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Fig. 1. Our unified level-set based approach can simulate and visualize the dynamics of a broad array of magnetic phenomena including ferrofluids, deformable
magnetic bodies, rigid magnetic bodies, and multi-physics interactions.

We present a versatile numerical approach to simulating various magnetic
phenomena using a level-set method. At the heart of our method lies a novel
two-way coupling mechanism between a magnetic field and a magnetiz-
able mechanical system, which is based on the interfacial Helmholtz force
drawn from the Minkowski form of the Maxwell stress tensor. We show
that a magnetic-mechanical coupling system can be solved as an interfacial
problem, both theoretically and computationally. In particular, we employ
a Poisson equation with a jump condition across the interface to model
the mechanical-to-magnetic interaction and a Helmholtz force on the free
surface to model the magnetic-to-mechanical effects. Our computational
framework can be easily integrated into a standard Euler fluid solver, en-
abling both simulation and visualization of a complex magnetic field and
its interaction with immersed magnetizable objects in a large domain. We
demonstrate the efficacy of our method through an array of magnetic sub-
stance simulations that exhibit rich geometric and dynamic characteristics,
encompassing ferrofluid, rigid magnetic body, deformable magnetic body,
and multi-phase couplings.

CCS Concepts: • Computing methodologies → Physical simulation; •
Applied computing→ Physics.
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1 INTRODUCTION
The coupling between volumetric and interfacial forces acts as the
fundamental mechanism for many intricate free-surface flow phe-
nomena that are characterized by visually appealing dynamics and
geometries. Among these phenomena, the surface tension flow is the
most ubiquitous example, demonstrating the beauty and complexity
of such interface-volume interactions. A variety of small-scale fea-
tures, such as the pinched off droplets [Da et al. 2016a; O’brien and
Hodgins 1995; Thürey et al. 2010; Zheng et al. 2015; Zhu et al. 2014],
filaments [Bergou et al. 2010], curved thin sheets [Ando and Tsu-
runo 2011; Batty et al. 2012; Brochu et al. 2012; Da et al. 2014, 2015;
Larionov et al. 2017; Saye and Sethian 2013], capillary waves [He
et al. 2012; Jeschke and Wojtan 2015a; Saye 2016; Yang et al. 2016],
and their co-dimensional combinations [Zhu et al. 2015, 2014], have
been captured numerically by the invention of a broad spectrum of
computational tools to accommodate the modeling of free-surface
flow in computational physics and computer graphics. Among these
surface-tension-driven phenomena, magnetic flow exhibits its pe-
culiar surface geometries and dynamics featured by the emergence
and evolution of arrays of uniform and sharp cone structures. These
appealing features arise due to the multilateral interactions among
pressure, surface tension, and magnetic forces.

A natural and immediate question to ask when extending a con-
ventional surface tension solver to model a magnetic flow phenom-
enon is that, “Is the magnetic force exerted on a physical substance

ACM Trans. Graph., Vol. 39, No. 4, Article 29. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392445
https://doi.org/10.1145/3386569.3392445


29:2 • Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen

Table 1. Physical quantities involved in describing a magnetic field.

Notation Name Definition
H Magnetic field intensity
M Magnetization intensity
B Magnetic induction intensity B = µ0(H +M)
µ0 Vacuum permeability Constant
χ† Magnetic susceptibility
µ† Permeability µ = (1 + χ )µ0

† Defined only for linear, isotropic materials.

volumetrically or interfacially?” Astonishingly, this question is yet
to be definitely answered, even nowadays, due to the long-disputed
Abraham–Minkowski controversy that can be traced back to the
birth of Maxwell’s equations, 150 years ago [Maxwell 1865]. The
controversy essentially splits the stream of viewpoints on magnetic
force into two main branches by describing the Maxwell stress ten-
sor using the Einstein–Laub form [Einstein and Laub 1908] and the
Minkowski form [Minkowski 1908].

1.1 Mathematical motivation
Here we briefly review some formulae as a high-level introduction
to the mathematical foundations of our approach. Intuitive explana-
tion and detailed derivation can be found in Appendix A.1. Table 1
lists physical quantities involved in describing a magnetic field. In
essence, the electromagnetic theory studies the interactions among
three fields — magnetic field intensity H , magnetization intensity M
and magnetic induction intensity B. The mechanical effect of these
magnetic interactions is measured by the Maxwell stress tensor in
vacuum, denotedTm , which can be written as

Tm =
1
µ0

(
B ⊗ B − 1

2
B2I

)
(1)

with µ0 as the constant vacuum permeability and the electric terms
omitted. This form is the root of both the Einstein–Laub form and the
Minkowski form in matter. The Einstein–Laub form of the Maxwell
stress tensor and its divergence (known as the Kelvin force) are

T E
m = B ⊗ H − µ0

2
H2I , (2)

f Em = ∇ ·T E
m = µ0M · ∇H , (3)

On the other hand, the Minkowski form and its corresponding force
term (known as the Helmholtz force) have the formulae as

TM
m = B ⊗ H − 1

2
(B ·H )I , (4)

fMm = ∇ ·TM
m = B · ∇H − 1

2
∇(B ·H ). (5)

By making assumptions of linearity and isotropy of the magnetic
substances, which apply to most cases of the macroscopic magnetic
phenomena [Ishikawa et al. 2013; Kim et al. 2018; Thomaszewski
et al. 2008], the Kelvin force in Equation (3) and the Helmholtz force
in Equation (5) can be further simplified as

f Em =
µ0
2
χ∇

(
H2

)
, (6)

fMm = −
µ0
2
H2∇χ , (7)

with χ as the magnetic susceptibility, which amounts to material
trackers to distinguish different substances (zero in vacuum).

Interfacial Helmholtz force. We can make two immediate observa-
tions from Equation (6) and Equation (7) that motivate the design
of our numerical approach for unified magnetic substance simula-
tion. First, theKelvin force is volumetric, while theHelmholtz
force is interfacial. This mathematical fact is evidenced by the
non-zero ∇

(
H2) over the entire space for the Kelvin term and the

non-zero ∇χ on the interface only for the Helmholtz term (by con-
sidering χ as a Heaviside function distinguishing the vacuum and
the magnetic substance volume). From a numerical perspective,
the volumetric Kelvin force with a non-zero bulk distribution is
well suited for a Lagrangian approach (e.g., SPH particles [Huang
et al. 2019]) while the interfacial Helmholtz force with a surface
concentration can be adopted into an Eulerian framework with in-
terface treatments. Second, the Kelvin force and the Helmholtz
force are mathematically equivalent if a physical system under-
going magnetic interactions consists of a hydro-static stress term
with appropriate Dirichlet boundary conditions on the free surface
(e.g., pressure for incompressible interfacial flow). This fact can be
demonstrated straightforwardly by subtracting Equation (7) from
Equation (6) to get

∆fm = f Em − fMm = ∇
(
χµ0H2

2

)
, (8)

which shows that the difference between the Kelvin and Helmholtz
forces can be modeled as the gradient of a potential field Φ. Specifi-
cally, if the ordered pair

(
f Em,p

)
is a quasi-static solution of magnetic

force and pressure,
(
fMm ,p − Φ

)
must be another valid solution, be-

cause 1) f Em − ∇p = fMm − ∇(p − Φ) (the total force leaves the same);
and 2) p = p − Φ = 0 in vacuum (satisfying the same boundary
condition). In a numerical sense, this magnetic potential gradient
can be absorbed to the pressure gradient (e.g., during the projection
step of a conventional Euler solver [Fedkiw et al. 2001]), opening
up possibilities to creating fast numerical simulators by leveraging
the existing high-performance Poisson solvers on a Cartesian grid.

