
Clebsch Gauge Fluid

SHUQI YANG, Dartmouth College
SHIYING XIONG∗, Dartmouth College
YAORUI ZHANG, Dartmouth College
FAN FENG, Dartmouth College
JINYUAN LIU, Dartmouth College
BO ZHU, Dartmouth College

Fig. 1. Our Clebsch gauge method can be used to simulate various fluid scenarios, including complex vortex filaments dynamics (Left: leapfrogging and
oblique ring collision), fluids with different obstacles (Middle: smoke simulation), and surface-tension flow with turbulence (Right: flowing water simulation).

We propose a novel gauge fluid solver based on Clebsch wave functions to
solve incompressible fluid equations. Our method combines the expressive
power of Clebsch wave functions to represent coherent vortical structures
and the generality of gauge methods to accommodate a broad array of
fluid phenomena. By evolving a transformed wave function as the system’s
gauge variable enhanced by an additional projection step to enforce pressure
jumps on the free boundaries, our method can significantly improve the
vorticity generation and preservation ability for a broad range of gaseous and
liquid phenomena. Our approach can be easily implemented by modifying
a standard grid-based fluid simulator. It can be used to solve various fluid
dynamics, including complex vortex filament dynamics, fluids with different
obstacles, and surface-tension flow.

CCS Concepts: • Computing methodologies; • Modeling and simula-
tion;

Additional Key Words and Phrases: Gauge method, Clebsch wave function,
vorticity confinement, fluid simulation
∗Corresponding author

Authors’ addresses: Shuqi Yang, Computer Science Department, Dartmouth College,
shuqi.yang.gr@dartmouth.edu; Shiying Xiong, Computer Science Department, Dart-
mouth College, shiying.xiong@dartmouth.edu; Yaorui Zhang, Computer Science De-
partment, Dartmouth College, yaorui.zhang.gr@dartmouth.edu; Fan Feng, Computer
Science Department, Dartmouth College, fan.feng.gr@dartmouth.edu; Jinyuan Liu,
Computer Science Department, Dartmouth College, jinyuan.liu.gr@dartmouth.edu; Bo
Zhu, Computer Science Department, Dartmouth College, bo.zhu@dartmouth.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART99 $15.00
https://doi.org/10.1145/3450626.3459866

ACM Reference Format:
Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu.
2021. Clebsch Gauge Fluid. ACM Trans. Graph. 40, 4, Article 99 (August 2021),
11 pages. https://doi.org/10.1145/3450626.3459866

1 INTRODUCTION
Generating and preserving coherent vortical structures are essential
for visual fluid simulations. A large variety of previous work in
the computer graphics community has been devoted to generate,
evolve, and enhance such visually attractive flow structures in a
numerical setting. The past efforts, albeit too extensive to conduct
a full survey here, can be categorized into three main directions
according to the mathematical equations they solved: (i) enhanc-
ing the vorticity-preserving capability of a standard or simplified
fluid solver by employing novel numerical techniques such as ad-
vection schemes and auxiliary data structures (e.g., see [Selle et al.
2008; Zhu and Bridson 2005]); (ii) solving a mildly modified version
of fluid equations by adding additional terms such as a vorticity-
confinement force (e.g., see [Fedkiw et al. 2001; Foster and Fedkiw
2001]), or solving a new set of equations exhibiting visually con-
gruent flow behaviors such as the incompressible Schrödinger’s
equations [Chern et al. 2016]; (iii) solving a transformed version
of the standard fluid velocity equations by evolving a new set of
variables (e.g., evolving vorticity in a vortex methods [Brochu et al.
2012; Pfaff et al. 2012; Weißmann and Pinkall 2010]), which can be
transformed back to the flow velocity at the end of each timestep.
Among these three, the third category is of particular interest to
computer graphics researchers because of their potential of a trans-
formed variable in better representing the visually important flow
features during the system’s evolution. Such methods were under-
stood as a type of "gauge methods" in the computational physics

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459866
https://doi.org/10.1145/3450626.3459866

99:2 • Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu

community (see [Saye 2016, 2017a,b] for example), where the re-
searchers have established a broad array of numerical paradigms to
solve the different versions of the gauge-transformed Navier-Stokes
equations to leverage their particular strengths in capturing and
preserving different types of flow features.
Clebsch maps are one of the mathematical representations ex-

hibiting outstanding expressive power in representing the vorti-
cal flow, which was introduced to the computer graphics commu-
nity by Chern et al. [2016] in their pioneering work of adopting
a Schrödinger solver for visual fluid simulation. The definition of
Clebsch maps dates back to 1859 [Clebsch 1859], which encodes
both velocity and vorticity into a bunch of evolving scalar fields. The
spherical Clebsch mapping exhibits its unique strengths in conserv-
ing coherent vortical structures over the course of incompressible
flow evolution because the wave function field fully encodes the
"helical" vortex surfaces (e.g., tubes or sheets) during the flow evolu-
tion. We refer readers to Section 3.1, Appendix A, and [Chern et al.
2017, 2016] for a detailed mathematical description of the Clebsch
wave function.

This paper devises a gauge fluid solver centered around Clebsch
wave functions to solve incompressible Euler equations. Our work is
motivated by both Chern et al. [2016] and the recent advances made
by Robert Saye [2016] on developing interfacial gauge methods. We
demonstrate in our method that Clebsch wave functions can be used
as a new type of gauge variables to preserve temporally coherent vor-
tical flow structures. By introducing two groups of gauge variables
into a grid-based fluid solver, our method extends the application
scope of Clebsch wave functions from the numerical Schrödinger
equations to a broader horizon of general fluid simulation problems,
including examples of smoke, water, and surface-tension flow in
particular. Our new gauge-based PDE solver combines computa-
tional merits of both the vorticity expressiveness of the Clebsch
wave functions and the versatility of the gauge fluid framework.
On the implementation side, our method can be programmed by
directly modifying a standard grid-based fluid simulator [Fedkiw
et al. 2001] that has been well understood and extensively practiced
in the computer graphics community.
To summarize, we list our technical contributions as follows:

• We introduced the first Clebsch gauge method to solve the
incompressible Euler equations.

• We devised the first Clebsch wave function representation
to unify the gaseous and free-surface fluid simulations, with
additional support to surface-tension flow.

• We established a new type of gauge framework to capture and
evolve coherent vortical structures in incompressible flow.

2 RELATED WORKS
Vorticity-Preserving Fluid Simulation. Stam [1999] introduced an

unconditionally stable fluid simulation solver to computer graph-
ics based on semi-Lagrangian advection. Following this pioneering
work, different approaches have been developed to alleviate the
dissipation and recover the damped flow details. The first category
is to design the numerical schemes for advection, such as MacCor-
mack [Selle et al. 2008], BFECC [Kim et al. 2005], PIC/FLIP [Fu et al.
2017; Jiang et al. 2015; Zhu and Bridson 2005], BiMocq [Qu et al.

2019], and energy-conserving [Mullen et al. 2009], to name just
a few. In particular, Zhu and Bridson [2005] adapt Fluid-Implicit-
Particle (FLIP) method [Brackbill and Ruppel 1986] by interpolating
the change of the flow from the grid to reduce diffusion, which
opens the door for a series of hybrid particle-grid schemes to con-
serve flow details (see [Boyd and Bridson 2012; Ding et al. 2020;
Fu et al. 2017; Gagniere et al. 2020; Jiang et al. 2015] for example).
Another category of methods is to modify the fluid equations, e.g.,
by adding additional force terms to preserve vorticities. In [Fedkiw
et al. 2001], a vorticity-confinement force is derived from the local
flow field and added as an artificial term to preserve the vorticity.
Foster and Fedkiw [2001] extend this method to fluid simulation by
using a level-set to simulate free-surface flow. Kim et al. [2008] use
the wavelet decomposition to find missing high-frequency compo-
nents and synthesize them back to the velocity field. Bridson et al.
[2007] generate turbulent velocity fields based on Perlin noise. Re-
cently, Chern et al. [2016] opened another direction for vortical flow
simulation by solving Schrödinger’s equation exhibiting visually
appealing vortical details.

