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Abstract
The focus of this paper is to propose a novel computational approach for the solution of large-scale flow-based topology 
optimization problems using a graphics processing unit (GPU). A marker-and-cell method is first used to discretize a fluid 
flow design domain. This is followed by a finite difference method to solve the Stokes equations for steady-state incompress-
ible fluid flow. An adjoint method is then employed to conduct design sensitivity analysis for the optimization. We use a 
generalized minimal residual method as the base solver for the linear system and develop an efficient geometric multigrid 
preconditioner on GPU in a matrix-free form. We simplify the treatment of different boundary conditions with improved 
accuracy based on the theory of discrete exterior calculus. Numerical results utilizing different resolutions are presented and 
highlight a nearly linear computational time scalability. Consequently, intricate branching flow structures may be automati-
cally and efficiently discovered at high resolutions. Our approach is capable of solving indefinite problems (i.e., one forward 
solution of the Stokes equations) with over 7 million elements in three dimensions (3D) and over 16 million elements in two 
dimensions (2D) within two minutes using a single desktop computer. Furthermore, all numerical experiments reported in 
this paper are performed on a single NVIDIA Quadro RTX 8000 graphics card. We subsequently compare the optimized 
flow structures obtained using the newly proposed method with those obtained by commercial finite element software in an 
established optimization loop and find the optimized structures from both methods to be in good agreement. To highlight 
the advantage of GPU acceleration, a quantitative run-time comparison study with the commercial finite element software 
is performed. Our implementation is shown to solve fluid flow problems with orders of magnitude higher resolution using 
only a fraction of the computational time.

Keywords Topology optimization · Stokes flow · Geometric multigrid on GPU · Finite difference method · Discrete 
exterior calculus

1 Introduction

Topology optimization has demonstrated its effectiveness 
in generating creative designs with superior properties in a 
variety of scientific and engineering applications, such as 
3D printing and precision manufacturing, to name a few; 
see Sigmund and Maute (2013), Deaton and Grandhi (2014), 
Rozvany (2009) for surveys. Starting from a spatial domain 
uniformly filled with material, a standard topology optimiza-
tion algorithm iteratively searches for the optimal material 
distribution for some design objectives, given the prescribed 
volume constraint and boundary conditions. Garnering ben-
efits from the recent advances in computing power and effi-
cient algorithms, the resolution of the design domain has 
been pushed forward to a level of billions of voxels (Aage 
et al. 2017; Liu et al. 2018).
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The above concept can be naturally extended to fluid flow 
problems. A series of fluid-related metrics may be optimized 
by reasonably determining optimal flow channels surrounded 
by solid boundaries; refer to Alexandersen and Andreasen 
(2020) for a survey. Among all optimization approaches, the 
density-based methods benefit from the unified treatment of 
fluid and solid by using permeability, which is insensitive 
to the drastic change of topology and interface. A challenge 
with such an approach is that the velocity and pressure fields 
are present everywhere, which will use a large amount of 
memory. Thus, memory assignment and reuse need to be 
properly managed for a high-resolution design space.

In this paper, we present a system for large-scale topology 
optimization of Stokes flow on a desktop computer equipped 
with modern GPUs. We develop an efficient GPU-parallel-
ized multigrid preconditioner to solve the indefinite Stokes 
equations. A performance comparison between our imple-
mentation and other commonly used numerical solvers is 
presented. Matrices are considered as linear mapping func-
tions and represented in matrix-free forms to save memory. 
The Marker-and-Cell (MAC) scheme is used to discretize 
the system, which eases the descriptions of differential oper-
ators in a coupled way, as well as the sampling processes in 
the multigrid V-cycle. The validation study and numerical 
examples provided herein show our algorithm to be fast, 
stable and capable of automatically discovering complex 
flow structures.

2  Related work

Pioneered by the work of Borrvall and Petersson (2003), the 
optimization of fluid-based problems has drawn research-
ers’ interests in a vast number of fields, such as Stokes flow 
(Guest and Prévost 2006; Aage et al. 2008; Challis and Guest 
2009), steady state flow (Zhou and Li 2008; Olesen et al. 
2006), unsteady flow (Kreissl 2011; Yaji et al. 2018), turbu-
lence (Dilgen et al. 2018; Papoutsis-Kiachagias and Gian-
nakoglou 2016), compressible flow (Evgrafov 2006; Sá et al. 
2021), viscous flow (Kontoleontos et al. 2013), microfluid-
ics (Andreasen et al. 2009), MEMS Maute and Frangopol 
(2003), functional device (Du et al. 2020) and fluid-struc-
ture interaction (Andreasen and Sigmund 2013; Yoon 2010; 
Vicente et al. 2015), to name a few. A multitude of design 
objectives have been proposed to optimize a device’s fluid 
mechanical performance, including the power dissipation 
(Gersborg-Hansen et al. 2005), drag minimization (Kon-
doh et al. 2012), conjugate heat transfer (Dede 2009, 2012; 
Alexandersen et al. 2016) and flow rate distribution (Dede 
et al. 2020), etc. The design and optimization of large-scale 
fluid systems remains a challenging topic due to the system 
complexity and very large number of degrees of freedom 
(DoFs) involved.

Hardware acceleration has been employed to boost the 
performance of solvers in a number of high-resolution topol-
ogy optimization implementations. Supercomputing tech-
niques have power to optimize problems involving millions 
to over a billion elements (Aage et al. 2017, 2015). The main 
bottleneck for supercomputing is the network traffic across 
nodes. GPU-based approaches are also subject to such bot-
tlenecks, but they are still popular solutions in speeding up 
topology optimization programs (Wadbro and Berggren 
2009; Schmidt and Schulz 2011; Challis et al. 2014; Wu 
et al. 2015; Yadav and Suresh 2014; Liu et al. 2018) with 
better flexibility and accessibility. One shortage of a GPU 
is the relatively small amount of memory when compared 
to a CPU. Thus, we require a careful way of allocating and 
transferring data on a GPU. Solvers fitted with multi-GPU 
capability have been proposed in recent years to relax this 
limitation (Herrero-Pérez and Castejón 2021; Martínez-
Frutos and Herrero-Pérez 2016). Besides supercomputer 
and GPU, heterogeneous (CPU/GPU) computing has also 
been explored (Liu et al. 2016). However, very few of these 
techniques have been adapted to tackle fluid-related optimi-
zation problems.