1.2 Numerical approach
Motivated by the above two mathematical observations for the
Helmholtz force, we design a novel, unified level-set based approach
to model the dynamics of a broad array of magnetic substances,
ranging from fluids and rigid bodies, to soft bodies and their multi-
lateral couplings. Our essential contribution is numericallymodeling
the volumetric magnetic-mechanical coupling problem by solving
an interfacial flow problem. By considering a dynamic system, ei-
ther Lagrangian or Eulerian, immersed in an Eulerian magnetic
field, we establish an effective numerical method to treat their two-
way interactions empowered by the interfacial Helmholtz force and
the immersed moving materials simultaneously. In particular, this
mechanical-magnetic two-way coupling is devised in a codimen-
sional fashion. The forward coupling from the magnetic field to the
mechanical system is interfacial, by modeling the surface effect of
the Helmholtz force on a moving object (e.g., fluid or solid), while
the backward coupling from physical system to the magnetic field
is volumetric, by tracking the moving magnetic materials (level-set,
particles, or mesh) immersed in a background magnetic field. From
a physical perspective, this coupling mechanism is fundamentally
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different from those conventional FSI or multi-phase fluids solvers,
in which case the interfacial stress acts as the sole medium to en-
force the interactions. From a numerical perspective, however, this
scheme shares nontrivial common threads with the various weakly
coupling approaches, e.g., the immersed boundary methods [Peskin
1972], by solving the evolution of a magnetic field on a background
Eulerian grid and restricting the interaction on a high-codimensional
interface.
Compared with its particle counterparts, our proposed level-set

approach demonstrates its unique merits in (1) modeling magnetic
phenomena regarding computational efficiency and scalability by
restricting the magnetic-to-mechanical interactions on the surface
only, (2) the ease for code implementation by extending an Eulerian
simulator with one additional Poisson solve, and most importantly,
(3) the seamless integration into the modern industrial pipelines
for visual fluid simulation and its multi-physics couplings by treat-
ing other simulators simply as black boxes. On the scientific side,
thanks to the Eulerian nature of our approach, the proposed level-
set method inherently enables the accurate calculation of long-
range magnetic interactions regardless of the distance between
the immersed objects. Moreover, a precise visualization of the mag-
netic streamlines distributed in a large open space can be obtained
without requiring any additional computational resources. This
scientific computing framework bridges the communities of high-
performance computing, computer graphics, and scientific data
visualization by enabling the effective exploration and illustration
of complex magnetic phenomena.

Contributions. We summarize our main contributions as follows:
• The first versatile level-set approach to modeling a broad
range of magnetic phenomena including fluids, solids, and
their couplings in a unified way,
• A novel computational approach based on the interfacial
Helmholtz force model to solve the magnetic-mechanical
coupling problem as an immersed boundary problem,
• An efficient numerical scheme to model the magnetic phe-
nomena by solving a Poisson equation with jump conditions
that can be incorporated into a standard Euler fluid solver.

2 RELATED WORK
Magnetic substance simulation. Beginning with the pioneering

work of [Oldenburg et al. 2000], a surge of literature has been de-
voted to the development of Eulerian numerical schemes to simulate
ferrofluid in a computational physics setting. To simulate the spike
structure of ferrofluid, some works make use of the finite element
method (FEM) with Kelvin force [Cao and Ding 2014; Gollwitzer
et al. 2007; Yoshikawa et al. 2011]. Due to the computational cost,
such methods cannot deal with dynamics well and are not easy to
generalize to other magnetic phenomena. The Helmholtz force per-
spective has been investigated through the development of several
numerical schemes for modeling engineering-ferrofluid, including
the particle level-set [Liu et al. 2011] and the volume of fluid [Ghaf-
fari et al. 2015; Shi et al. 2014]. However, none of these approaches
are able to provide an efficient, scalable algorithm to capture the
intricate 3D surface geometries. In the visual computing commu-
nity, the Kelvin point of view dominates the literature. For example,

[Ishikawa et al. 2013] employs a smoothed-particle hydrodynamics
(SPH) approach to simulating ferrofluid by treating each particle
as a magnetic dipole. A procedural method is devised to generate
the spike structure on the surface. [Huang et al. 2019] invents an
accurate large-scale SPH simulation scheme by incorporating the
fast multipole method (FMM) into the Lagrangian framework to
model the magnetic evolution, which produces visually captivating
effects and demonstrates the state-of-the-art performance by scaling
up to millions of particles. Besides magnetic fluids, the previous
literature is devoted to the numerical modeling of magnetic solids
(e.g., see [Thomaszewski et al. 2008], [Kim et al. 2018], [Zhao et al.
2019]), which also follows the Kelvin assumption owing to their
Lagrangian nature.

Interfacial flow simulation. Beginning with the pioneering work
of [Foster and Fedkiw 2001], a vast literature has been devoted to
simulating the various kinds of flow phenomena with its evolution
defined by a sharp interface in computer graphics. A broad spec-
trum of interfacial effects, such as foam and spray [Losasso et al.
2008], waves [Jeschke et al. 2018; Jeschke and Wojtan 2015b, 2017;
Schreck et al. 2019], surface tension [Ando and Tsuruno 2011; Da
et al. 2014, 2015; Saye and Sethian 2013; Zhu et al. 2015, 2014] , chem-
ical reaction [Nguyen et al. 2003, 2002], multi-phase flow [Losasso
et al. 2006b; Solenthaler and Gross 2011], viscous coiling [Batty and
Bridson 2008], etc., have been reproduced in a computational setting
by the invention of many high-performance numerical simulators.
Underlying these visually appealing simulations, the level-set ap-
proach [Osher and Fedkiw 2005] and the particle approach are the
two mainstream techniques that demonstrate their incomparable
effectiveness in capturing the complex dynamics and geometry of
an evolving interface. The level-set method tracks the interface by
evolving a signed distance field on an Eulerian background dis-
cretization (e.g., a uniform grid), which allows the generation of
highly complicated topological changes and geometrical evolutions
of an implicit surface [Hong et al. 2007; Kim et al. 2013; Losasso
et al. 2006a; Zheng et al. 2015]. The Eulerian nature of the interface
enables the usage of a variety of acceleration structures, such as
an Octree [Losasso et al. 2004] or a sparsely populated grid [Aan-
janeya et al. 2017; Liu et al. 2018; Setaluri et al. 2014], and a bank of
high-performance parallel solvers [Liu et al. 2016] to boost the per-
formance of the simulation. On another front, particle approaches,
as well as their various hybrid grid-particle variations, demonstrate
their efficacy in capturing the various material properties, such as
granular [Jiang et al. 2019; Yue et al. 2018; Zhu and Bridson 2005],
plastoelastic [Fang et al. 2019; Gao et al. 2017; Jiang et al. 2017;
Klár et al. 2016], foam [Ram et al. 2015; Yue et al. 2015] and non-
Newtonian materials [Zhu et al. 2015], and coupling effects [Fei
et al. 2018, 2019, 2017] that were challenging for a conventional
grid-based method.