Vortex Methods. The essential idea of gauge methods is to intro-
duce a set of intermediate variables to reformulate the fluid equa-
tions. Vortex methods devise the vorticity as the gauge variable
and rewrite the fluid equations into their vorticity-velocity form
[Brochu et al. 2012; Pfaff et al. 2012; Weißmann and Pinkall 2010]. By
advecting vorticity directly, these solvers naturally preserve circula-
tion within the fluid (e.g., see [Cottet et al. 2000]). Vorticity methods
usually rely on Lagrangian elements to evolve the flow features, for
instance, particles [Cottet et al. 2000; Leonard 1980; Park and Kim
2005], filaments [Angelidis and Neyret 2005; Weißmann and Pinkall
2010], and sheets [Brochu et al. 2012; Stock et al. 2008]. Vorticity
can also be used as a primary variable to improve the mesh-based
Eulerian simulation [Elcott et al. 2007], which inspires Zhang et al.
[2015] to use vorticity directly in existing grid-based solvers. The
drawbacks of vorticity modeling lie in the difficulties of geometric
managements and boundary treatments of certain types. Many re-
cent approaches are of a hybrid fashion, either by using grids to
improve pure Lagrangian methods [Koumoutsakos et al. 2008], or
by integrating Lagrangian elements into existing grid-based solvers
[Kim et al. 2009; Pfaff et al. 2012; Selle et al. 2005].

Gauge Methods. The general gauge method was introduced back
in [Oseledets 1989] by rewriting the Navier-Stokes equations into its
Hamiltonian formula. Different choices of the gauge variables lead
to different gauge forms of the Navier-Stokes equations, for instance,
impulse method in [Summers and Chorin 1996], velicity method
in [Buttke 1993], magnetization variable in [Buttke and Chorin
1993], impetus term in [Maddocks and Pego 1995] and continuous
projection form in [Liu et al. 2004]. In our work, we define a new
type of gauge, the Clebsch gauge, as the primary variable in our
grid-based solver. The flexibility of choosing the gauge variable
also allows us to treat complicated boundary conditions as well
as to enhance the solver’s stability and accuracy. Summers [2000]
use the impulse formulation to represent boundary viscous flow at
no-slip walls. E and Liu [1997] design finite difference schemes in
the velocity-impulse formulation with better stability. Donev et al.
[2014] introduce a gauge formulation that casts the evolution of a

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

Clebsch Gauge Fluid • 99:3

constrained system as a nonlocal unconstrained system. The most
recent progress in this community includes Robert Saye’s works
[Saye 2016, 2017a,b] which develop a series of gauge methods for
multiphase fluid flow problems with large interfacial discontinuity.
Based on the discontinuous Galerkin framework, different choices of
the gauge with appropriate boundary handling have been proposed
for various types of fluid problems. In this work, we combine some
of the boundary treatment techniques from Saye’s work with our
Clebsch gauge formulation.

Clebsch Maps. Clebsch [1859] introduces a vector representation,
established as a Lagrangian and Hamiltonian description of fluid
in the Eulerian reference frame (also see [Lamb 1932]). Clebsch po-
tentials contain important geometric information of the flow fields,
such as closed integral curves of the associated vorticity field are
level lines of the vorticity Clebsch potentials [He and Yang 2016;
Xiong and Yang 2020], providing an appealing perspective for fluid
visualization [Kotiuga 1991; Kuz’min 1983], analysis [Jeong and Hus-
sain 1995] and simulation [Brandenburg 2010; Cartes et al. 2007].
However, original Clebsch maps cannot represent knotted fields
with non-vanishing helicity, and they may not exist near points with
vanishing vorticity [Graham and Henyey 2000]. Some scholars use
multi-component Clebsch variables to describe flow fields with non-
zero helicity [Cartes et al. 2007; Graham and Henyey 2000; Zakharov
and Kuznetsov 1997]. However, this yields no accessible represen-
tations of the vortex lines and surfaces. Chern et al. [2017, 2016]
propose spherical Clebsch maps, which could not only represent
the velocity-vorticity field with non-trivial helicity but also contain
important geometric information of the vorticity field. Given the
vorticity spherical Clebsch potentials are exactly the vortex surface
fields, they can be used as the initial conditions for the evolution
of vortex surfaces in the Lagrangian-like study of vortex dynamics
[Xiong and Yang 2017, 2019; Yang and Pullin 2011; Zhao et al. 2018,
2016]. In addition, a series of fluid representation methods can be
written in the spherical Clebsch forms such as rational maps [Kedia
et al. 2016] and exponential maps [Smiet et al. 2017, 2015]. Our
gauge transformation is based on the spherical Clebsch maps.

3 CLEBSCH GAUGE METHOD
In this section, we devise the gauge transformation of the incom-
pressible Euler equations using the Clebsch wave functions defined
in the previous section. Without loss of generality, we consider solv-
ing an incompressible flow problem in region 𝒙 ∈ Ω with the free
surface 𝜕Ω𝑓 and the solid wall 𝜕Ω𝑏 . Our physical model incorpo-
rates most of the essential ingredients for an incompressible solver
used in computer graphics, including solid boundaries, gravity, in-
terface, and surface tension. Each ingredient can be omitted easily
according to a different simulation setting.

3.1 Spherical Clebsch wave functions
Wave function. Mathematically, a spherical Clebsch mapping rep-

resents a velocity field 𝒖 using a normalized wave function com-
posed of two complex numbers:

𝝓 = (𝜙1, 𝜙2)𝑇 = (𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖)𝑇 , with ⟨𝝓, 𝝓⟩R = 1. (1)

Table 1. Notations Table

Notation Definition
𝝓 ∈ C2/R4 Clebsch wave function 𝝓 = (𝜙1, 𝜙2)𝑇

𝝍 ∈ C2/R4 Gauge wave function 𝝍 = 𝝓𝑒𝑖𝜑/ℏ

𝝍 Conjugate of 𝝍
Δ𝝍 Laplacian of 𝝍
⟨𝝓, 𝝍⟩C 𝜙1𝜓1 + 𝜙2𝜓2
⟨𝝓, 𝝍⟩R Re(𝜙1𝜓1 + 𝜙2𝜓2)
𝒖 ∈ R𝑑 Physical velocity
𝒖𝑚 ∈ R𝑑 𝝍-mapped velocity: 𝒖𝑚 = ℏ ⟨∇𝝍, 𝑖𝝍⟩R
𝒖∗𝑚 ∈ R𝑑 Intermediate velocity after blending
𝒖𝑞 ∈ R𝑑 Intermediate velocity after surface tension
𝑞 ∈ R Auxiliary variable for free-surface b.c.
𝜑 ∈ R Auxiliary variable for incompressibility
ℏ ∈ R The parameter for vorticity strength
𝛼 ∈ R The parameter for 𝝍 partial projection
𝛽 ∈ R The parameter for velocity blend

The mapping from a wave function field 𝝓 to a velocity field 𝒖 can
be expressed using the following mapping operator [Chern et al.
2016]:

𝒖 = ℏ ⟨∇𝝓, 𝑖𝝓⟩R , (2)

with ⟨𝝓, 𝝍⟩R = Re(𝜙1𝜓1 + 𝜙2𝜓2) and the constant ℏ as a tunable
parameter specifying the quantization of vorticity.