3  Topology optimization

A schematic of our density-based topology optimization 
method is shown in Fig. 1, together with some intermedi-
ate states that it generates for a representative problem. Our 
system starts from a rectangular domain discretized using 
a MAC grid, which is a standard voxel-based approach in 
computer graphics that allows for refined representation of 
arbitrary geometry with increased resolution. The alloca-
tions of the pressure, P, design variable, � , and velocity com-
ponents, (u, v), for a single grid cell, (i, j), in 2D are shown 
in Fig. 2. Different kinds of boundary conditions can then 
be specified by the user, including a no slip wall condition, 
the magnitude of a pressure jump, as well as the flow rate 
across the boundary grid faces.

In this section, we discuss the discretized model and 
implementation in detail. The state variables are obtained by 
solving the modified Stokes equations subject to boundary 
conditions using the finite difference method (Chen 2016). 
The objective is to find an optimized shape such that the 
fluid flow resistance is minimized under the constraint of a 
prescribed upper-bound target volume fraction of fluid mate-
rial. An adjoint-based method is then applied to conduct 
sensitivity analysis, which is used to update the material 
distribution.
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3.1  Flow model

The modified Stokes equations using the design variable, 
� , are

where � , P, and �  are the velocity field, pressure field, 
and external force, respectively. The specified velocity at 
the boundary is �b , while � is the dynamic viscosity. Δ , ∇ 
and ∇⋅ are the Laplace, gradient and divergence operators, 
respectively. The design variable, � , represents the portion 
of fluid within each grid cell with 1 meaning complete fluid 
(i.e., void) and 0 meaning complete solid. The term � is a 

(1)

[−�Δ + �(�)]� + ∇P = � in Ω,

−∇ ⋅ � = 0 in Ω,

� = �b in �Ω.

mapping function associated with � to map the design vari-
able to inverse permeability:

in which q > 0 is a constant value that controls the shape of 
the inverse permeability on intermediate values of the fluid’s 
portion. In (2), �̄� and � are the upper and lower bound of � . 
This differentiable continuous mapping provides a soft no-
penetration condition for solids. For all examples, we set � 
to be 1, and �̄� and � are set to be 104 and 10−4 respectively. 
Here, �̄� is far larger than the viscosity and thus can represent 
a non-permeable solid obstacle, but this value is not too 
large which can make the system of equations too singular 
and significantly attenuate the solver’s convergence speed. 
Since �(�) is multiplied with the velocity which lies on the 
grid face, we compute the fluid design density variable, � , 
on a face by averaging the values carried by cells on both 
sides of the face.

The local index system for all state and design variables 
using the MAC scheme in 2D is shown in Fig. 3. The dis-
cretized version of (1) on a non-boundary cell (i, j) can be 
written as (3) based on the index system (with dynamic 
viscosity set to 1 for simplicity). Please be aware that the 
vector Laplacian, Δ� = ∇(∇ ⋅ �) − ∇ × (∇ × �) , has been 
reduced to the simpler scalar Laplacian, Δu = ∇ ⋅ ∇u 
and Δv = ∇ ⋅ ∇v , as we decompose the vector field, � , to 
orthogonal components, u and v. For a boundary cell, the 
vector Laplacian is used to handle boundary conditions 
accurately. Here, h is the grid cell size. The first two equa-
tions correspond to the velocities in the x direction at the 
left and right faces, and the next two equations are for the 
velocities in the y direction. The last equation enforces the 
incompressibility condition for cell (i, j). Note that for a 
2D domain composed of m × n grid cells, the pressure is 
discretized as P(1 : m, 1 : n), and the velocity components 
are u(1 ∶ m, 1 ∶ n + 1) and v(1 ∶ m + 1, 1 ∶ n) . This discrete 
view can be easily extended to 3D cases. Stacking all the 

(2)𝛼(𝜌) = �̄� + (𝛼 − �̄�)𝜌
1 + q

𝜌 + q
.

Fig. 1  A pipeline description of a representative system with optimization approach and intermediate topologies

Fig. 2  Marker and cell discretization of variables
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unknown state variables provides a symmetric yet indefi-
nite linear system. Please note that m and n can be defined 
arbitrarily, but to obtain the best convergence performance, 
our solver requires that m is equal to n and further equal to 
some integer power of 2. Further details are explained in 
Sect. 6.5. The reason for this requirement is that our sam-
pling technique in multigrid is relatively rigid, where we 
always cut DoFs along each dimension by 2. More flexible 
sampling techniques can be designed, but that is not a main 
aim of this paper.

(3)
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3.2  Optimization formulation

In this study, we use a multi-objective function similar to 
Gersborg-Hansen et al. (2005) and Challis and Guest (2009) 
to minimize the energy dissipation across the domain and 
penalize the leakage of fluid in solid regions. The optimiza-
tion problem can be formulated as follows:

where V0 and V̄  are the total volume of the design domain 
and the prescribed fluid material volume fraction target, 
respectively. For the objective function, J, we discretize 
the integration of the terms by summing up each individ-
ual value throughout the domain. For the first term of the 
objective function with respect to velocity lying on the grid 
face, we simply sum over the faces in all dimensions. The 
fluid design density variable, as before, is averaged by val-
ues from the two neighboring cells. The second term of the 
objective function regarding the velocity gradient tensor is 
not as trivial. We therefore compute ∇� for each grid cell 
and sum over all cells. For the center cell shown in Fig. 3, 
the corresponding discretized local gradient is written in (5). 
This treatment can be naturally extended to 3D cases and 
handle special types of cells (e.g., edge cells, cells contain-
ing boundary faces, etc.).

For the sensitivity analysis, we refer the reader to Appendix 
1 for details. We use a standard adjoint method to solve for 
the objective gradient with respect to the design variables. A 
general review of this approach is presented in Allaire (2015).

