B

C

F

E G

t = t.delete(“B”)

D.left = C

D

98

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“B”)

D

D.left = C

99

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“B”)

D

D.left = C
Return self

100

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = Node “D”

101

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Search for “F”

102

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Search for “F”
Found F

F

103

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Find successor
Smallest on

right

F

104

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Find successor
Smallest on

right is G

F

105

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Delete G
F

106

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

F

E G

t = t.delete(“F”)

D

Delete G
F.right=G.right

(null)

F

107

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E G

t = t.delete(“F”)

D

F.key=G.key
F.Value=G.value

F

108

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E G

t = t.delete(“F”)

D

Return F Node
now with G’s

key/valueF

109

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E

t = t.delete(“F”)

D

D.right = G

110

Deleting a Node removes it from the tree
and returns updated tree to caller
BST.java

D

C

G

E

t = Node “D”

Return D

