
A Quality of Service Architecture

Andrew T. Campbell

Computing Department
Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

January 1996

Contents

Abstract. i

Acknowledgements . i i

1. Introduction . 1

2. Quality of Service Terminology, Principles and Concepts 1 7

2.1 Terminology... 17
2.2 Qos Principles.. 18

2.2.1 Integration Principle .. 19
2.2.2 Separation Principle .. 19
2.2.3 Transparency Principle.. 19
2.2.4 Asynchronous Resource Management Principle .. 20
2.2.5 Performance Principle.. 20

2.3 QoS Specification.. 20
2.3.1 Flow Synchronisation Specification.. 21
2.3.2 Flow Performance Specification .. 21
2.3.3 QoS Commitment Flow... 21
2.3.4 QoS Management Policy.. 22
2.3.5 Cost of Service.. 22

2.4 QoS Mechanisms .. 22
2.4.1 QoS Provision.. 23

2.4.1.1 QoS Mapping .. 23
2.4.1.2 Admission Testing.. 24
2.4.1.3 Resource Reservation .. 24

2.4.2 Qos Control Mechanisms .. 24
2.4.2.1 Flow Shaping .. 24
2.4.2.2 Flow Scheduling.. 25
2.4.2.3 Flow Policing .. 25
2.4.2.4 Flow Control. 26
2.4.2.5 Flow Synchronisation . 26

2.4.3 Qos Management . 26
2.4.3.1 Qos Monitoring .. 27
2.4.3.2 Qos Maintenance.. 27
2.4.3.3 Qos Degradation .. 27
2.4.3.4 Qos Signalling .. 28
2.4.3.5 Qos Scalability .. 28

2.5 Summary.. 28

3. State of the Art in Quality of Service Research . 3 0

3.1 Qos in Standards.. 30
3.1.1 Open Systems Interconnection .. 31
3.1.2 ITU-TS and ATM Forum... 33
3.1.3 IETF int-serv and RSVP Groups .. 35
3.1.4 Assessment .. 37

3.2 Layer-Specific QoS . 38
3.2.1 Distributed Systems Platform ... 38
3.2.2 Operating Systems.. 39
3.2.3 Transport Layer .. 40
3.2.4 Network Layer .. 41

3.3 Emerging QoS Architectures .. 42
3.3.1 The Columbia University XRM Model .. 43
3.3.2 The OSI QoS Framework... 47
3.3.3 The University of Pennsylvania OMEGA Architecture .. 48
3.3.4 The Heidelberg QoS Model... 50
3.3.5 The Tenet Architecture .. 52
3.3.6 The IETF QoS Manager... 53
3.3.7 The Washington University End-System QoS Framework..................... 54
3.3.8 The TINA QoS Framework .. 55
3.3.9 The MASI End-to-End Architecture .. 59
3.3.10 Other QoS Frameworks .. 62

3.3.10.1 ATM Based QoS Models... 62
3.3.10.2 Distributed Systems QoS Models . 64
3.3.10.3 Open Systems QoS Models.. 65
3.3.10.4 Transport System QoS Models . 65

3.4 Summary... 66

4. Quality of Service Architecture (QoS-A).................................... 6 7

4.1 The QoS-A Model .. 67
4.2 Resource Management Tree... 70
4.3 Timescales and Separation.. 71
4.4 QoS Specification .. 72

4.4.1 Flow Specification.. 73
4.4.2 QoS Commitment.. 74
4.4.3 QoS Adaptation .. 76
4.4.4 QoS Maintenance .. 77
4.4.5 Reservation Styles .. 78
4.4.6 Cost.. 79

4.5 Multimedia Enhanced Transport System (METS)...................................... 79
4.5.1 QoS Interfaces.. 80
4.5.2 User Plane .. 81

4.5.2.1 Flow Regulator . 82
4.5.2.2 Flow Scheduler . 83
4.5.2.3 Flow Monitor . 83
4.5.2.4 Resource Manager.. 85

4.5.3 Control Plane.. 86
4.5.3.1 Meta-Signalling Protocol . 86

4.5.3.2 Group Management .. 87
4.5.3.3 Connection Management... 88
4.5.3.4 Dynamic QoS Management (DQM) Signalling.......................... 88

4.6 QoS Maintenance Plane .. 89
4.7 Flow Management Plane .. 90

4.7.1 Flow Reservation .. 91
4.7.2 QoS Adaptation .. 92

4.8 Baseline QoS-A ... 93
4.9 Summary.. 94

5. Operating System Support for Quality of Service . 9 6

5.1 Background of Chorus .. 97
5.2 Operating System Support for Quality of Service.. 98

5.2.1 Chorus API with QoS Extensions .. 98
5.2.2 End-System Scheduling... 100
5.2.3 Communications .. 103
5.2.4 Memory Management .. 104
5.2.5 Flow Management .. 105