We use a first order method of moving asymptotes (MMA) 
Jiang et al. (1970) for optimization. Besides the objective and 
its gradient, we compute the volume constraint and its gradi-
ent at each optimization iteration, which are utilized by the 
optimizer to fit a different problem to solve. Thus, our volume 
constraint may not be tightly satisfied, but the difference is 
minimal. We also do not use any filtering technique for the 
design density field.

(4)

min𝜌: J =
1

2 �
Ω

𝛼(𝜌)� ⋅ � +
𝜇

2 �
Ω

∇� ∶ ∇�,

s.t.:

[

−𝜇Δ + 𝛼(𝜌) ∇

−∇⋅ 0

] [

�

P

]

=

[

�

0

]

in Ω,

� = �b on 𝜕Ω,

𝜌
�
∈ [0, 1] ∀� ∈ Ω,

�
Ω

𝜌

V0

d Ω ≤ V̄ .

Fig. 3  Indices of variables involved in the local state equations for 
cell (i, j)
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3.3  Post processing

Once the optimization algorithm reaches the maximal itera-
tion number, the final topology represented by a solid/void 
density field is exported for numerical validation. For 2D 
examples, we directly draw a grayscale colormap using the 
density value. For 3D examples, the isosurface between 
solid and void cells is extracted and further smoothed by a 
box filter to reduce staircase artifacts resulting from the grid 
structural representation. Finally, the smoothed 3D model 
is exported as a binary STL format, which is used in com-
mercial software for validation analysis and comparisons.

4  Multigrid solver

The performance bottleneck in topology optimization is 
solving the static Stokes equations, (1), to obtain the fluid 
velocity and pressure state variables. It involves assembling 
a large, sparse matrix, A , and solving the linear system, 
A� = � , which takes most of the processing time. Direct 
sparse solvers find the exact solution but are unscalable. 
Iterative solvers find approximate solutions at a much faster 
rate. However, effective preconditioners need to be designed 
and applied to maintain a decent convergence rate especially 
for high resolutions.

Coupled multigrid methods have been proven as efficient 
solvers for the incompressible Navier-Stokes equations 
(Benzi et al. 2005; Wittum 1989), which combine a hierar-
chy of coarser grids and relaxation schemes (smoothers) to 
recursively restrict a fine-grid residual to the next coarser 
grid where a correction term is computed and interpolated 
back. This leads to a basic grid traversal scheme referred 
to as the V-cycle outlined in Algorithm 1. In this work, we 
use a geometric multigrid solver as the preconditioner for a 
GMRES solver.

We test the performance of our solver by solving Stokes 
flow passing over an obstacle in both two and three dimen-
sions. We place a circular cylinder at the center of a square 
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2D channel, as shown in Fig. 4, and a sphere in the center 
of a cube shaped duct for a similar 3D test case. The cen-
tral obstacle is modeled as weakly permeable material with 
large � (set as 103 here) instead of a solid boundary condi-
tion. For comparison, we also use AMGCL (Demidov 2019) 
with a VexCL backend which provides CUDA paralleliza-
tion to solve the same problem, and summarize each solver’s 
performance in Table 1. For AMGCL, preconditioners like 
AMG fail when having zero diagonal parts in the system 
matrix, which happens with our pressure unknowns. We 
follow Demidov et al. (2021) by using a composite Schur 
Pressure Correction preconditioner together with GMRES 
as the outer iterative solver. For the velocity part, we use 
smoothed aggregation and ILU(0) as the coarsening and 
relaxation strategy. For the pressure part, we use the SPAI-0 
smoother. We also use a mixed precision approach and set 
the smoothing iteration to be 4, which controls the num-
ber of GMRES iterations such that restarting is not needed. 
These setups are mostly borrowed from an AMGCL tuto-
rial study for Stokes-like problems, and have been tested by 
us to perform best on our system when compared to other 
settings. We compare times on transferring data from CPU 
to GPU, solver initialization, and solving. Please note that 
the behaviours between our solver and AMGCL are differ-
ent. For transferring data, AMGCL needs to build up the 
system matrix and transfer it to the GPU, but our solver is 
matrix free and only needs to transfer the description of the 
current state, which takes much less time and memory. The 
initialization between the solvers is also different due to the 
preconditioning strategy. Our initialization includes propa-
gating the system description from top layer to bottom in 
the multigrid V-cycle and then updating the preconditioner 

Fig. 4  2D benchmark problem for AMGCL and our solver: Stokes 
flow passing over a cylinder in a channel
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at each layer. Please also note that both solvers are dealing 
with a badly conditioned system due to the large � . For real 
Stokes equations, both solvers will be much faster. It turns 
out that our solver outperforms AMGCL’s in both memory 
footprint and time efficiency. 

  

4.1  Smoothing

The numerical performance of different relaxation meth-
ods and multigrid methods for the parallel solution of the 
incompressible Navier–Stokes equations has been studied 
(John and Tobiska 2000). It has been proven that to obtain 
a good smoothing rate, the unknowns need to be updated in 
a locally coupled manner. We hereby use box-relaxation, 
a coupled smoother introduced by Vanka (1986), which 
smooths a group of related velocity and pressure unknowns 
at once. The box stencil is associated with each pressure 
unknown, Pi , and the action of the smoother is solving for 
the updates Ai��i = �i, ��i = [��i, �Pi]

T for each box in a 
sequential way for all grid cells. Here, �i is the residual and 

Ai is the local operator restricted from the global matrix, A , 
to the rows and columns corresponding to the elements in 
cell i. The size of Ai is small ( 5 × 5 for 2D and 7 × 7 for 3D). 
Therefore, direct methods can be used. We further parallel-
ize the sequential smoothing process by coloring the domain 
as shown in Fig. 5. Due to the MAC scheme depicted before, 
a five-color scheme is sufficient to perform smoothing in 
parallel. Cells of the same color can then be updated simul-
taneously without affecting each other.