3 PHYSICAL MODELS

3.1 Magnetic-Material Interaction Overview
Four-step interaction. The magnetic interaction process between a

backgroundmagnetic field and a magnetic substance consists of four
steps — magnetization, induction, exertion, and reshaping —
which guide the design of our computational pipeline. Here we
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Fig. 2. Algorithm overview. Our framework consists of four steps: mag-
netization, induction (left), exertion, and reshaping (right). The coupling
happens on a level-set interface on both the magnetic and mechanical sides.

briefly introduce these four steps on a high level of understanding.
Please refer to Appendix A.2 for a microscopic interpretation of
magnetization and induction. First, in themagnetization step,
the external magnetic fieldHext magnetizes the immersed magnetic
substance according to its current shape and position. Second, in
the induction step, the magnetized substance further induces an
internal magnetic field Hint, which is then linearly combined with
the existing external magnetic field, i.e., H = Hext +Hint (see Fig-
ure 3), to apply a magnetic forces fm on the subject in the exertion
step. Last, in the reshaping step, the state of the physical system
is updated according to the exerted magnetic force, which in turn
affects the magnetization step by intriguing a new Hint and closing
the loop of coupling. Take Figure 2 as a reference.

Naming convention. We symbolize vectors and second-order ten-
sors using bold letters (such as H and T ) and symbolize scalars
using italic letters (such as H and µ). In particular, if a bold letter
is used to stand for a vector, the corresponding italic letter will
symbolize the same quantity, omitting information of directions
(e.g.,H = |H |). Since the Helmholtz formula of the magnetic force is
adopted, for annotation conciseness we will start to use fm (instead
of fMm ) to denote the Helmholtz force in the rest of the paper (except
Appendix A.1).

Magnetic-material coupling. We model the interaction between
a magnetic substance (e.g., ferrofluid) and a background magnetic
field in the world space Γ. The domain of the magnetic object is
denoted by Ω with its boundary Σ (see Figure 2). We use an indicator
function IΩ to define the motion of Ω immersed in Γ:

IΩ(r ) =


1, r ∈ Ω,
1/2, r ∈ Σ,
0, r ∈ Γ \ (Ω ∪ Σ),

(9)

with r as a position in the world space. The co-evolution of the
induced magnetic field and the material dynamics is coupled by
a set of partial differential equations governing the dynamics of
the fields for magnetic effects (H , B,M) and the fields for moving
materials (u, p, σ , IΩ), which can be summarized on a high level as:{

M(H ,B,M, IΩ) = 0 in Γ, (10a)
F (u,p,σ , IΩ, fm(H )) = 0 in Ω ∪ Σ. (10b)

Fig. 3. An example of magnetization and induction. A sphere in a uniform
magnetic field (Hext) is magnetized and produces an induced field (Hint),
which will further lead to a synthesized field (H ).

The first set of equations describe the evolution of the background
magnetic field. The second set of equation(s) denote the dynam-
ics of the immersed magnetic material under the influence of the
Helmholtz boundary effects. In particular, the magnetic evolution
is instantiated by Maxwell’s equations under the magnetostatic as-
sumption (see Section 3.2) that is solved in the entire domain Γ.
The material dynamics is exemplified by different physical systems,
such as the Navier-Stokes equations for fluids, elastic equations for
soft bodies, rigid-body dynamics, or their multi-phase couplings
(see Section 3.3). The material domain of Ω is tracked in either an
Eulerian or a Lagrangian fashion. The two-way coupling is realized
by the evolving IΩ in the magnetic equations (from magnetics to
dynamics) and the immersed boundary Helmholtz force on Σ in the
dynamic equations (from dynamics to magnetics).

3.2 Magnetic Field Evolution
The evolution of amagnetic field is governed byMaxwell’s equations

∇ · B = 0, (11a)

∇ ×H = jf +
∂D

∂t
. (11b)

Here jf is the electric current density of free charges and D is the
electric displacement field affecting the magnetic field by electro-
magnetic induction. For (nearly) non-conductive magnetic objects,
such as ferrofluid, we can assume steady-state electric displacement
∂D/∂t = 0 and zero free current, jf = 0, inside and on the boundary
of the object.
The magnetic and the material fields satisfy the following four

relations: 
H = Hext +Hint, (12a)
B = µ0(H +M), (12b)
M = χH , (12c)
χ = kIΩ , (12d)

where Equation (12b) is the definition of B and Equation (12c) is
the relation betweenM and H for linear, isotropic materials. Equa-
tion (12d) assigns different susceptibility values to each domain,
with k as the one in Ω. Physicists also define the permeability as

µ = µ(r ) = (1 + χ (r ))µ0 (13)

in order to simplify Equation (12b) to

B = µH . (14)

Considering the fact that Maxwell’s equation is ubiquitously true
for both the external magnetic field Hext and the total magnetic
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fieldHext +Hint, we can substitute Ĥ1 = Hext and Ĥ2 = Hext +Hint
into Equation (11) in separate and perform subtraction to obtain:{ ∇ · (1 + χ )Hint = −∇ · χHext, (15a)

∇ ×Hint = 0. (15b)
According to Equation (15b), Hint is conservative. Therefore, we
can let Hint = −∇ψ , with ψ as a potential function, which can be
further substituted into Equation (15a) to get a Poisson’s equation
with varying coefficients forψ :

∇ · (1 + χ )∇ψ = ∇ · χHext. (16)

Theoretically, to solve Equation (15), a boundary condition that
ψ → 0, |r | → ∞ is involved. It is noteworthy that the solution for
Equation (16) exhibits a C0 continuity over the domain of Γ with a
discontinuous derivative across Σ. This gradient discontinuity leads
to a discontinuous Hint across Σ with an undefined value on the
interface. After solving Equation (16), the total magnetic field can
be obtained by

H = Hext − ∇ψ . (17)