Gauge transformation. For a wave function 𝝓, the gauge transfor-
mation is defined as:

𝝍 = 𝝓𝑒𝑖𝜑/ℏ, (3)
where 𝜑 is a scalar gauge variable. We showed in Appendix A that
this transformation satisfies gauge invariance because both 𝝍 and
𝝓 corresponds to the same vorticity field. In addition, the gauge
transformation of velocity 𝒖 → 𝒖 +∇𝜑 amounts to the gauge trans-
formation of the wave function 𝝓 → 𝝓𝑒𝑖𝜑/ℏ. The incompressibility
condition enforced on velocity ∇ · 𝒖 = 0 amounts to ⟨𝑖𝝓,Δ𝝓⟩R = 0
enforced on wave functions.

3.2 Euler equations
We write the incompressible Euler equations with gravity, surface
tension, and boundary conditions as:

𝐷𝒖

𝐷𝑡
= −∇

(
𝑝

𝜌
−𝐺

)
, 𝒙 ∈ Ω,

∇ · 𝒖 = 0, 𝒙 ∈ Ω,

𝒖 · 𝒏 = 𝒖𝜕 · 𝒏, 𝒙 ∈ 𝜕Ω𝑏 ,

𝑝 = 𝛾𝜅, 𝒙 ∈ 𝜕Ω𝑓 .

(4)

Here, 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝒖 · ∇ is the material derivative, 𝒖 is velocity, 𝑝
is pressure, 𝜌 is density, 𝒖𝜕 is the velocity of the solid boundary 𝜕Ω𝑏 ,
𝛾 is surface tension, and 𝜅 is the interface curvature. The surface
tension on the interface is modeled as the pressure jump due to
the local curvature. We use 𝐺 = 𝐺 (𝒙) = 𝒈 · 𝒙 as the gravitational
potential. The fluid viscosity is introduced by the numerical scheme

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

99:4 • Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu

rather than by (4). The four equations in (4) are the momentum
conservation equation, the divergence-free condition, the Neumann
boundary condition on the solid boundary, and the Dirichlet bound-
ary condition with a pressure jump on the free surface.

3.3 Euler equations with Clebsch wave functions
Next, we show how to rewrite Equation (4) using Clebsch wave
functions. Substituting the wave-velocity mapping 𝒖 = ℏ ⟨∇𝝓, 𝑖𝝓⟩R
defined in Equation (2) into Equation (4) yields:

𝐷𝝓

𝐷𝑡
= −𝑖 1

ℏ

(
𝑝

𝜌
−𝐺 − |𝒖 |2

2

)
𝝓, 𝒙 ∈ Ω,

𝒖 = ℏ ⟨∇𝝓, 𝑖𝝓⟩R , 𝒙 ∈ Ω,

⟨𝑖𝝓,Δ𝝓⟩R = 0, 𝒙 ∈ Ω,

ℏ ⟨∇𝝓, 𝑖𝝓⟩R · 𝒏 = 𝒖𝜕 · 𝒏, 𝒙 ∈ 𝜕Ω𝑏 ,

𝑝 = 𝛾𝜅, 𝒙 ∈ 𝜕Ω𝑓 .

(5)

The first row in Equation (5) corresponds to a transformed mo-
mentum conservation law with wave functions. The second line
is the wave-velocity mapping. The third line is the transformed
divergence-free condition. The fourth line is the transformed Neu-
mann boundary condition on the solid boundary. And the last line
is the same Dirichlet boundary condition as in Equation (4). The
first equation in Equation (5) corresponds to Equation (9.13) (with
𝜖 = 0) in Chern [2017] but it additionally takes into account the
interfacial forces. We refer the readers to Section 9.3 in Chern [2017]
for a detailed derivation of the first equation in Equation (5).

3.4 Gauge transformation of Equation (5)
We use the gauge transformation of 𝝓 defined in Section 3.1 to derive
the gauge form of Equation (5). We introduce a gauge variable 𝜑 as
an auxiliary scalar field. By setting 𝝍 = 𝝓 exp(𝑖𝜑/ℏ) and at the same
time enforcing 𝜑 ’s Neumann boundary as 𝜕𝑛𝜑 = 0 for 𝒙 ∈ 𝜕Ω𝑏 and
𝜑 ’s Dirichlet boundary as 𝜑 = 0 for 𝒙 ∈ 𝜕Ω𝑓 (in order to not change
𝝓’s boundary conditions over the course of the transformation), we
can use the gauge wave function 𝝍 to rewrite Equation (5) as:

𝐷𝝍

𝐷𝑡
= − 𝑖

ℏ

[
𝑝

𝜌
− |𝒖 |2

2
−𝐺

]
𝝍, 𝒙 ∈ Ω,

𝒖𝑚 = ℏ ⟨∇𝝍, 𝑖𝝍⟩R , 𝒙 ∈ Ω,

Δ𝜑 = ∇ · 𝒖𝑚, 𝒙 ∈ Ω,

𝒖 = 𝒖𝑚 − ∇𝜑, 𝒙 ∈ Ω,

ℏ ⟨∇𝝍, 𝑖𝝍⟩R · 𝒏 = 𝒏 · 𝒖𝜕, 𝒙 ∈ 𝜕Ω𝑏 ,

𝜕𝑛𝜑 = 0, 𝒙 ∈ 𝜕Ω𝑏 ,

𝑝 = 𝛾𝜅, 𝒙 ∈ 𝜕Ω𝑓 .

(6)

The first line in Equation (6) is the gauge transformed momentum
conservation law. Lines 2-4 are the gauge transformed incompress-
ibility. We introduce another auxiliary variable 𝒖𝑚 as the 𝝍-mapped
physical counterpart velocity by employing the wave-velocity map-
ping defined in Equation (2) on the gauge variable 𝝍. Equations in
lines 2-4 present a projection algorithm to project the gauge wave
function to its physical counterpart from 𝝍 → 𝒖𝑚 → 𝒖. Specifically,
the equation in line 3 amounts to the standard Poisson equation we
have seen in a conventional projection step. Equations in lines 5-7

present the boundary conditions under the gauge wave function
setting similar to the ones defined in Equation (5).

Here we want to put a quick note on the role of 𝒖𝑚 : it behaves like
a gauge variable in a traditional sense (without introducing wave
functions) and acts as the physical avatar of the gauge wave function
𝝍. Whenever we need to calculate the interaction between 𝝍 and
other quantities in a physical space, we can first convert 𝝍 to 𝒖𝑚 and
exert the standard operations on 𝒖𝑚 . In our code implementation,
𝒖𝑚 is implemented as a standard vector field in R𝑑 that can be used
in standard operations such as the projection step.

3.5 Gauge form for free surface
To handle the normal stress balance on Ω𝑓 , we introduce a second
auxiliary variable 𝑞 (besides 𝜑) to handle the free-surface boundary
conditions. By putting together the terms within the parentheses of
the first lines in Equation (5) and Equation (6), we define

𝑞 =
𝑝

𝜌
− |𝒖 |2

2
−𝐺. (7)

Thanks to the gauge invariance of 𝑞, its Laplacian can be arbitrary
as the way 𝑞 affecting the physical field is via its gradient. Motivated
by Saye [2016], we solve a harmonic equation for 𝑞 to obtain one of
its smooth distributions satisfying the given boundary conditions:

Δ𝑞 = 0, 𝒙 ∈ Ω,

𝜕𝑛𝑞 = 0, 𝒙 ∈ 𝜕Ω𝑏 ,

𝑞 − 1
𝜌
𝛾𝜅 +

(
1
2
|𝒖 |2 +𝐺

)
= 0, 𝒙 ∈ 𝜕Ω𝑓 .

(8)

It is worth noting that Equation (8) is a typical Poisson system
with Neumann and Dirichlet boundary conditions. Both the surface
tension and the body force affect the system via the free-surface
boundary conditions (line 3 of Equation (8)), which enforce a strict
satisfaction of the free-surface boundary conditions. Solving a har-
monic field was a recent numerical technique introduced by Robert
Saye in his interfacial gauge method [Saye 2016] (see Equation 7 in
his paper) to incorporate interfacial forces into a gauge framework.
We leverage this numerical scheme in our interfacial problem under
a wave function setting and show that it can facilitate solving the
interfacial flow problems with the wave function gauge.