4.2  Restriction and prolongation

Other key ingredients of a multigrid method include the 
matrices R and P that change grids. A restriction matrix, R, 
transfers vectors from the fine grid to the coarse grid. The 
return step to the fine grid is done by interpolation using a 
prolongation matrix. In this section, we introduce restriction 
and prolongation operators defined on a 2D MAC grid for 
both scalar and vector variables, which naturally extend to 
3D.

The prolongation and restriction of scalar variables that 
store on the cell centers resemble the operations of node-
based variables on a Cartesian grid. In Fig. 6, we show how 
four variables on the finer red grid, h, (marked with red tri-
angles) are restricted to one variable on the coarser grid, H, 
(marked as a black cube) and interpolate back. For pressure, 
P, we use 4-point center restriction

and piecewise constant prolongation
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.

Table 1  Solver performance 
comparisons (tol=1e−5)

Solver type Scale Iterations Data transfer (ms) Solver setup (ms) Solving (s)

SchurPC+ GMRES (AMGCL) 2562 16 46.3 126.0 5.8
5122 23 177.9 441.2 23.6
10242 29 781.5 1627.3 99.4
323 14 31.7 88.6 4.2
643 29 272.2 568.8 24.6
1283 31 2345.3 3916.9 168.4

Multigrid+ GMRES (Our solver) 2562 6 2.06 3.71 0.38
5122 6 11.2 6.98 1.23
10242 7 41.0 17.68 6.67
323 5 3.09 21.42 0.29
643 7 44.4 66.3 1.45
1283 8 668.1 140.4 11.8
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As for the vector variables stored on grid faces, a center 
restriction operation requires using 6 neighboring points. 
For the prolongation operators, we apply bilinear interpo-
lation of neighboring coarse grid unknowns in the stag-
gered grid. In Fig. 7, we show how the velocity’s horizon-
tal component, u, is restricted and interpolated. Operators 
for variables stored on other directional faces can be easily 
derived. Still, the red triangles represent variables at the 
finer level, h, and the black cubes represent variables at the 
coarser level, H. The corresponding discrete operators in 
linear equation form are written as follows:

4.3  Storage‑free matrix vector multiplication

A main benefit of iterative solvers is to avoid computing and 
storing the matrix A−1 explicitly. Here, we do not store the 
matrix A and use a function, X → A� , instead. This “matrix 
free” technique is implemented, as follows: first, matrix vec-
tor multiplication is reduced to vector vector dot product row 
by row; next, each row is reduced to a set of non-zero coef-
ficients computed on the fly, and corresponding values are 
collected from X  . A tiny dot product is performed at the end.

We can go one step further given the nature of differential 
operators and the spatial layout of unknowns in our discre-
tization. By observation, an element in X  stored on either 
face or cell only has non-zero coefficients on neighbors, as 
shown in Fig. 8. If we cluster elements by their locations, 
the values we need to collect from elements in one cluster 
are highly overlapped, as shown in Fig. 9. This allows us to 
utilize memory more efficiently and reduce the time cost.

We store the velocity and pressure unknowns in a 
block memory layout. An example with a 3 × 3 block size 
is described in Fig. 9. The block size should be chosen 
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Fig. 5  Parallelization of box-relaxation method on MAC grid using 
coloring

Fig. 6  Restriction and prologation of cell center DoFs

Fig. 7  Restriction (upper) and prolongation (lower) of vertical edge 
center DoFs
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carefully such that the memory bandwidth is fully utilized 
and a sufficient number of threads is assigned in a block 
to handle the process. In this work, we use 8 × 8 block in 
2D and 4 × 4 × 4 block in 3D. We also use cache/shared 
memory to store these values such that following arithme-
tic operations can be accelerated.

5  Implementation

In this section, we describe how the multigrid solver is 
deployed on a GPU. We first introduce data that need to 
be stored on the GPU and their layout. Then, the functions 
that operate on these data are explained along with specif-
ics of the implementation.

5.1  Data layout

The key components of multigrid are matrix vector multi-
plication, restriction, prolongation, and smoothing. Matrix 
vector multiplication and smoothing are applied on the state 
variables of the modified Stokes problem (e.g., the pressure 
and velocity). Thus, they need to be stored on the GPU.

In our discretization, fluid velocity is stored on faces and 
pressure is stored on cells. As we discussed in Sect. 4.3, we 
store these variables in a block memory layout to improve its 
spatial locality. The block size should be sufficiently large (a 
multiple of 32) so that we can fully utilize the GPU memory 
bandwidth. It also should not be too big (not bigger than 
1024) so that we can fit a block of data in one thread block. 
As a result, the block size we select is 8 × 8 for 2D and 4 × 4 
× 4 for 3D. We follow the row-major order for the storage of 
both data pieces in each block and blocks in a grid.

For implementation convenience, we assume the grid 
has a size that is a multiple of 8 in 2D (or 4 for 3D) for 
each dimension. This allows cell data to be stored in a block 
memory layout with perfect alignment. However, for face 
data, at least half of the boundary faces on a grid cannot fit 
into complete blocks. To tackle this problem, we still use 
blocks to store data, despite some unused entries, as shown 
in Fig. 10. Though the utilization ratio of these blocks is low, 
the number of these blocks is relatively small compared to 
the total number of blocks (the former is always one order 
of magnitude lower than the latter in terms of the grid size 
in each dimension). Thus, the usage of the proposed block 
memory layout causes only a marginal memory consump-
tion increase which still maintains an efficient bandwidth 
utilization.

Besides the input, the output and part of the intermediate 
results are also stored on GPU, which are all discretized on 
grid cells, faces, and edges. We will discuss this storage in 
the next subsection. We want to highlight that data related to 

Fig. 8  An example of non-zero coefficients for face (left) and cell 
(right) element. Dark blue and green represent any face/cell in X  . 
The light blue faces and light green cells represent the corresponding 
neighbor face/cells with non-zero coefficients. (Color figure online)

Fig. 9  Data storage of the pressure unknowns (black dots) of a 
3 × 3 block grid on GPU. Dark blue edges and green cells are the 
unknowns associated with the block circled by the orange dotted box. 