Helmholtz force. The jump of Hint across the interface further
results in an interfacial Helmholtz force (Equation (7)) applied on
the boundary of the magnetic material. Here we briefly show the
formula of the interfacial Helmholtz force. We refer the readers to
Section 4.1 and Appendix A.3 for a more rigorous proof. By exploit-
ing the property of the indicator function defined in Equation (9)
that

∇IΩ(r ) = −δΣ(r )n̂(r ), (18)

where δΣ(r ) is the generalized Dirac delta function, with infinite
value on Σ and 0 everywhere else, and n̂ is the unit normal pointing
outwards Ω of the interface, we can substitute Equation (12d) into
Equation (7) and then rewrite the expression of fm as

fm =
µ0
2
kH2δΣ(r )n̂, (19)

which indicates the fact that the Helmholtz force is exerted on the
interface only. However, because of undefined H on the interface,
we must further take the weak form of the Dirac delta function and
supplement the definition of H in order to obtain a well-defined
formula that

fm =
µ0
2
k

[
H2 +

k2

4k + 4
(H · n̂)2

]
δΣ(r )n̂. (20)

Here, H on the interface is a weighted average value over the dis-
continuity:

H =
µ1H1 + µ2H2

µ1 + µ2
(21)

with µ1 = (1 + k)µ0, µ2 = µ0, H1 measured on the inner interface
and H2 measured on the outer interface. This interfacial force can
be applied to different mechanical systems to enable the magnetic-
mechanical coupling effects in different model settings.

3.3 Magnetic Substance Evolution
Three material models are presented in order to instantiate Equa-
tion (10b) in the coupling model under the influence of a background
magnetic field. These models include incompressible ferrofluid, mag-
netic soft body and magnetic rigid body.

Incompressible ferrofluid. We consider the Navier-Stokes equa-
tions with an additional interfacial Helmholtz force term as:

ρ

(
∂u

∂t
+u · ∇u

)
= −∇p + ρν∇2u + ρд + fc + fm, (22a)

∇ · u = 0. (22b)

with t as time, u as the velocity, p as the pressure, ρ as the mass
density, ν as the kinematic viscosity, д as the gravity, and fc as
the surface tension. In particular, the surface tension is defined as
fc = −σκn̂ with σ as the surface tension coefficient and κ as the
mean curvature.

Magnetic elastic body. We consider the Lagrangian formula of
the elastic equation under the influence of a magnetic field as an
additional boundary coupling by Helmholtz force as

ρ

(
∂u

∂t
+u · ∇u

)
= ∇ · σ + ρд + fm, (23)

with σ as the elastic stress.

Magnetic rigid body. We consider the Euler equation to model the
magnetic rigid body dynamics that is immersed in a magnetic field,
with a boundary integral term for the effects of the Helmholtz force
as 

mρ
du
dt
=mρд +

∰
Ω
fm dV , (24a)

Iρ
Dω
Dt
+ω × (Iρ ·ω) =

∰
Ω
(d × fm) dV , (24b)

withmρ as the mass, Iρ as the inertia tensor (relative to the center of
mass), D(·)/Dt as the derivative in a body-fixed frame of reference,
ω as the angular velocity, and d as the vector from the center of
mass to an object point.

Multi-physics coupling. For liquid-liquid coupling, i.e., the multi-
phase flow, theHelmholtz force is exerted on the two-phase interface
instead of the liquid surface. For solid-liquid coupling, there is a
boundary condition (u − usolid) · n̂ = 0 involved, and the entire
system must follow the laws of conservation of momentum and
energy. In these cases, the value of χ needn’t follow Equation (12d)
and each material can have its own susceptibility. Despite this, in
the text of this paper, we still define IΩ and assume χ = kIΩ for
simplicity.

4 NUMERICAL ALGORITHMS
We present our numerical model to solve the coupled magnetic-
material equations discussed in the previous section. The magnetic
field is discretized on a Cartersian MAC grid [Harlow and Welch
1965]. The scalar fields (e.g., ψ ) are stored on cell centers and the
vector fields (e.g., H ) are stored on faces. The material evolution is
modeled using a level-set signed distance field, which functions as
two fundamental roles in our solver: first, it specifies the C1 discon-
tinuity ofψ in the Poisson’s equation discretized on the background
Cartersian grid; second, it denotes the boundary of the immersed
material to which the Helmholtz force is exerted.
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4.1 Level Set
We use an implicit level-set function discretized on a Cartersian grid
to capture the interface evolution of a magnetic material immersed
in a magnetic field:

φ = φ(r ) =


+ min
r ′∈Σ
|r − r ′ |, r < Ω,

0, r ∈ Σ,
− min
r ′∈Σ
|r − r ′ |, r ∈ Ω,

(25)

where the zero-level set is the interface.
Next, we re-formulate the expression of the Helmholtz force

applied on the interface by using the level-set function. We first
introduce a Heaviside step function1 taking φ as input:

θ = θ (φ) =


0, φ < 0,
1/2, φ = 0,
1, φ > 0.

(26)

The gradient of the Heaviside function can be expressed as

∇θ (φ(r )) = dθ (φ)
dφ
∇φ

= δ (φ)n̂(r ), (27)

in which δ (φ) is the regular Dirac delta function. The expression
for χ (Equation (12d)) can be rewritten by using φ as

χ (r ) = k[1 − θ (φ(r ))]. (28)

Combining Equations (7) and (28), we can express the interfacial
Helmholtz force as

fm =
µ0
2
kH2δ (φ(r ))n̂, (29)

which shows the fact that δΣ(r ) = δ (φ(r )), compared to Equa-
tion (19). Derived by integrating Equation (29) (as in Appendix A.3),
the rigorous formula of the interfacial Helmholtz force is written as

fm =
µ0
2
k

[
H2 +

k2

4k + 4
(H · n̂)2

]
δ (φ(r ))n̂

≈ µ0
2
kH2δ (φ(r ))n̂, (30)

where H is extended to the interface by Equation (21), and the last
approximation holds when k is small enough.

Smoothed step function. Numerically, we approximate the step
function θ (φ) and its derivative δ (φ) using smoothed functions:

θ̃ (φ) =


0, φ ≤ −ε ,
1
2 +

φ
2ε +

1
2π sin πφ

ε , |φ | < ε ,
1, φ ≥ +ε ,

(31)

δ̃ (φ) =


0, φ ≤ −ε ,
1
2ε +

1
2ε cos

πφ
ε , |φ | < ε ,

0, φ ≥ +ε .
(32)

Here we assign a certain value to ε so as to extend the ideal sharp
interface to a thin layer with a certain thickness. By doing this, we
remove the singularity in Equation (16) and get the magnetic field
1People are used to symbolizing Heaviside side function by H or θ . We choose θ in
that H has already been used.

continuously differentiable everywhere, but leave the definition of
H in the 0-level set as shown in Equation (21).