3.6 Clebsch gauge formula
We obtain our final version of the Clebsch gauge formula for incom-
pressible Euler equation by substituting 𝑞 into Equation (6):

𝐷𝝍

𝐷𝑡
= − 𝑖

ℏ
𝑞𝝍,

𝒖𝑚 = ℏ ⟨∇𝝍, 𝑖𝝍⟩R ,
Δ𝑞 = 0,
Δ𝜑 = ∇ · 𝒖𝑚,

𝒖 = 𝒖𝑚 − ∇𝜑,

𝒙 ∈ Ω, (9)

with the solid boundary conditions:
ℏ ⟨∇𝝍, 𝑖𝝍⟩R · 𝒏 = 𝒏 · 𝒖𝜕,
𝜕𝑛𝑞 = 0,
𝜕𝑛𝜑 = 0,

𝒙 ∈ 𝜕Ω𝑏 , (10)

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

Clebsch Gauge Fluid • 99:5

Fig. 2. Top row: Leapfrogging example at frames 100, 120, 200, 300, and 400.; Middle row: Trefoil knot example at frames 1, 200, 250, 300, 350; Bottom row:
Oblique ring collision example at frame 1, 200, 260, 300, and 320. All three examples use the grid size of 128 × 128 × 128.

and the free surface boundary conditions:
𝜑 = 0,

𝑞 − 1
𝜌
𝛾𝜅 +

(
1
2
|𝒖 |2 +𝐺

)
= 0

𝒙 ∈ 𝜕Ω𝑓 . (11)

Equations (9), (10), and (11) are the equations that are ready to
be discretized in our numerical method. The five equations in Equa-
tion (9) can be translated directly into the four steps in the numerical
algorithm as gauge wave function advection (line 1), wave-velocity
mapping (line 2), solving 𝑞 (line 3), and divergence-free projection
(lines 4-5). The boundary conditions are specified as the Neumann
boundary on the solid boundary and the Dirichlet boundary (with
jump conditions) on the free surface. If we establish an analog be-
tween the auxiliary variable 𝜑 and the physical pressure 𝑝 , these
boundary conditions can be understood easily from a standard in-
compressible Euler solver’s perspective. The only exception is the
boundary condition on the gauge wave function specified in line 1
of Equation (10).

4 NUMERICAL ALGORITHM
We describe our numerical algorithm to solve the PDEs specified
in Equation (9) with the boundary conditions specified in Equa-
tion (10) and (11). We take a MAC grid structure to discretize the
computational domain Ω ∈ 𝑅𝑑 . The velocity 𝒖 is a vector field, and

therefore we store it on the MAC grid faces. The wave function
𝝍 is a four-component vector field regardless of the problem’s di-
mension, which we store on cell centers. The intermediate variables
𝑞 and 𝜑 are both scalar fields, and we store both of them on cell
centers as well. We solve the PDEs on the entire domain for the
single-phase incompressible flow (for smoke simulations). We use
a level-set function to track the evolution of fluids with free sur-
faces, following the same implementations in [Kang et al. 2000]. We
summarize our time integration scheme in Section 5.

4.1 Advection
Weadvect thewave function𝝍 in the advection step.Mathematically,
this amounts to solving D𝝍/D𝑡 = 0. We conduct the standard semi-
Lagrangian advection step for each component of 𝝍 independently.

Boundary conditions for 𝝍. When boundaries exist in a simulation
example, the boundary conditions of 𝝍 need to be enforced. We
discretize the 𝝍 boundary conditions as fluid sources, solids, and free
surfaces.

• For sources, we follow the method introduced by [Chern et al.
2016] to enforce the value of the wave functions in the source
area by assuming a constant velocity within the source region.

• For free surfaces, we conduct an extrapolation step for both
𝒖 and 𝝍 near the boundary. The extrapolated velocity value
at position 𝒙𝑛𝑏 can be simply calculated using interpolation,

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

99:6 • Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu

Fig. 3. Results of smoke passing over an obstacle. Top row: A sphere obstacle at frames 32, 128, 256, and 384; Bottom row: A bunny obstacle at frames 16, 64,
128, and 192. Both examples use the grid size of 192 × 192 × 384.

while the extrapolated wave function 𝝍𝑛𝑏 can be calculated
using the wave function 𝝍𝑖 and velocity 𝒖𝑖 at its nearest
points 𝒙𝑖 on the surface as 𝝍𝑛𝑏 = 𝝍𝑖𝑒𝑖𝒖𝑖/ℏ(𝒙𝑛𝑏−𝒙𝑖) .

• For solid boundaries, we define no 𝝍 inside the solid area.
When the back-traced position is inside a solid area, we can
use the same extrapolation method to get the wave function
value at that position. Specifically, for a static obstacle, 𝝍 at
the intersection point on the solid boundary is used as the
back-traced 𝝍 in the obstacle.

Normalizing 𝝍. After the semi-Lagrangian advection step, we
normalize the wave function in each grid cell as: 𝝍 → 𝝍/|𝝍 |.

4.2 𝜓 → u∗𝑚
We convert the advected and normalized wave function to its veloc-
ity counterpart by calculating 𝒖𝑚 = ℏ ⟨∇𝝍, 𝑖𝝍⟩R on each grid face.
On a MAC grid, the velocity on a face 𝒖𝑚 is updated using the two
wave functions stored on its incident cells (𝜓𝑣,𝜓𝑤) as

𝒖𝑚 = ℏ arg ⟨𝝍𝑣, 𝝍𝑤⟩C . (12)

As proven in Appendix D in [Chern et al. 2016], the 1-form velocity
calculated by Equation (12) yields analytical precision without ac-
cumulating any numerical errors. Equation (12) can also be solved
using numerical schemes such as finite-difference on a Cartesian
grid. We experimented with both analytical and numerical schemes
and observed similar results for the produced 𝒖𝑚 .

Blending the advected velocity. One problem we noticed for gen-
erating 𝒖𝑚 from 𝝍 directly is its advection tends to be stuck behind
the solids. To enhance the flow convection near solid boundaries, in
each time step, we blend the advected velocity with the 𝝍−mapped
velocity to improve the advection accuracy. We advect the velocity 𝒖
at timestep 𝑡 to obtain an intermediate velocity 𝒖∗ and further blend
it with the𝜓−mapped velocity 𝒖𝑚 by 𝛽 as: 𝒖∗𝑚 = 𝛽𝒖𝑚 + (1 − 𝛽)𝒖∗
with 𝛽 as a tunable parameter.

4.3 𝜓 → 𝜓𝑞 and u∗𝑚 → u𝑞 (For free-surface flow)
For the fluid with free surfaces 𝜕Ω𝑓 , we solve the Laplace equation
of the auxiliary variable 𝑞:

Δ𝑞 = 0 , 𝒙 ∈ Ω. (13)

We enforce Neumann boundary conditions on the solid boundary
and Dirichlet boundary conditions with a jump condition specified
by the net effects of the body forces and surface tensions on the free
surfaces: 

𝜕𝑛𝑞 = 0, 𝒙 ∈ 𝜕Ω𝑏 ,

𝑞 − 1
𝜌
𝛾𝜅 +

(
1
2
|𝒖 |2 +𝐺

)
= 0, 𝒙 ∈ 𝜕Ω𝑓 .

(14)

We follow the numerical techniques proposed in [Kang et al.
2000] to solve the Poisson equation with variable coefficients on
an irregular domain and jump conditions on the domain boundary.
In particular, the curvature 𝜅 is calculated as the divergence of the
level-set normal on the implicit boundary.