Light blue edges and green cells are the unknowns stored from other 
blocks that need to be acquired in the shared memory during the 
computation of the central 3 × 3 grid. (Color figure online)
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edges are stored using the block memory layout, again with 
some entries unused, similar to data for faces.

For the multigrid we have the inputs, intermediate results, 
and outputs for each layer. The memory consumption of a 
single layer is linear to the number of cells of its (coarsened) 
grid, which results in an overall linear memory consumption 
with respect to the size of the original Stokes problem.

Restriction and prolongation are applied between dif-
ferent layers which do not require additional memory. The 
smoothing process requires computing the inverse of local 
matrix corresponding to each grid cell, and multiple small 
matrix-vector multiplication operations. These small matri-
ces are stored and computed on the GPU. The memory con-
sumption for these matrices is also linear, and the linear 
coefficient is exactly the DoFs of a box (i.e., 5 for 2D and 
7 for 3D).

5.2  Discrete operators

In this section, we describe the functions needed for our 
GPU implementation to meet the requirements of a mul-
tigrid solver that includes matrix-vector multiplication, 
restriction, prolongation, and smoothing. We start from 
the matrix-vector multiplication operation with their three 
main parts of the pressure gradient, velocity divergence, and 
velocity Laplacian. On a staggered grid, the pressure gradi-
ent is stored on faces and a face value is the weighted sum 
of its neighbouring cells (with − 1 or +1 as the coefficients). 
The velocity divergence is stored on cells. The value of a cell 
is the weighted sum of its faces.

All boundary conditions may be translated to fix values 
on a cell or a face. Another way to interpret this is: if the 
value on a cell or a face needs to be fixed, then the value 
itself should have no contribution to the gradient/divergence 
since it will be overwritten. We use this idea to enforce 
boundary conditions in our gradient and divergence opera-
tor; i.e., we simply set a value on a boundary is zero, and we 
compensate the desired fixed value on the right hand side 

of the Stokes equations which the boundary has contribu-
tions to.

It should be pointed out that instead of setting some coef-
ficients to be zero, we use a filter to set values on a boundary 
to be zero before applying the gradient and divergence oper-
ators. This allows the implementation of these two operators 
to be independent from boundary conditions.

For the velocity divergence, we follow the equation 
Δ� = ∇(∇ ⋅ �) − ∇ × (∇ × �) . We reuse the divergence and 
gradient operators above. For the curl operator, it is imple-
mented in a similar way as the other two operators on a 
staggered grid. The output is stored on either nodes or cells 
for 2D, and the value is the weighted sum of its neighbour-
ing faces (See Fig. 11 and (Crane 2018) for more details). 
Please note that for non-boundary cells we use the simple 
form of scalar Laplacian of decomposed velocity to replace 
the vector Laplacian of velocity vector field, as shown in (3).

We choose this implementation since it can easily sup-
port different boundary conditions for stress. Just like what 
we have done for the gradient and divergence operators, we 
apply a filter on the intermediate results. The divergence 
reflects the normal part, and the curl reflects the shear part. 
If we set the divergence on a cell to be zero, then the nor-
mal stress in that cell is ignored, which mimics an open 
boundary. If we set the curl on an edge to be zero, then 
the shear stress around that edge is ignored, which mimics 
a slip boundary condition. For our examples, we use open 
boundaries and non-slip boundaries, so we apply filters on 
cells only.

There are some intermediate results related to these 
operators that need to be stored on GPU. They are the 
velocity after filtering, divergence of the velocity, and curl 
of the velocity, which are stored on faces, cells and edges, 
respectively.

5.3  Other details

Matrix-vector multiplication, restriction and prolongation 
have high spatial locality, thus it is natural to use one thread 

Fig. 10  An example of block memory layout. Left: faces on the 
x-axis. Right: vertices. The dashed line and hollow points indicate 
wasted entries

Fig. 11  An example of operators. Left: gradient and divergence. 
Right: curl. Blue colored features are inputs, while green colored fea-
tures are outputs. (Color figure online)
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block to deal with one block of data so that memory band-
width can be fully utilized.

There are two choices for handling the blocks including 
gathering and shattering. Gathering uses one thread block 
to compute the result of one block of data (e.g., the gradi-
ent from the pressure). In this case, we read all the needed 
input data, compute the result, then write them back. The 
same input data can be read multiple times, but the result 
will be written only once.

The shattering approach does the opposite, where it 
uses one block to deal with one block of input. After read-
ing one block of input data, it computes its contribution 
to the result and accumulates them. Same input data can 
be only read once, but the result will be written multiple 
times.

We choose a gathering scheme. This is because writing 
is slower than reading on a GPU, and accumulating requires 
synchronization operations which are time consuming. Our 
implementation of gathering is straightforward. For one 
thread block, we conduct the following:

• read one block of data
• compute its contribution to the result
• repeat the prior two steps for all needed blocks
• write back the result

A check is performed prior to reading. If the position is 
outside of the grid, instead of actually reading from the 
memory, a zero value is assumed to mimic zero contribu-
tion. All threads in one thread block will not compute the 
contribution until the entire block of data is loaded into 
the shared memory. At one time, only one block of data is 
loaded instead of loading all required blocks, such that more 
threads can be executed at the same time.

Please note that there are no duplicates of velocity fields 
on boundary edges between blocks, and thus no communi-
cation is required. For an 8 × 8 grid block, the associated 
velocity field is 8 × 9 for u and 9 × 8 for v. However, only 
the first 8 × 8 of u (or v) are stored in the same block, while 
the last column of u, or row of v, are stored in other blocks. 
Considering a single grid cell, the associated velocity to 
store is u on the left face and v on the bottom face, and the 
right face is associated with the cell to the right, while the 
upper face is associated with the cell above. This pattern 
avoids duplicate storage and communication. When com-
puting, for instance, divergence, cells at the rightmost and 
uppermost boundaries may have to gather velocities from 
different blocks, but that is a one-time read-only operation 
and the portion of the boundary cells are small. One last 
compromise is that we have to use additional blocks to store 
the last layer’s velocity component of the entire grid, but still 
that additional memory cost is marginal.