Sharp interfacial force. In spite of the smoothed χ and H , leading
to a continuous surface force (CSF) model, we add the Helmholtz
force onto the ideal interface in a sharp fashion, which is essential to
enabling a precise coupling between the magnetic tension effect and
the capillary tension effect. The concentration of the continuous
surface force is equivalent to the integral of Equation (29) with a
certain ε , whose formula is the same as that in Appendix A.3, so
the concentrated force equals to the ideally interfacial Helmholtz
force (Equation (30)). Since fm is perpendicular to the interface
everywhere, which amounts to a normal pressure, we can model the
interfacial effects of fm in a sharp manner by rewriting Equation (30)
as the Young–Laplace Equation:

fm dV = ∆p dS = (p − p0) dS ≈
1
2
kµ0H

2 dS in Σ, (33)

which can be further simplified as boundary conditions of p in the
projection step using the ghost fluid method [Kang et al. 2000].

4.2 Poisson’s Equation
We discretize Equation (16) on a Cartersian MAC grid as

∇ · β∇x = b, (34)

with the unknowns stored on the cell centers and the spatially
varying coefficients β stored on the faces of the grid. For each
face, the value of β is approximated by Equation (31). The jump
condition of β across the interface is treated using the smoothed step
function introduced in Equation (31). Equation (34) is discretized
using a standard finite-difference scheme and solved by a multi-grid
preconditioned conjugate gradient solver [McAdams et al. 2010] on
the MAC grid. Substituting β , x and b with 1 + χ ,ψ and ∇ · χHext
respectively, we take an 1D case as an example. The finite difference
scheme with varying coefficients for the cell i is given by:(

1 + χi+1/2
)
(ψi+1 −ψi ) −

(
1 + χi−1/2

)
(ψi −ψi−1)

(∆x)2

=
χi+1/2(hi+1 − hi ) − χi−1/2(hi − hi−1)

∆x

(35)

with h as the 1D component of Hext, ∆x as the cell size, the integer
subscripts (i , i − 1 and i + 1) denote cell indices and the ones with
halves denote the face indices.

4.3 Temporal Evolution
We take the temporal evolution of a ferrofluid immersed in an exter-
nal magnetic field as a examplification of our numerical solver. The
scheme can be generalized to other physical systems with different
model implementations as demonstrated in our result section. In
each timestep, the algorithm updates the states of the system using
the following steps (also sketched in Figure 4):

(1) Advect the level-set φ and the velocity field u on the grid using
the semi-Lagrangian method and reinitialize φ using the fast
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(1) Advect fields (6) Project velocity

(8) Project velocity

(5) Exert body 
force (optional)

(7) Apply capillary 
tension

(2,3,4) Solve the 
magnetic field

With       as 
boundary condition

Fig. 4. The pipeline sketch of the temporal evolution of a ferrofluid. New
components (painted red) are added on the basis of the standard industrial
pipeline (painted blue) for fluid simulation.

marching method [Sethian 1996]:

φ ← φ − ∆t(u · ∇φ),
u ← u − ∆t(u · ∇u).

(2) Update the magnetic susceptibility χ on the grid:

χ ← k
(
1 − θ̃

)
.

(3) Update the potential functionψ by solving the Poisson equation
(Equation (35)) in Γ discretized on the background grid using
the preconditioned conjugate gradient method (PCG):{ ∇ · (1 + χ )∇ψ = ∇ · χHext, in Γ,

∇ψ · n̂′ = 0 in ∂Γ,

with n̂′ as the normal vector of ∂Γ. This Neumann boundary
condition acts as so-called magnetic shielding, which is used to
replace the boundary condition at infinity. We should choose
a reference point r0 with ψ (r0) = 0 before solving the linear
system.

(4) Update the magnetic field H (Equation (17)):

H = Hext − ∇ψ .

(5) (Optional) Exert body forces (e.g., gravity):

u ← u + ∆tд.

(6) Apply the Helmholtz surface tension as a pressure jump and
solve the Poisson’s equation in Ω to enforce incompressibility.
The Poisson system with the boundary conditions yields the
form
∇ · (u − ∆t∇p) = 0, in Ω,

p = p0 +
1
2
kµ0H

2 on the air-liquid interface,

(u −usolid) · n̂ = 0 on the solid-liquid interface,

followed by u ← u − ∆t∇p.
(7) Apply the capillary surface tension on the interface using a

semi-implicit method [Zheng et al. 2006]. This linear system is
written as

u ′ −u
∆t

= σδ̃ (φ)
[
∆t∇2u ′ − κn̂ − ∆t

(
κ
∂u

∂n̂
+
∂2u

∂n̂2

)]
where ∂/∂n̂ = n̂ · ∇ and ∂2/∂2n̂ = n̂ · D2 · n̂ with D2 as the
Hessian matrix, followed by u ← u ′.

5
Iteration numbers
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Magnetic box ‡

Rosensweig instability†
Magnetic box†
Magnetic text ‘SIG’ †
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Fig. 5. Relative residuals of magnetic fields as the iteration number increases
in our multi-grid solver for different configurations. † denotes the uniform
external field while ‡ denotes the external field induced by a magnet.

(8) Apply another projection step to enforce the divergence-free
condition for the final state. The Poisson system with the bound-
ary conditions is written as

∇ · (u − ∆t∇p) = c , in Ω,
p = p0 on the air-liquid interface,
(u −usolid) · n̂ = 0 on the solid-liquid interface,

with c as a volume correction term [Losasso et al. 2008], followed
by u ← u − ∆t∇p.
In our implementation, for a single-phase fluid, we rely on the

numerical viscosity introduced by the semi-Lagrangian advection
[Fedkiw et al. 2001] and ignore the viscosity term in Equation (22). As
to multi-phase examples (e.g., Figure 14), the semi-implicit surface
tension in Step (7) is replaced by an implicit viscosity solver [Zhu
et al. 2014].
Among these steps, advection (1), body force (5), projection (6,

without adding Helmholtz), surface tension or viscosity (7), and
second projection (8) compose a standard industrial pipeline for
fluid simulation with an implicit term (see [Bridson 2015] for details).
Our magnetic ferrofluid solver modifies the pipeline by adding three
additional steps (Steps (2) to (4)) and the Helmholtz boundary in (6),
with only Step (3) acting as a nontrivial overhead in addition to the
existing stages.
The pipeline can be modified to accommodate the magnetic de-

formable bodies or rigid bodies in a straightforward manner. For
example, for a deformable magnetic body, Steps (6) to (8) can be
replaced by a finite element elastic solver with the Helmholtz force
applied on each element computed as the local pressure multiplying
the area of each surface element (see Equation (33)).

By defining more level sets to track the surface of each material,
it is easy to generalize this pipeline to multi-physics systems.

5 SIMULATION RESULTS
We evaluate the efficacy of our method by a set of examples for mag-
netic phenomena simulation, including magnetic fluid, solid, soft
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Table 2. Simulation parameters for the examples.