Then we use the calculated 𝒒 to correct the wave function 𝝍 and
its corresponding gauge velocity 𝒖∗𝑚 as:

𝝍𝑞 = 𝝍𝑒−𝑖𝑞Δ𝑡/ℏ . (15)

The corrected 𝝍𝑞 is used to calculate a corrected 𝒖𝑞 . Instead of
calculating 𝒖𝑞 from 𝝍𝑞 again, we apply 𝑞 on 𝒖∗𝑚 as 𝒖𝑞 = 𝒖∗𝑚 −∇𝑞Δ𝑡 ,
which gives out the same gauge velocity that has the surface forces
handled.

4.4 Divergence-Free Projection
To enforce the divergence-free conditions on velocity 𝒖, we solve
the Poisson equation of 𝜑 :

Δ𝜑 = ∇ · 𝒖𝑞, 𝒙 ∈ Ω, (16)

with Neumann boundary conditions on the solid boundary and
Dirichlet boundary conditions on the free surface:{

𝜕𝑛𝜑 = 0, 𝒙 ∈ 𝜕Ω𝑏 ,

𝜑 = 0, 𝒙 ∈ 𝜕Ω𝑓 .
(17)

Then we use the solved values for 𝜑 to project 𝒖𝑞 to obtain the
physical divergence-free velocity field 𝒖 for the next time step:

𝒖 = 𝒖𝑞 − ∇𝜑. (18)

Although the divergence-free parts of the velocity mapped from
𝝍 and 𝝍𝑒 (−𝑖𝜑/ℏ) are the same, to prevent the 𝝍-mapped velocity
from drastically deviating from the projected incompressible flow

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

Clebsch Gauge Fluid • 99:7

Fig. 4. Results of smoke passing over multiple obstacles at frames 30, 50, 90, 195, 215, and 230. The grid size is 192 × 192 × 384. Arrays of vortices are created
behind the obstacles and interact with each other. Coherent vortex structures are preserved and evolved over the course of the entire simulation.

field, we employ an additional projection step on 𝜑 to update the
gauge variable 𝝍:

𝝍 = 𝝍𝑞𝑒
(−𝑖𝜑/ℏ)𝛼 , (19)

with a tunable parameter 𝛼 (0 < 𝛼 ⩽ 1) to control the portion
being projected on 𝝍. We name the step as soft projection if 𝜑 is
only partially applied. We note that the parameters 𝛼 and 𝛽 do not
change the equations we are solving. We conduct parameter studies
in Section 6.4 and summarize their impacts in Section 7.

5 TIME INTEGRATION
Our time integration scheme can be summarized as follows:

(1) Advect 𝝍: Advect 𝝍 using 𝒖.
(2) Normalize 𝝍: Normalize 𝝍 after advection.
(3) Map 𝝍 to 𝒖𝑚 : Calculate 𝒖𝑚 from 𝝍 using Equation (12).
(4) Blend 𝒖𝑚 : Advect 𝒖 to obtain 𝒖∗. Blend 𝒖∗ into 𝒖𝑚 to get 𝒖∗𝑚 .
(5) Solve 𝑞 (free-surface): If there is a free boundary, solve Equa-

tion (13) and (14) to get 𝑞 and use it to update 𝝍𝑞 and 𝒖𝑞 .
(6) Project 𝜑 : Solve Equation (16) and (17) to get 𝜑 . Apply the soft

projection step on 𝝍𝑞 , and the projection step on 𝒖𝑞 to obtain
𝝍 and 𝒖 for the next time step.

6 RESULTS
We evaluate the efficacy of our method by a set of fluid simulation
examples, including the evolution of vortex tubes, turbulent smoke,
and free-surface flows with surface tensions. Detailed settings can
be found in Table 2. For smoke simulations, we advect passive parti-
cles in the domain for rendering purposes. For liquid simulations,
we render the surface extracted from the level-set function. For the
timestep, we followed the conventional CFL constraints on veloc-
ity. We refer the readers to our supplementary video for all the
animations.

6.1 Evolution of Vortex Tubes
We first show our method’s ability to keep and evolve coherent
vortex structures by testing it in several examples with analytical
initialization. To initialize the values for 𝝍, we follow [Chern et al.
2016] to initialize isolated (knotted or unknotted) vortex rings.
Our first example is the leapfrogging vortex rings [Lim 1997].

Two circular vortex rings alternately leapfrog around each other.
As shown in Figure 2, the structures of the two vortex rings are still
preserved clearly after 5 cycles.

Our second example is the trefoil knot [Kleckner and Irvine 2013].
When the filament crosses itself, ourmethod can correctly reproduce
the vortex tube reconnection process that creates two separate
vortex rings (one large ring and one small ring that is moving off)
and can preserve their structures well in the subsequent evolution,
as shown in Figure 2.

Another example of vortex filament dynamics that are difficult to
simulate using a standard grid-based solver is the oblique smoke ring
collision [Lim 1989]. After the two identical vortex rings approached
one another with a colliding angle, the vortex tube reconnection
process will start and form two new rings. As shown in Figure 2,
our simulation method successfully reproduces this phenomenon.

6.2 Smoke Simulations
We conduct three smoke simulations with source and obstacles to
show our method’s ability to handle complex sources and solid
boundary conditions. As shown in Figure 3, when a high-speed
smoke plume passes an obstacle, arrays of vortices are created be-
hind the obstacle, and coherent vortex structures are preserved and
evolved over the course of the entire simulation. In the multiple-
obstacle example shown in Figure 4, a high-speed source is placed
at the bottom of the left wall, and several obstacles are placed in the
middle of the scene. Vortices were created behind the objects and
can interact with each other.

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

99:8 • Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu

Fig. 5. Top row: A droplet falling to the floor at frames 0, 9, 18, 23, and 35, with a surface tension of 0.2. The grid size for this example is 128 × 128 × 42. Bottom
row: A stream flowing over an obstacle at frames 20, 240, 600, and 900, with a surface tension of 0.05. The grid size for this example is 256 × 128 × 64.

6.3 Liquid Simulations
We show three interfacial flow examples where the surface tension
force drives the dynamics of the fluids. In Figure 5, we set up a simple
example of a surface-tension-driven droplet falling and bouncing on
a floor to show our method’s ability to handle surface tensions. Next,
similar to our smoke examples, we place obstacles and sources for
liquid simulation. As shown in Figure 5 and Figure 8, we initialize
liquid volume in a water tank with the left, bottom, front and back
walls. A source is placed at the bottom of the left wall, and one or
multiple obstacles are placed in the middle of the water tank. Our
method constantly generates a host of underwater vortices due to
the interactions between fluid and obstacles. We solve 𝑞 to handle
surface tension forces in all these examples.

6.4 Validation
Comparison with the grid-

based solver. We compared
our Clebsch gauge solver
with a standard grid-based
fluid solver proposed in [Fed-
kiw et al. 2001]. For each test
case, we ran both methods
with the same grid resolu-
tion and boundary conditions.
The comparisons include leapfrogging (Figure 2), trefoil knot (Fig-
ure 2), oblique ring collision (Figure 2), smoke passing a bunny
(Figure 3), and a stream passing a sphere (Figure 5). We show the
simulations produced by the standard method in the inset figures,
and we compiled the comparison animations in the appendix video.
As evidenced in these comparisons, a standard grid-based solver
cannot preserve coherent vortical structure evolutions such as those
captured with our method, be they rhythmic leapfrogging, one ris-
ing vortex ring in trefoil knot, pair of vortex rings in oblique ring
collision, and an array of interacting vortices behind obstacles or
underneath the water surface.