The gradient, divergence, curl, prolongation, and restric-
tion operators are all implemented as described above. For 
smoothing, or multiple small matrix vector multiplication 
operations, we use the provided functions in the cuBLAS 
library.

6  Numerical examples

In this section, we present a number of examples in both 
2D and 3D, ranging from well-studied cases to the design 
of large-scale novel flow structures. For 2D cases, we start 
from standard examples like double pipes proposed in 
Borrvall and Petersson (2003) to verify the correctness of 
our approach. We then present branching problems with 
increasing resolution, number of outlets, and decreasing 
volume fractions to compare and show the scalability of our 
approach. Finally, we present a 4096 × 4096 asymmetric tree 
structure with extreme resolution and 162 fluid outlets to 
show the maximum data volume our implementation can 
support with 48 GB GPU memory.

Our 3D experiments mostly follow the philosophy of 
the 2D cases. The standard examples are mostly naturally 
extended from 2D. In addition, we use commercial software, 
COMSOL  Multiphysics®, to optimize fluid flow structures 
at low-to-moderate resolutions to make quantitative com-
parisons of computational time and flow resistance perfor-
mance of the optimized shapes. All numerical experiments 
reported in this paper are performed on a single desktop 
machine equipped with an Intel i9-9980XE CPU and a sin-
gle NVIDIA Quadro RTX 8000 graphics card.

We directly enforce velocity boundary conditions at both 
inlets and outlets for all examples. Positions, sizes, and 
velocities for inlets are specified in each description subplot. 
In our experiments, the outlets always have the same width/
area and velocity. To ensure mass conservation, outlet veloc-
ities are thus related to inlet velocities by uo =

∑n

i
ui⋅li

no⋅lo
 , where 

n is the number of inlets and ui and li are corresponding inlet 
velocity and width; no and lo are the number of outlets and 
width of an outlet. Note that in 3D examples, we exchange 
the inlet/outlet width, l, with the inlet/outlet area, a.

During our numerical experiments, we usually find that 
the design volume moves very slowly toward our desired 
volume fraction or even stagnates at some point. To accel-
erate the convergence of the design density field, we also 
adaptively scale up the actual volume constraint and its gra-
dient before using this information to generate the MMA 
subproblem, which beneficially amplifies the effect of the 
volume constraint. The scaling factor is tunable, but gener-
ally smaller for low resolution problems and larger for high 
resolution problems. Thus, we see minimal changes in the 
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topology and satisfaction of the volume constraint after 30 
optimization iterations. We thus stop optimizing at the 40th 
iteration as any design changes afterward are negligible.

6.1  Rugby ball (2D)

The design domain and boundary conditions for the “rugby 
ball” design problem in two dimensions are shown in 
Fig. 12a. For comparison, we propose two choices for the 
maximum allowable fluid volume, V̄ = [0.6, 0.7] . Our bound-
ary conditions differ from that of Borrvall and Petersson 
(2003) and Guest and Prévost (2006) at the upper and lower 
walls of the design domain, where no tangential velocities 
are specified. The results show trapezoidal shaped structures 
at both walls which smooth the flow transition at the leading 
and trailing edges. We initialize a homogeneous domain with 
a uniform design density that is the same as the desired vol-
ume fraction. The discretization size is 256 × 256, including 
65.5 × 103 design variables and 197.1 × 103 state variables. 
The time consumed for the entire optimization workflow for 
each case is ∼ 81 s with 40 optimization iterations, and the 
average run time for solving the Stokes equations and the 
adjoint equation at each iteration is about 0.7 s respectively. 
A time breakdown for this optimization problem is shown 
in Fig. 13. We find that the two solves already occupy most 
of the time, even though this problem is of the smallest scale 
among all of our experiments. For the experiments at a larger 
scale, our time bottleneck always lies with the two solves. 
Currently, we write all information to disk sequentially. The 
I/O time may be further reduced by only writing the den-
sity field. The presented optimized rugby ball structures are 
similar to those presented in the previous literature (Guest 
and Prévost 2006; Challis and Guest 2009). The angle at the 
front and back of each rugby ball matches the expected value 
of 90 degrees (Pironneau 1974).

6.2  Pipe design (2D)

The double pipe design has also been introduced in previ-
ous work (Borrvall and Petersson 2003; Guest and Prévost 
2006), where domains of different aspect ratio were used to 
generate different channel patterns. We present here results 
that illustrate how different pipe patterns can also be gener-
ated by changing the gap size between the upper and lower 
inlets. The details of the boundary conditions, volume con-
straints, and optimized results are provided in Fig. 14. The 
results show a great degree of similarity with designs from 
the prior literature. We also show a new triple pipe design 
obtained by adding an additional inlet and outlet channel 
at the respective center of the left and right edges of the 
domain. This time we control the volume fraction while 
keeping the same boundary conditions, as shown in Fig. 15, 
and find that additional fluid channel bridge connections 
can be generated for larger fluid volumes. In this example, 

Fig. 12  Optimization results for the 2D “rugby ball” design problem with different volume fractions. a Design domain and boundary conditions; 
b volume fraction of fluid set as 0.6; c volume fraction of fluid set as 0.7

Fig. 13  Optimization time break down for Rugby ball (2D) design 
problem
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the objective drops by 29% by increasing 5% of fluid vol-
ume. We believe this drastic decrease in energy dissipation 
is partially due to the newly generated branches. For these 
designs, we also use a discretized grid size of 256 × 256. The 
required time for the entire optimization workflow for each 
case is around 77 s with a total of 40 optimization iterations, 
and the average run time for solving the Stokes equations at 
each iteration is about 0.65 s. All figures show the original 
optimized design density field without any post processing.