Figure Scene Description† External Field Resolution Cell Size (∆x/m) # of time steps‡ Elapsed time
5 Convergence test Uniform / magnet 192 × 192 6.250 × 10−4 1 × 1 0.15 s
6 Accuracy test Uniform [96, 1920] × [96, 1920] [6.25, 125] × 10−5 1 × 1 [0.07, 54] s
11 Rosensweig instability Uniform 192 × 128 × 192 6.250 × 10−4 200 × 14.0 23.1 h
12 Ferrofluid Taichi Uniform 512 × 256 × 512 7.032 × 10−4 282 × 12.3 28.9 d
8 Dancing ferrofluid I Uniform 192 × 192 × 192 6.250 × 10−4 500 × 22.4 6.5 d
9 Dancing ferrofluid II Magnet 192 × 192 × 192 6.250 × 10−4 3000 × 6.3 11.2 d
10 Magnetic induction lines Uniform 384 × 128 × 128 6.250 × 10−4 350 × 2.1 4.5 h
16 Magnetic rigid box Magnet 256 × 192 × 192 6.250 × 10−4 700 × 29.7 1.2 h
17 Magnetic lotus Magnet 192 × 192 × 192 1.563 × 10−2 750 × 2 21.8 h
13 Magnetic octopus Uniform 192 × 128 × 128 1.563 × 10−1 500 × 2 7.4 h
14 Two-phase flow∗ Radial 192 × 192 6.250 × 10−4 200 × [24.2, 35.5] [12, 18]min
15 Solid-fluid coupling Magnet 384 × 384 3.125 × 10−3 1000 × 13.6 2.3 h

† All these scenes use realistic physical values, including µ0 = 4π × 10−7 N/A2 , k = 0.33, д = 9.8m/s2 , σ = 7.28 × 10−2 N/m, ρwater = 1.0 × 103 kg/m3 and ρiron =
7.8 × 103 kg/m3 if no special instructions.

‡ The number of time steps is expressed in the product of two multipliers which are the (accurate) number of frames and the (averaged) number of time steps per frame. The
latter is subject to the CFL condition.

∗ We set ν = 8.0 × 10−2 m2/s in this scene.
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Fig. 6. Relative errors of the internal magnetic field at different resolutions,
calculated with Equation (36).

body, and multi-phase couplings. The simulation parameter settings
are summarized in Table 2. These experiments were performed on a
6-core 3.2GHz Intel(R) Core(TM) i7-8700 desktop with 16 GB RAM.

Convergence of the magnetic field. First of all, we evaluate the
convergence of our multi-grid solver for magnetic fields. We put
various magnetic objects inside different external fields, and then
solve the internal field at the resolution of 192 × 192. Figure 5 illus-
trates convergence curves of different configurations, where we can
see that such a numerical solver is universally stable and efficient.

Accuracy of the magnetic field. As to the accuracy of the magnetic
field, we put a magnetic sphere inside a uniform external field, and
then solve the internal magnetic field at different resolutions. For the
purpose of quantitative analysis, we sample more than 105 points
(r1,r2,r3, . . . ,rn ) uniformly distributed in the domain and measure
the relative errors based on the following equation:

Relative error =

√
1
3n

∑n
i=1(∇ψ (ri ) − ∇ψ ′(ri ))2√
1
3n

∑n
i=1 ∇ψ ′2(ri )

, (36)

(a) Magnetic shielding; (b) Far-field condition.

Fig. 7. Comparison of magnetic fields with different boundary conditions.
The left one is the heat map of linearly interpolated ψ at the resolution of
1920 × 1920, with magnetic shielding, and the right one is that of ψ taken
from an analytical solution to the same scene, with the boundary condition
at infinity.

where 3n equals to the number of degrees of freedom. Here ψ ′ is
taken at the highest resolution (1920 × 1920), and ψ is taken at a
lower one. Both of them are linearly interpolated. Figure 6 shows
the line chart of relative errors with respect to different resolutions.
This experiment suggests that even at a medium resolution, the
magnetic field can be fairly accurate. As shown in Figure 7, we
draw the heat map of linearly interpolated ψ at the resolution of
1920 × 1920 and that of ψ from an analytical solution with the
boundary condition at infinity side by side. We can see that the field
with magnetic shielding is significantly different from that with the
far-field condition near the boundary, but achieves a comparable
accuracy around the interface.

Rosensweig instability. We first simulate the ferrofluid phenomena
of Rosensweig instability [Rosensweig 1985] as shown in Figure 11.
When a paramagnetic fluid is subjected to a strong vertical magnetic
field, the surface exhibits a regular pattern of peaks and valleys. We
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Fig. 8. Ferrofluid droplet falls inside the crystal ball and is magnetized by a rotating external magnetic field whose direction is denoted by the compass.

Fig. 9. Ferrofluid inside the crystal is atrracted by a moving magnet and shaping into spikes.

Fig. 10. Top: a uniform external field magnetizes the ferrofluid droplets and makes them separate from each other; below: the same experiment with two
external fields with different signs on the left and right sides, in which case the droplets are magnetized and attracted by each other. The magnetic induction
lines are visualized.

initialize the ferrofluid in a squared container exposed to a uniformly
vertical external magnetic field. When the external magnetic field is
turned on, the spike structure emerges immediately and stabilizes
to a steady state.

Dancing ferrofluid. As in Figure 8, we demonstrate the effects of a
temporally varying external magnetic field on immersed ferrofluid
within a spherical container. Influenced by gravity and the uniformly
vertical external magnetic field, the droplet falls and exhibits spiky
structures. Then, the external magnetic field begins to rotate globally,
guiding the deformation of the spikes on the fluid surface.We use the
compass to illustrate the direction of the external magnetic field. As
in Figure 9, we demonstrate the effects of an external magnetic field
that varies both spatially and temporally, as themagnet exhibits both
rotational and translational motion. The ferrofluid in the spherical
container reacts to the magnet at high speed by exhibiting vivid
motions and geometries.

Magnetic induction lines. Two magnets with the same polariza-
tion will separate from each other, while two magnets with contrary
polarization will approach to each other. As in Figure 10, we illus-
trate this scientific fact by simulating the interaction between two

Fig. 11. Rosensweig instability of ferrofluid under uniform external mag-
netic field.

weightless ferrofluid droplets and visualizing the induced magnetic
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Fig. 12. Ferrofluid Taichi simulation.

lines within the entire space. It is the two types of internal magnetic
fields that determine the difference of droplet behaviors.

Ferrofluid Taichi. As shown in Figure 12, we simulate the evo-
lution of ferrofluid inside a container with a Taichi shape, at the
resolution of 512 × 512 × 256 in slow motion. Such an example
highlights the scalability of our numerical method.

Magnetic rigid box. As in Figure 16, we simulate a magnetic rigid
body interacting with a magnet to showcase the capability of our
solver in simulating interaction between magnetic rigid bodies. We
present two numerical experiments, one with an internal magnetic
field and one without. From these, we can learn that if we just
consider the one-way effect from the external field to the magnetic
objects, the results will be distorted to some extent.