Comparison with Incompressible Schrödinger’s Flow. We compared
our solver with the Incompressible Schrödinger’s Flow (ISF) [Chern
et al. 2016]. Since the parameter ℏ has its physical meaning in [Chern
et al. 2016], we used a different ℏ value (ℏ = 0.2) in this example and
keep all the other settings the same. We show the comparion in the

inset figures, and we
compiled the correspond-
ing animations in the
appendix video. Despite
the different PDEs being
solved, we observed that
both approaches could
produce flow simulations
with clear and coherent
vortical structures.

Parameter study of 𝛼 . To better un-
derstand the impact of the parame-
ters 𝛼 and 𝛽 , we further conduct two
sets of simulations with different pa-
rameter values. First, we used four
different values of 𝛼 with the same
simulation settings in the ring colli-
sion example (see the inset figures).
We observed that when 𝛼 = 0, which
means no projection is carried out,
the vortical structure would not evolve correctly. When 𝛼 does not
equal zero, the simulator can separate the two colliding vortex rings
and generate a pair of new rings. Conducting projection (or soft pro-
jection) on 𝝍 is necessary to prevent the results from being messy,
while the result is not very sensitive to the value of 𝛼 .

Parameter study of 𝛽 . Second, in the
smoke passing obstacle example with dif-
ferent 𝛽 values (see the inset figures), we
observed that the magnitude of 𝛽 does not
affect the generation of the coherent vortices
in the flow field. The main differences show
up near the solid boundary: A small 𝛽 (with
the major part of velocity being advected)
can enhance the flow convection and vortex
shedding near solid boundaries significantly.
In contrast, a large 𝛽 (with the major part
of velocity being mapped from 𝜓) will hin-
der the vortex shedding around obstacles. If 𝛽 is too small (e.g.,
𝛽 <= 0.01), the vortical structures in the flow will be less preserved.

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

Clebsch Gauge Fluid • 99:9

Table 2. Details of the Simulation Examples.

Example Description 𝛼 𝛽 ℏ Domain Size Resolution CFL Frame Rate Time / Frame (avg.) †

Leapfrogging .2 1. .5 10. × 10. × 10. 128 × 128 × 128 1. 25 2.9s †3

Trefoil Knot .05 1. .1 5. × 5. × 5. 128 × 128 × 128 1. 50 2.1s †3

Oblique Ring Collision .25 1. .5 12.5 × 12.5 × 12.5 128 × 128 × 128 1. 25 1.8s †3

Smoke with Sphere 1. .02 1. 20. × 10. × 10. 384 × 192 × 192 2. 10 33.6s †2

Smoke with Bunny 1. .02 1. 20. × 10. × 10. 384 × 192 × 192 2. 10 22.7s †1

Smoke with Multiple Obstacles 1. .02 1. 20. × 10. × 10. 384 × 192 × 192 2. 10 30.5s †1

Droplet Falling to Ground 1. .02 .1 1. × 1. × .33 128 × 128 × 42 .2 100 2.7s †3

Stream with Sphere .1 .02 .1 2. × 1. × .5 256 × 128 × 64 1. 100 6.8s †1

Stream with Multiple Obstacles .1 .02 .1 2. × 1.5 × .75 256 × 192 × 96 1. 100 23.4s †1

† These experiments were performed on different machines: †1 is a server with a 128-core CPU and a Quadro RTX 8000 GPU; †2 is a desktop with a 16-core CPU and a
GTX 1080Ti GPU; †3 is a laptop with a 12-core CPU and an RTX 2070 GPU.

Fig. 6. Top row: The Re(𝜓1) value of a cross-section of the 3d leapfrogging
example at frames 0, 50, 100, 200, and 300; Bottom row: the corresponding 𝑠
(= |𝜓1 |2 − |𝜓2 |2). Values are mapped to colors.

We found a relatively small 𝛽 is specifically effective for shedding
vortices around obstacles, which is very useful for some cases, e.g.,
when we simulate turbulent smoke interacting with obstacles. We
use a large 𝛽 (e.g., 𝛽 = 1) if vortical structures were initialized in the
flow domain, such as in those analytical flow examples.

The evolution of 𝜓 . To further investigate the mechanics of our
gauge solver, we visualize the spatiotemporal evolution of different
intermediate gauge quantities. One of the main motivations to carry
out these visualizations is that 𝝍, as a function of the Lagrangian co-
ordinates, may potentially behave badly (e.g., get stirred and mixed
up) during the advection. In particular, we visualize the evolution
of the real component of the wave function Re(𝜓1) and the value
𝑠 (|𝜓1 |2 − |𝜓2 |2) in our leapfrogging example (see Figure 6). We did
not observe any significant blur over the entire simulation. Further,
even if the Clebsch variables get blurred slightly over time, their
level-set values (which correspond to the vortex surface) won’t be
affected drastically.
To further verify the role of advection in stabilizing our system,

Fig. 7. The energy spectrum of Re(𝜓1) (left
figure) and 𝑠 (right figure) of the trefoil
knot example at frames 0, 200, and 400.

we also plot the energy
spectrum of Re(𝜓1) and
𝑠 in Figure 7. No signifi-
cant aliasing is observed in
the plots, which could be
that our advection scheme
smooths the small-scale
energies.

6.5 Performance Analysis
Compared with a standard grid-based solver with one advection
step and one projection step, our method only has one additional
advection step for 𝝍, one additional step to map 𝒖𝑚 from 𝝍, and
one (optional) additional projection step if there is a free surface.
Because the performance bottleneck of a standard grid-based solver
is the projection step, additional advection-style steps add marginal
cost to the entire pipeline. To show the performance difference,
we use a standard grid-based solver to simulate the leapfrogging
example with the same settings. The average time per frame of the
grid-based solver is 2.62𝑠 , close to that of our method (2.9𝑠). We
implemented the projection steps in parallel on GPU by building
a multigrid preconditioned conjugate gradient solver to boost the
system’s performance. Our free-surface solver is approximately
twice slow as a standard grid-based solver due to the additional
projection step. We want to emphasize that because solving 𝑞 and
𝜑 shares the same projection matrix with the difference on the
right-hand side only, the numerical solvers for these two steps can
be easily reused, and the time cost for assembling matrices can
be reduced. We provide the timing statistics and grid resolution
information for all the examples in Table 2.

7 DISCUSSIONS AND CONCLUSIONS
Parameters. Our method uses three parameters, as we showed

in Table 1. The values of these parameters can be seen in Table 2.
The first parameter ℏ draws from the definition of the Clebsch
wave function that controls the strength of the vorticities (the same
parameter was used in [Chern et al. 2016]). The second parameter 𝛼
controls the soft projection scale for the gauge wave function 𝝍. 𝛼 =

0 indicates no projection, which amounts to no reinitialization step
in a standard impulse method, andmight cause the gradual deviation
between the gauge variable and the physical velocity as time evolves.
The third parameter 𝛽 controls the blending ratio between a wave-
function-mapped velocity and an advected velocity. We observed
the numerical efforts of this parameter in our experiments are to
enhance the convective motions behind obstacles of a flow field.

Relation to a grid-based solver. The vast majority of the numerical
infrastructures we have developed in our Clebsch gauge solver

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

99:10 • Shuqi Yang, Shiying Xiong, Yaorui Zhang, Fan Feng, Jinyuan Liu, and Bo Zhu

Fig. 8. Left two columns: Results of a stream (with a surface tension of 0.05) flowing over multiple obstacles at frames 150, 240, 440, and 700; The 3rd column:
Additional visualizations of the stream surface using the top view; The 4th column: Additional visualizations of the underwater flow using marker particles.
The grid size for this example is 256 × 192 × 128. A host of underwater vortices due to the interactions between fluid and obstacles are created.

are based on a standard grid-based solver. In particular, our solver
fully reuses the numerical implementation of its advection and
projection modules. In this sense, our solver can be understood
as an enhanced grid-based solver with its outstanding ability in
capturing and preserving (vortical) flow structures. As demonstrated
in our series of analytical vortex filament examples, our solver
can produce vorticity evolutions with clear and faithful physical
structures, which outperforms most of the vorticity confinement
techniques used in a purely Eulerian setting.