6.3  Branching channels (2D)

Design of a branching fluid channel network is inspired by 
Dede et al. (2020), which showed the relation between the 
number of outlet channels and discretized elements. For 
a large number of outlets at high resolution, commercial 
optimization tools usually suffer from an unbearable time 
overhead due to the lack of an optimized, problem specific 
solver. Researchers may select alternative non-gradient-
based methods for the dehomogenization and/or design 
synthesis of large-scale flow distribution channel networks 
(Dede et al. 2020). We show in Fig. 16 the scalability of our 
solver in 2D with up to 64 outlets at 1024 × 1024 resolution. 
The computational time for all three designs is summarized 
in Table 2, and the results exhibit a near linear relation-
ship between the solver time and problem size. We also plot 

normalized fluid velocity color maps and normalized pres-
sure contours in Fig. 16. For the velocity, we extract the 
magnitude from the vector field by interpolating the vector 
field at each grid cell center, and we then compute the norm. 
From the plots, we qualitatively observe for each design that 
the velocity distribution is the same through all outlets, as 
expected, since we explicitly specify the velocity BC. How-
ever, we do not specify any BC for pressure, so the pressure 
logically varies at each outlet.

Our solver can handle the design of an increased number 
of outlets with intricate channel topology. In Fig. 17, we 
show a design with 162 randomly distributed fluid outlets 
using a 4096 × 4096 grid with over 50 million DoF. An 
intricate, non-symmetric tree structure is automatically dis-
covered to distribute the fluid flow. The width of the out-
lets may be further reduced by half thanks to the extremely 
high resolution. The outlet channel width was selected for 
illustration and visualization purposes. The run time for the 
Stokes solver at this resolution is about 58 s, and the total 
optimization time is about 117 minutes for 40 optimization 
iterations.

6.4  Pipe design (3D)

We next consider several design problems in three dimen-
sions. We start with a quadruple inlet/outlet pipe design 

Fig. 14  Optimization results for the 2D double pipe problem with different inlet/outlet positions. The volume fraction of fluid for both designs is 
set to 0.12

Fig. 15  Optimization results for the 2D triple pipe problem with different volume fractions. a Design domain and boundary conditions; b vol-
ume fraction of fluid set to 0.2; c volume fraction of fluid set to 0.25
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problem with volume constraints and boundary conditions, 
as shown in Fig. 18, as a natural extension of the 2D pipe 
design problems in Sect. 6.2. We present designs for two 

types of outlet configurations. The first design has outlets in 
alignment with the inlets, as shown in Fig. 18b. The second 
design has outlets forming a smaller square with a relative 

Fig. 16  Optimization results and normalized velocity/pressure distri-
butions for the 2D branching channel problem with different resolu-
tions, outlets, and volume fractions. a Design domain and boundary 
conditions; b grid size = 256 × 256, 16 outlets, fluid volume fraction 
= 0.17; c grid size = 512 × 512, 32 outlets, fluid volume fraction = 

0.16; d grid size = 1024 × 1024, 64 outlets, volume fraction = 0.15. 
The first row shows each density distribution; the second row shows 
the normalized velocity magnitude color maps; the third row shows 
the normalized pressure contours

Fig. 17  Optimization result for a large scale 2D branching channel design problem (grid size = 4096 × 4096) with 162 fluid outlets



 J. Liu et al.

1 3

125 Page 14 of 18

rotation of 45◦ , as shown in Fig. 18c. Both designs show a 
channel merging-diverging pattern similar to the observed 
results in 2D. We also test the effectiveness of fluid vol-
ume control by increasing the volume fraction from 0.15 as 
in design (c) to 0.2. The optimized result shows the inlets 
no longer merge to a single main stream, but only merge 
with their neighbors forming a hollow center, as shown in 
Fig. 18d, e. We use a 1283 grid to discretize the domain, 
which has over 2 million design variables and 6 million state 
variables. The computational time for the entire optimization 
workflow for each case is about 26.8 min for 40 optimiza-
tion iterations, and the averaged run time for solving the 
Stokes equations at each iteration is about 17.4 s. All figures 
show the smoothed isosurface extracted from the optimized 
density field.

6.5  Branch channels (3D)

Following the idea of branching channel network design 
in 2D, we studied the design of a branching channel fluid 
flow manifold in 3D. Similar tasks have been conducted 
by Kreissl (2011) at a much lower resolution. Like the 2D 
cases, we have four different designs with increasing grid 
resolutions and number of outlets. The difference is that 
we now have a constant fluid volume fraction constraint 
for all cases, and the outlets are positioned randomly on 
the five faces of the cubic design space not including the 
inlet face. We also use COMSOL with Stokes flow physics 
to perform similar fluid flow channel design optimization 
with identical problem settings using its embedded direct 
solver. The numerical results are compared from multiple 
aspects including channel topology similarity, fluid flow 
resistance performance, and computational time. Details 
regarding the problem settings in COMSOL are summa-
rized in Table 3. All settings other than the discretization 
and solver are fixed to be identical in our optimization 
approach. The optimized structures are shown in Fig. 19, 
with the first row being the results from COMSOL, and 
the last two rows representing the optimized designs using 
our approach and visualized from both inlet and outlet 
perspectives. For the optimized COMSOL results, we 
directly run a Stokes flow simulation after extracting the 
fluid domain within the software and measure the fluid 

Table 2  Computational time for the 2D branching channel designs in 
Fig. 16

Design (# of outlets) b (16) c (32) d (64)

Resolution 2562 5122 10242

Stokes solver (s) 0.7 2.1 6.9
Total time (min) 1.3 3.8 13.8

Fig. 18  Optimization results for the 3D quadruple pipe problem with 
different volume fractions and outlets. a Design domain and bound-
ary conditions; b outlets are aligned with inlets with fluid volume 
fraction equal to 0.15; c outlets are aligned with the centers of the 

edges of the inlets with fluid volume fraction equal to 0.15; d outlets 
are aligned with centers of the edges of the inlets with fluid volume 
fraction equal to 0.2; e a side view of the design in (d) to show the 
hollow center
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flow resistance across the channel structure. For the results 
from our implementation, we first extract a smoothed iso-
surface from the optimized density field for each design, 
and export to a binary STL file, which is then read by 
COMSOL for the same simulation. Observe in Fig. 19 that 
our results closely resemble those obtained using the com-
mercial solver, with some intricate inner branching chan-
nel structures that are slightly different from the COMSOL 
results. All results together with the computational time 
are summarized in Table 4. From the data, we find that the 

flow performance of our designs matches well with the 
designs obtained using the commercial solver, especially 
at higher resolutions. Our solver speed far surpasses the 
commercial solver’s built-in performance, as expected. It 
is worth noting that our solver’s performance may decay 
slightly when the resolution is not an integer power of two, 
like 483 , 963 , or 1603 , or the resolution in each dimension is 
different, like 128 × 128 × 192 . This is because such grids 
can not be coarsened all the way down, as our coarsening 
strategy reduces the dimension by half at each multigrid 