Magnetic lotus. As shown in Figure 17, we illustrate the beauty
of the interaction between a soft magnetic structure and a trans-
lating magnet. The lotus petals are modeled as thin elastic sheets
that are magnetized within the external magnetic field and exhibit
visually vivid deformations when interacting with the kinematic
magnet source. In inset plots of this figure, the deformations are
demonstrated by the von Mises strain distribution.

Magnetic octopus. We put a magnetic octopus inside a uniform
external magnetic field, as shown in Figure 13. All the tentacles have
the same polarization, so they tend to repulse each other, making
the body open up.

Fig. 13. Simulation of a magnetic octopus, with the internal field visualized.

(a) k = 0.16; (b) k = 0.33; (c) k = 0.50.

Fig. 14. Two-phase magnetic liquid: the orange part is ferrofluid with sus-
ceptibilty k while the black part is normal water, after 0.4 second.

Fig. 15. Coupling in 2D: an iron box under water is attracted by a magnet
on the top right.

Two-phase flow. To test our scheme in a multi-physics system,
first we set a scene of two-phase flow. As in Figure 14, the brown
part is the ferrofluid, while the black one is the normal water. When
a radial external field is applied, the interface will be deformed,
shaped into gorgeous patterns, where deformation becomes larger
as k increases. Such a setting is inspired by [Anjos et al. 2019].

Solid-fluid coupling. Another multi-physics system is a coupling
between amagnetic rigid body and normal water, shown in Figure 15.
At first, a magnetic box is sunken to the bottom of our simulation
water tank. Because a magnet is located on the top right, the box is
attracted and flies out of the water, which generates huge splashes.

6 DISCUSSIONS AND CONCLUSIONS
We have presented a novel approach to modeling the interactions
between magnetic fields and various forms of magnetizable systems
in a unified way, which enables efficient and effective simulation
of a broad spectrum of magnetic phenomena, including magnetic
fluids, soft bodies, rigid bodies, and their interactions. At the heart
of our approach lies a two-way coupling mechanism between the
background Eulerian magnetic field and the immersed Eulerian (or
Lagrangian) mechanical system, enabled by an interfacial Helmholtz
force. We devise a numerical scheme, motivated by the immersed
boundary method, to effectively treat the coupling by solving only
one additional Poisson equation with boundary jump conditions.
Our approach shares inherent common threads with an array of nu-
merical methods that are widely used in VFX commercial software,
e.g., level-set liquid, grid-based Poisson solver, immersed boundary
method, advection-projection scheme, etc., enabling an immediate
and seamless integration of our approach into an industrial pipeline,
to create a broad range of novel magnetic phenomena simulations.
Our current implementation suffers from two main limitations.

First, the way to add Helmholtz force is explicit, which might cause
numerical instability potentially and therefore limits the system’s
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Fig. 16. Top: iron box attracted by a magnet, without magnetization; below: iron box attracted by a magnet, with magnetization.

Fig. 17. A soft magnetic lotus attracted by a moving magnet, with deformations demonstrated by the von Mises strain distribution in the upper-right corner.

CFL condition. To be specific, we test the CFL number, denoted α , for
a two-dimensional experiment of Rosensweig instability, as shown
in Figure 18. The ferrofluid begins to vibrate as a whole near the
equilibrium position when α exceeds 2. If α > 4, local vibrations on
the surface also appear. This will lead to mass ejection when α > 7.
Second, the immersed boundary coupling between the magnetic
field and the mechanical system is essentially a weakly coupling
scheme. It could suffer from numerical issues when simulating a
strongly coupled system in which a monolithic scheme [Robinson-
Mosher et al. 2011] exhibits inherent strength.
One interesting direction for future work is to devise a bound-

ary element method [James and Pai 1999] to model the interfacial
magnetic-mechanical interactions. It will be interesting to see our

(a) α = 1.0 (equilibrium); (b) α = 3.0 (whole vibration);

(c) α = 5.0 (local vibration); (d) α = 8.0 (mass ejection).

Fig. 18. Ferrofluid behaviors in the experiment of 2D Rosensweig instability
at the resolution of 192 × 96, taking different representative CFL numbers.

interfacial Helmholtz solver incorporated into a surface-only liq-
uid solver (e.g., [Da et al. 2016b]) for computational benefits in
that volumetric discretization is completely done away. As an im-
mediate next step, another direction lies in the linearization of the
Helmholtz jumpwhich can potentially lead to a fully implicit surface
tension solver by integrating both Helmholtz and capillary effects
in a unified way, which, on the other hand, can potentially boost
the numerical performance as well. While we have merely touched
upon the simulation of multi-phase ferrofluid, which already ex-
hibits astonishing appearance and complexity, there are still a broad
array of interesting avenues in magnetic substance simulation with
inherently complex interfacial physics to explore. Thanks to the
Eulerian nature of our approach, we are able to visualize the simula-
tion results in a scientific manner, which might prove helpful to the
collaboration between physicists and fluid mechanics scientists for
their better understanding of these intricate magnetic phenomena
by providing them an effective numerical tool to conduct a broad
variety of parameter studies and numerical analysis.
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A PHYSICAL ANALYSIS

A.1 Explanation and Derivation of Magnetic Interaction
From a micro perspective, all the macro physical quantities are av-
eraged over micro ones within a given space-time region, among
which the averaged stress-energy tensor is often divided into the
field term and the medium term. In classical electrodynamics, the
Maxwell stress tensor Tm is used to represent the interaction be-
tween electromagnetic forces and mechanical momentum, i.e., it
reflects the relation between the electromagnetic field term and
the medium term. Therefore, the form of the Maxwell stress tensor
depends on different divisions of the averaged stress-energy tensor.
In vacuum, there is no medium term, so the Maxwell stress tensor
as in Equation (1) is uncontroversial, but in matter there are sev-
eral opinions on the division, which results in different forms of
this tensor. Besides Einstein, Laub and Minkowski, other physicists
including Abraham also proposed their forms.

The magnetic force density can be computed by fm = ∇ ·Tm. We
will discuss the Kelvin force and the Helmholtz force respectively.

For the Kelvin force,

f Em = ∇ · (B ⊗ H ) −
µ0
2
∇ · H2I

= H (∇ · B) + B · ∇H − µ0
2
∇ · (H ·H )I

= 0 + B · ∇H − µ0H · ∇H
= (B − µ0H ) · ∇H
= µ0M · ∇H , (37)

exploiting Equation (12b), in which the term with ∇ ·B is eliminated
confidently according to Equation (11a). Similarly, for the Helmholtz
force,

fMm = ∇ · BH −
1
2
∇ · (B ·H )I

= H (∇ · B) + B · ∇H − 1
2
∇ · (B ·H )I

= B · ∇H − 1
2
∇ · (B ·H )I . (38)

When the linear, isotropic assumption is adopted, i.e.,M = χH
is satisfied, the two forces are simplified as

f Em = µ0χH · ∇H

=
µ0
2
χ∇ (H ·H )

=
µ0
2
χ∇

(
H2

)
(39)

and

fMm = µH · ∇H −
1
2
∇ · µH2I

=
µ0
2
(1 + χ )∇

(
H2

)
− µ0

2
∇(1 + χ )H2

= − µ0
2
H2∇χ . (40)

A.2 Mechanism of Magnetization and Induction
Every atom can be considered as a dipole with an invariant mag-
netic momentmi indicating its magnetic performance. If there is no
external magnetic field, the orientation of atoms is totally random.