Relation to incompressible Schrödinger’s flow (ISF). We build our
Clebsch gauge solver based on the Clebsch wave function proposed
by Chern et al. in their ISF work [2016]. Our method’s vortex track-
ing and evolving abilities stem from this fundamental geometric
design in [Chern et al. 2016] and share similar visual effects accord-
ing to our analytical vortex filaments experiments. Our Clebsch
gauge solver differs from the ISF method in two aspects: 1) we solve
the incompressible fluid equations instead of the Schrödinger’s equa-
tions; 2) we developed a gauge framework to use the wave function
as a gauge variable to evolve the system, which allows us to ap-
ply the wave-function technique to solve general fluid simulation
problems such as free surface and surface tensions.

Limitation and future work. Our current Clebsch gauge solver
relies on the numerical viscosity introduced by the semi-Lagrangian
advection to model the viscosity in the system. In the future, we
plan to devise more accurate viscous solvers under this gauge frame-
work to accommodate more complicated flow phenomena. Using
the additional parameters is another limitation that could be im-
proved in our future work. Also, our current implementation is only
for a Cartesian grid. We plan to study the different types of data
structures, such as the hybrid Eulerian-Lagrangian framework, to
further decouple the gauge and the physical quantity evolution on
the level of data structures. Furthermore, we aim to devise more
suitable and flexible gauge variables and their numerical solvers
to facilitate fluid simulation applications exhibiting complicated
evolving flow structures.

ACKNOWLEDGMENTS
We thank all the anonymous reviewers for their constructive com-
ments. We acknowledge the funding support from NSF 1919647. We
credit the Houdini education licenses for the video generation.

REFERENCES
Alexis Angelidis and Fabrice Neyret. 2005. Simulation of smoke based on vortex filament

primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 87–96.

Landon Boyd and Robert Bridson. 2012. MultiFLIP for energetic two-phase fluid
simulation. ACM Transactions on Graphics (TOG) 31, 2 (2012), 1–12.

Jeremiah U Brackbill and Hans M Ruppel. 1986. FLIP: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 2
(1986), 314–343.

Axel Brandenburg. 2010. Magnetic field evolution in simulations with euler potentials.
MON. NOT. R. ASTRON. SOC. 401 (2010), 347–354.

Robert Bridson, JimHouriham, andMarcus Nordenstam. 2007. Curl-noise for procedural
fluid flow. ACM Transactions on Graphics (ToG) 26, 3 (2007).

Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke anima-
tion with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Citeseer, 87–95.

Tomas F. Buttke. 1993. Velicity Methods: Lagrangian Numerical Methods which Pre-
serve the Hamiltonian Structure of Incompressible Fluid Flow. Springer Netherlands,
Dordrecht, 39–57.

Thomas F. Buttke and Alexandre J. Chorin. 1993. Turbulence calculations in magneti-
zation variables. Applied Numerical Mathematics 12, 1 (1993), 47 – 54. SPECIAL
ISSUE.

C. Cartes, M. D. Bustamante, and M. E. Brachet. 2007. Generalized Eulerian-Lagrangian
description of Navier-Stokes dynamics. Phys. Fluids 19 (2007), 077101.

A. Chern. 2017. Fluid Dynamics with Incompressible Schrödinger Flow. Ph.D. Dissertation.
California institute of technology.

A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2017. Inside fluids: Clebsch maps for
visualization and processing. ACM Trans. Graph. 36 (2017), 142.

A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. 2016. Schrödinger’s
smoke. ACM Trans. Graph. 35 (2016), 77.

A. Clebsch. 1859. Ueber die Integration der hydrodynamischen Gleichungen. J. Reine
Angew. Math. 56 (1859), 1–10.

Georges-Henri Cottet, Petros D Koumoutsakos, et al. 2000. Vortex methods: theory and
practice. Vol. 8. Cambridge university press Cambridge.

Ounan Ding, Tamar Shinar, and Craig Schroeder. 2020. Affine particle in cell method
for MAC grids and fluid simulation. J. Comput. Phys. 408 (2020), 109311.

Aleksandar Donev, Andy Nonaka, Yifei Sun, Thomas Fai, Alejandro Garcia, and John
Bell. 2014. Low Mach number fluctuating hydrodynamics of diffusively mixing
fluids. Communications in Applied Mathematics and Computational Science 9, 1 (May
2014), 47–105.

Weinan E and Jian-Guo Liu. 1997. Finite Difference Schemes for Incompressible Flows
in the Velocity–Impulse Density Formulation. J. Comput. Phys. 130, 1 (1997), 67 –
76.

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

Clebsch Gauge Fluid • 99:11

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007.
Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG)
26, 1 (2007).

Ronald Fedkiw, J. Stam, and H. Jensen. 2001. Visual simulation of smoke. Proceedings of
the 28th annual conference on Computer graphics and interactive techniques (2001).

N. Foster and Ronald Fedkiw. 2001. Practical animation of liquids. Proceedings of the
28th annual conference on Computer graphics and interactive techniques (2001).

C. Fu, Q. Guo, Theodore F. Gast, Chenfanfu Jiang, and J. Teran. 2017. A polynomial
particle-in-cell method. ACM Transactions on Graphics (TOG) 36 (2017), 1–12.

S. Gagniere, David Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and J.
Teran. 2020. A Hybrid Lagrangian/Eulerian Collocated Advection and Projection
Method for Fluid Simulation. ArXiv abs/2003.12227 (2020).

C. R. Graham and F. S. Henyey. 2000. Clebsch representation near points where the
vorticity vanishes. Phys. Fluids 12 (2000), 744–746.

P. He and Y. Yang. 2016. Construction of initial vortex-surface fields and Clebsch
potentials for flows with high-symmetry using first integrals. Phys. Fluids 28 (2016),
037101.

H. Hopf. 1931. Über die Abbildungen der Dreidimensionalen Sphäre auf die Kugelfläche.
Math. Ann. 104 (1931), 637–665.

J. Jeong and F. Hussain. 1995. On the identification of a vortex. J. Fluid. Mech. 285
(1995), 69–94.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–10.

Myungjoo Kang, Ronald P Fedkiw, and Xu-Dong Liu. 2000. A boundary condition cap-
turing method for multiphase incompressible flow. Journal of Scientific Computing
15, 3 (2000), 323–360.

H. Kedia, D. Foster, M. R. Dennis, and W. T. M. Irvine. 2016. Weaving knotted vector
fields with tunable helicity. Phys. Rev. Lett. 117 (2016), 274501.

ByungMoon Kim, Y. Liu, I. Llamas, and J. Rossignac. 2005. FlowFixer: Using BFECC for
Fluid Simulation. In NPH.

Doyub Kim, Oh-Young Song, and Hyeongseok Ko. 2009. Stretching and wiggling liquids.
ACM SIGGRAPH Asia 2009 papers (2009).

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence
for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–6.

Dustin Kleckner and William TM Irvine. 2013. Creation and dynamics of knotted
vortices. Nat. Phys. 9, 4 (2013), 253–258.

P. Robert Kotiuga. 1991. Clebsch potentials and the visualization of three-dimensional
solenoidal vector fields. IEEE T. MAGN 27 (1991), 3986–3989.

Petros Koumoutsakos, Georges-Henri Cottet, and Diego Rossinelli. 2008. Flow simula-
tions using particles-Bridging Computer Graphics and CFD. In SIGGRAPH 2008-35th
International Conference on Computer Graphics and Interactive Techniques. ACM,
1–73.

G. A. Kuz’min. 1983. Ideal incompressible hydrodynamics in terms of the vortex
momentum density. Phys. Lett. A 96 (1983), 88–90.