Fig. 19  Optimization results for a 3D branching channel problem 
with different resolutions and outlets. First row: benchmark results 
from COMSOL with identical settings. a grid size = 32 × 32 × 32, 3 

outlets; b grid size = 48 × 48 × 48, 6 outlets; c grid size = 64 × 64 × 
64, 12 outlets; d grid size = 96 × 96 × 96, 24 outlets

Fig. 20  Optimization result 
for a large-scale 3D branch-
ing channel problem (grid size 
= 192 × 192 × 192) with 56 
outlets
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level. The direct solver we used at the coarsest level is 
sensitive to the change of problem size. We also conduct 
a high-resolution branching design in 3D with 56 outlets, 
as shown in Fig. 20. Here, we use a 1923 grid with over 28 
million DoF. Even though the resolution is not an integer 
power of two, our solver is still capable of solving the 
Stokes equations in 54 s and finishing the optimization run 
in 98 minutes over a total of 40 iterations. 

7  Conclusions

In this paper, an efficient GPU-based computational 
approach was proposed for the flow-based topology opti-
mization. A matrix-free GMRES solver preconditioned by 
geometric multigrid was developed on top of a staggered 
grid discretization and MAC scheme, which circumvented 
the bottleneck of solving the state equations. Our imple-
mentation was designed and optimized for desktop com-
puter architectures enabled by a GPU. The problem size 

our implementation can handle was restricted only by the 
GPU memory. Through multiple 2D and 3D numerical 
examples, we demonstrated the solver performance and 
practical results, which for select cases were compared with 
solutions obtained using existing commercial software and 
open-source libraries. Our approach can handle similar tasks 
dozens of times faster than current tools, and seamlessly 
tackles larger size design cases.

An immediate next step is to add nonlinearity to the 
system to handle flow at a higher Reynolds number. In the 
future, we plan to further improve the memory allocation 
and explore multi-GPU parallelization. Another prom-
ising direction is to replace the indefinite Stokes equa-
tions with a couple of positive definite systems, similar to 
Aage et al. (2008). By doing so, we can boost the system 
performance using fast solvers (e.g., conjugate gradient) 
which require much less memory overhead. We are also 
interested in introducing other physics (e.g., thermal and 
structural consideration) to broaden the design space and 
application scope.

Appendix 1: Sensitivity

In this section, we discuss the derivative of the objective, 
J, with respect to the fluid design density variable, � . The 
adjoint method is used to compute the sensitivity. First, we 
simplify the notation by defining � = [�,P]T as a stacked 
vector comprising all state variables. The linear system in 
(4) can be written as A� = � . Since the system matrix, A , 
depends on � , so does the solution vector, � . The objective 
is a function of the state and design variables. Let us define 
the Lagrangian,

where � is the vector of Lagrange multipliers. As (A� − �) 
is zero everywhere by construction, we may choose � freely 
such that J = L , and derive the gradients as follows,

If we choose � so that �J
��

+ �TA = 0 , the last term becomes 
zero, and we can avoid calculating ��

��
 . This condition is the 

adjoint equation:

(9)L(�, �, �) = J(�, �) + �T (A� − �),

(10)

dJ

d�
=

dL

d�

=
�J

��
+

�J

��

��

��
+ �T

(

�A

��
� +A

��

��

)

=
�J

��
+ �T

�A

��
� +

(

�J

��
+ �TA

)
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.

(11)A
T� = −

(

�J

��

)T

.

Table 3  Problem setup in COMSOL for optimization of a 3D branch-
ing channel network, Sect. 6.5

Physics Stokes flow
Domain 0.1 × 0.1 × 0.1  (m3)
Fluid density 1.204 (kg/m3)
Dynamic viscosity 1.813e−5 (Pa s)
Inlet pressure 1e3 (Pa)
Outlet velocity 1 (m/s)
Objective Flow resistance
Fluid volume fraction 0.15
Solver type Direct
Optimization iterations 40
Mesh type Tetrahedral
CPU Intel i9-9980XE

Table 4  Computational time and flow performance comparisons for 
the 3D branching channel designs from Fig. 19

a Data from COMSOL
b Data from our approach

Design a b c d
(# of outlets) (3) (6) (12) (24)

Elementsa 32.9e3 94.7e3 268.2e3 767.6e3
Volumea(m3) 1.51e−4 1.52e−4 1.50e−4 1.50e−4
Total  timea (min) 5.7 15.4 62.9 445.4
Flow  resistancea 2.79 2.39 4.45 5.76
Elementsb

323 483 643 963

Volumeb  (m3) 1.46e−4 1.40e−4 1.54e−4 1.57e−4
Total  timeb (min) 0.67 2.62 3.08 25.34
Flow  resistanceb 3.21 3.23 5.01 5.88
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Here, AT = A based on symmetry, and the state variable, 
� , is pre-computed at each iteration. Equation (11) is solved 
the same way as the Stokes equations using our multigrid 
solver, after which � is substituted to (10) to get the sensitiv-
ity. The objective, J, and matrix, A , are linear functions of 
�(�) , and their partial derivatives with respect to � can be 
obtained using the chain rule by differentiating (2). Option-
ally, the adjoint can also be obtained by using automatic 
differentiation (Griewank and Walther 2008) for the state 
equations. Overall, this adjoint formulation is an efficient 
way to evaluate the sensitivity, especially when the number 
of design variables is large.

Once the sensitivity is computed, it is used to update 
the fluid design density variable, � , of each grid cell. The 
updated density value is restricted to a range between 0 and 
1.
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