ACM Trans. Graph., Vol. 39, No. 4, Article 29. Publication date: July 2020.



29:14 • Xingyu Ni, Bo Zhu, Bin Wang, and Baoquan Chen

The sum of the induced magnetic fields by all these atoms is zero
everywhere. That is why most substances are not magnetic on a
macroscopic level. Most atoms do not react to external magnetic
fields. However, some ferromagnetic atoms, including iron, cobalt
and nickle, are strongly attracted by external magnetic fields and
can be polarized to align with the direction of the magnetic field.
This process is called magnetization. There are different categories
of magnetism, with ferromagnetism underpinning most of the mag-
netic phenomena in our daily life.
In physics, the macroscopic magnetic performance is described

by the vector fieldM :

M = M(r ) = lim
∆V→0

∑
imi

∆V
, (41)

which summarizes all of the atoms within an infinitesimal ∆V -
volume domain neighboring the point r . Since there is no magnetic
particle outside the domain of magnetic materials, denoted Ω, M
remains 0, owing to the randomness of atom orientations. Inside
Ω, we have to analyze M by the principle of statistics. When an
external magnetic field is applied, an atom will rotate and its mag-
netic moment will tend to (with a high probability) align with the
direction of the magnetic field. Isotropic assumption states that this
probability is the same no matter which direction the magnetic field
orients. This is why the term polarization is also used to portray the
magnetization. It should be noted that for a specific atom, the exter-
nal magnetic field and the internal magnetic field induced by other
atoms is non-distinguishable. These two fields jointly magnetize an
atom as a whole.

Here is an example. For near-independent particles, such as those
in ferrofluids, statistical physics states that

mi =mi L

(
miH

kBT

)
H

H
. (42)

• mi is the expectation ofmi in equilibrium.
• kB is the Boltzmann constant,
• T is the ambient temperature.
• L(·), which denotes the Langevin function, has the following
form:

L(α) = cothα − 1
α
. (43)

Because of the identity of atoms, the magnitude of each magnetic
moment is identical. All themi s are the same and all themi s within
a particular infinitesimal domain are also equal. Let the former be
m and the latter be m(r ). With n indicating the particle number
density, constant in both time and space, we will acquire

M = nm (44)

= nm L

(
mH

kBT

)
H

H
. (45)

Given constants k1 = nm and k2 =m/kBT , Equation (44) can be
rewritten as

M = k1

(
cothk2H −

1
k2H

)
(46)

without regard to the direction.
If the intensity of the magnetic field is not that high, which sug-

gests k2H ≪ 1. Expanding the coth function in Equation (46), we

will obtain

M = k1

[
1

k2H
+
k2H

3
+ o

(
(k2H )3

)]
− k1
k2H

=
k1k2
3

H + k1 o
(
(k2H )3

)
≈ k1k2

3
H (47)

inside Ω, leading to linear assumption naturally. Let a new constant
k equal to k1k2/3. It is just the form we have seen in Equations (12c)
and (12d).

A.3 Derivation of the Interfacial Helmholtz Force

Fig. 19. A microelement around the interface, with ε > 0 as an infinitesimal.
Since µ does not change perpendicular to y-axis, physical quantities are
invariant in such a direction within this infinitesimal element. Therefore,
this scene is reduced to a one-dimensional problem where the vector r can
be replaced by the scalar y , with φ(y) = y satisfied.

Given that there is an interface separating two materials with per-
meability µ1 and µ2 (µ1 − µ2 = kµ0) respectively (refer to Figure 19),
we acquire

µ(y) = µ1 + (µ2 − µ1)θ (y). (48)
By choosing the integration volumeV and the integration surface S
as illustrated in Figure 19, Maxwell’s equations in magnetostatics
derive 

∰
V
∇ · B dV =

∯
∂V

B · dS = 0, (49a)∬
S
∇ ×H · dS =

∮
∂S

H × dr = 0. (49b)

With subscript ‘n’ and ‘t’ indicating the normal component and the
tangential component respectively, we define such functions:

Ht(y0) = H |y=y0 × n̂, (50a)
Hn(y0) = H |y=y0 · n̂, (50b)
Bt(y0) = B |y=y0 × n̂, (50c)
Bn(y0) = B |y=y0 · n̂. (50d)

Here n̂ coincides with ŷ. It is clear from Equation (49) that{
Ht(y0) = Ht(0), (51a)
Bn(y0) = Bn(0), (51b)

the latter of which can be further explained as

µ(y0)Hn(y0) = µ(0)Hn(0) =
µ1 + µ2

2
Hn(0). (52)
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Taking the weak form of the Dirac delta function with ε as an
infinitesimal, we do the following integral of Equation (29) over φ:

fm = δ (φ)
∫ +ε
−ε

µ0
2
kH2δ (φ)n̂ dφ

=
kµ0
2

n̂δ (φ)
∫ +ε
−ε

[
Ht

2(0) + µ2(0)
µ2(φ)

Hn
2(0)

]
δ (φ) dφ

=
kµ0
2

n̂δ (φ)
[
Ht

2(0) + Hn
2(0)

∫ +ε
−ε

µ2(0)
µ2(φ)

δ (φ) dφ
]

(53)

in which∫ +ε
−ε

µ2(0)
µ2(φ)

δ (φ) dφ =
∫ +ε
−ε

µ2(0)
[µ1 + (µ2 − µ1)θ (φ)]2

dθ (φ)
dφ

dφ

=

∫ +1
0

µ2(0)
[µ1 + (µ2 − µ1)θ ]2

dθ

= − µ2(0)
µ2 − µ1

(
1
µ2
− 1
µ1

)
=

1

1 −
(
µ1−µ2
µ1+µ2

)2 . (54)

Substituting µ2 = µ0, µ1 = (1 + k)µ0 into this integral, the rigorous
formula of the Helmholtz force is

fm =
µ0
2
k

[
H2 +

k2

4k + 4
(H · n̂)2

]
δ (φ(r ))n̂. (55)

Considering that 
H1 = lim

ε→0
H |y=−ε , (56a)

H2 = lim
ε→0

H |y=+ε , (56b)

it is not hard to prove thatH on the interface is a weighted average
of H1 and H2, just as Equation (21) shows.
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