H. Lamb. 1932. Hydrodynamics (6 ed.). Cambridge University Press.
A Leonard. 1980. Vortex methods for flow simulation. J. Comput. Phys. 37, 3 (1980),

289–335.
TT Lim. 1989. An experimental study of a vortex ring interacting with an inclined wall.

Exp. Fluids 7, 7 (1989), 453–463.
TT Lim. 1997. A note on the leapfrogging between two coaxial vortex rings at low

Reynolds numbers. Phys. Fluids 9, 1 (1997), 239–241.
Miao’er Liu, Yu-Xin Ren, and Hanxin Zhang. 2004. A class of fully second order accurate

projection methods for solving the incompressible Navier–Stokes equations. J.
Comput. Phys. 200, 1 (2004), 325 – 346.

JohnH.Maddocks and Robert L. Pego. 1995. An unconstrained Hamiltonian formulation
for incompressible fluid flow. Comm. Math. Phys. 170, 1 (1995), 207–217.

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009.
Energy-preserving integrators for fluid animation. ACM Transactions on Graphics
(TOG) 28, 3 (2009), 1–8.

V I Oseledets. 1989. On a new way of writing the Navier-Stokes equation. The Hamil-
tonian formalism. Russian Mathematical Surveys 44, 3 (jun 1989), 210–211.

S. Park and M. Kim. 2005. Vortex fluid for gaseous phenomena. In SCA ’05.
Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for

animating fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–8.
Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient

and conservative fluids using bidirectional mapping. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–12.

R. Saye. 2016. Interfacial gauge methods for incompressible fluid dynamics. Sci. Adv. 2
(2016), e1501869.

Robert Saye. 2017a. Implicit mesh discontinuous Galerkin methods and interfacial
gauge methods for high-order accurate interface dynamics, with applications to
surface tension dynamics, rigid body fluid–structure interaction, and free surface
flow: Part I. J. Comput. Phys. 344 (2017), 647 – 682.

Robert Saye. 2017b. Implicit mesh discontinuous Galerkin methods and interfacial
gauge methods for high-order accurate interface dynamics, with applications to

surface tension dynamics, rigid body fluid–structure interaction, and free surface
flow: Part II. J. Comput. Phys. 344 (2017), 683 – 723.

A. Selle, Ronald Fedkiw, ByungMoon Kim, Y. Liu, and J. Rossignac. 2008. An Uncon-
ditionally Stable MacCormack Method. Journal of Scientific Computing 35 (2008),
350–371.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for
smoke, water and explosions. In ACM SIGGRAPH 2005 Papers. 910–914.

C. B. Smiet, S. Candelaresi, and D. Bouwmeester. 2017. Ideal relaxation of the Hopf
fibration. Phys. Plasmas 24 (2017), 072110.

C. B. Smiet, S. Candelaresi, A. Thompson, J. Swearngin, J.W. Dalhuisen, and D.
Bouwmeester. 2015. Self-organizing knotted magnetic structures in plasma. Phys.
Rev. Lett. 115 (2015), 095001.

J. Stam. 1999. Stable fluids. In SIGGRAPH ’99.
Mark J Stock, Werner JA Dahm, and Grétar Tryggvason. 2008. Impact of a vortex ring

on a density interface using a regularized inviscid vortex sheet method. J. Comput.
Phys. 227, 21 (2008), 9021–9043.

D.M. Summers. 2000. A Representation of Bounded Viscous Flow Based on Hodge
Decomposition of Wall Impulse. J. Comput. Phys. 158, 1 (2000), 28 – 50.

D M Summers and A J Chorin. 1996. Numerical vorticity creation based on impulse
conservation. Proceedings of the National Academy of Sciences 93, 5 (1996), 1881–
1885.

S. Weißmann and U. Pinkall. 2010. Filament-based smoke with vortex shedding and
variational reconnection. ACM Trans. Graph. 29 (2010), 115.

S. Xiong and Y. Yang. 2017. The boundary-constraint method for constructing vortex-
surface fields. J. Comput. Phys. 339 (2017), 31–45.

S. Xiong and Y. Yang. 2019. Identifying the tangle of vortex tubes in homogeneous
isotropic turbulence. J. Fluid Mech. 874 (2019), 952–978.

S. Xiong and Y. Yang. 2020. Evolution and helicity analysis of linked vortex tubes in
viscous flows. Sci. Sin-Phys. Mech. Astron. 50 (2020), 040005.

Y. Yang and D. I. Pullin. 2011. Evolution of vortex-surface fields in viscous Taylor–Green
and Kida–Pelz flows. J. Fluid Mech. 685 (2011), 146–164.

V. E. Zakharov and E. A. Kuznetsov. 1997. Hamiltonian formalism for nonlinear waves.
Phys.-Usp. 40 (1997), 1087–1116.

Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the missing vorticity
in advection-projection fluid solvers. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–8.

Y. Zhao, S. Xiong, Y. Yang, and S. Chen. 2018. Sinuous distortion of vortex surfaces in
the lateral growth of turbulent spots. Phys. Rev. Fluids 3 (2018), 074701.

Y. Zhao, Y. Yang, and S. Chen. 2016. Vortex reconnection in the late transition in channel
flow. J. Fluid Mech. 802 (2016), R4.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965–972.

A GEOMETRIC DESCRIPTION OF𝜓
Like the original Clebsch maps, the wave function in Equation

(1) encodes a fundamental geometric description of the vorticity
field 𝝎 = ∇ × 𝒖. Specifically, Equation (1) can be transformed into
vorticity potentials 𝒔 = (𝑠1, 𝑠2, 𝑠3) by Hopf map [Hopf 1931]:

𝑠1 = 𝑎2 + 𝑏2 − 𝑐2 − 𝑑2, 𝑠2 = 2(𝑏𝑐 − 𝑎𝑑), 𝑠3 = 2(𝑎𝑐 + 𝑏𝑑), (20)

which are exact vortex surface fields owing to the fact that:

𝝎 =
ℏ

2
(𝑠1∇𝑠2 × ∇𝑠3 + 𝑠2∇𝑠3 × ∇𝑠1 + 𝑠3∇𝑠1 × ∇𝑠2), (21)

and
𝝎 · ∇𝑠𝑝 = 0, 𝑝 = 1, 2, 3. (22)

Gauge transformation of 𝝓. In addition, Equation (20) satisfies the
gauge invariance because 𝝓 and its gauge transformation

𝝍 = 𝝓𝑒𝑖𝜑/ℏ (23)

corresponds to the same 𝒔, thus the same 𝝎, where 𝜑 is a scalar
gauge function. Moreover, the gauge transformation of the wave
function 𝝓 → 𝝓𝑒𝑖𝜑/ℏ corresponds to the gauge transformation
of the velocity 𝒖 → 𝒖 + ∇𝜑 , and the incompressible condition of
velocity ∇ · 𝒖 = 0 is equivalent to ⟨𝑖𝝓,Δ𝝓⟩R = 0.

ACM Trans. Graph., Vol. 40, No. 4, Article 99. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related works
	3 Clebsch gauge method
	3.1 Spherical Clebsch wave functions
	3.2 Euler equations
	3.3 Euler equations with Clebsch wave functions
	3.4 Gauge transformation of Equation (5)
	3.5 Gauge form for free surface
	3.6 Clebsch gauge formula

	4 Numerical algorithm
	4.1 Advection
	4.2 um*
	4.3 q and um* uq (For free-surface flow)
	4.4 Divergence-Free Projection

	5 Time Integration
	6 Results
	6.1 Evolution of Vortex Tubes
	6.2 Smoke Simulations
	6.3 Liquid Simulations
	6.4 Validation
	6.5 Performance Analysis

	7 Discussions and Conclusions
	Acknowledgments
	References
	A Geometric description of