5.3 Resource Management... 106
5.3.1 Chorus Service Contract . 106
5.3.2 Resource Classes .. 109
5.3.3 The CPU Resource .. 109

5.3.3.1 QoS Mapping .. 109
5.3.3.2 Admission Testing.. 110
5.3.3.3 QoS Control. 112

5.3.4 The Network Resource.. 113
5.3.4.1 QoS Mapping .. 113
5.3.4.2 Admission Testing.. 114
5.3.4.3 QoS Control. 115

5.3.5 The Memory Resource .. 117
5.3.5.1 QoS Mapping .. 117
5.3.5.2 Admission Testing.. 119
5.3.5.3 QoS Control. 119

5.4 Summary.. 121

6. Dynamic QoS Management (DQM) of Scalable Multicast Flows 122

6.1 Characteristics and Composition of Scalable Video Flows .. 123
6.1.1 MPEG... 123
6.1.2 Scalable Modes... 126
6.1.3 Discrete and Continuous QoS Adaptation... 127

6.2 Scaling Objects and API Extensions.. 128
6.2.1 Scaling Objects. 128

6.2.1.1 QoS Adaptors .. 128
6.2.1.2 QoS Filters . 128
6.2.1.3 QoS Groups.. 129

6.2.2 QoS Specification Extensions for Scalable Flows .. 129
6.3 Dynamic QoS Management of Scalable Video Flows................................. 131

6.3.1 Architectural Components .. 131

6.3.1.1 Illustrative Scenario .. 132
6.3.2 Sender-Oriented DQM... 134

6.3.2.1 The Dynamic Rate Shaping Filter... 135
6.3.3 Receiver-Oriented DQM... 137

6.3.3.1 Bandwidth Management .. 138
6.3.3.2 Late Frame Management.. 138
6.3.3.3 Delay Jitter Management.. 139

6.4 Adaptive Network Service .. 140
6.4.1 Weighted Fair Share Resource Partitioning....................................... 140
6.4.2 Rate Control Scheme ... 141
6.4.3 Network Filtering.. 143

6.5 Summary.. 144

7. Implementation Details . 145

7.1 Experimental Environment.. 146
7.1.1 End-System .. 147

7.1.1.1 Interfacing to ATM ... 148
7.1.1.2 MPEG Application Level Demonstrator . 150

7.1.2 Network . 152
7.1.2.1 Switch Software Structure... 153
7.1.2.2 4x4 ATM Switch Hardware Structure .. 154

7.1.3 Experimental Configuration .. 155
7.2 Application Programmers Interface .. 156

7.2.1 Overview.. 156
7.2.2 Group Management Primitives.. 158
7.2.3 Socket Primitives .. 159
7.2.4 Connection Management Primitives .. 159
7.2.5 Flow Management Primitives .. 160

7.3 METS Transport System... 162
7.3.1 QoS Control Module .. 164

7.3.1.1 Flow Scheduling and Shaping .. 164
7.3.1.2 Sync Filter. 168
7.3.1.3 QoS Monitor . 172
7.3.1.4 QoS Adaptor .. 174
7.3.1.5 Protocol Engine.. 175

7.3.2 QoS Maintenance Module... 178
7.3.2.1 Synchronous QoS Monitoring .. 178
7.3.2.2 Asynchronous Event Monitoring .. 179

7.3.3 Flow Management Module .. 179
7.3.3.1 Dynamic QoS Management.. 181

7.4 Summary.. 183

8. Evaluation . 185

8.1 Architectural Comparison .. 185
8.1.1 QoS Specification.. 188
8.1.1 QoS Commitment.. 189
8.1.1 Soft versus Hard State .. 190
8.1.1 End-System and Network Commonalities . 190

8.1.1 QoS Mapping... 191
8.1.1 Heterogeneous QoS Demands.. 191
8.1.1 Comparison... 192

8.2 Performance Evaluation .. 192
8.2.1 Test Video Clips .. 194
8.2.1 Bandwidth Analysis . 195
8.2.1 Loss Analysis . 197
8.2.1 Delay Analysis . 201
8.2.1 Sync Filtering Analysis . 204
8.2.1 Adaptive Network Service Analysis. 207
8.1.1 Discussion .. 209

8.3 Summary.. 211

9. Conclusions . 212

9.1 Summary of Thesis . 212
9.2 Thesis Contribution.. 215

9.2.1 Integrated QoS Architecture (QoS-A) .. 215
9.2.2 QoS Configurable Transport System... 215
9.2.3 Design of QoS Controlled Operating System Support . 216
9.2.4 Dynamic QoS Management (DQM).. 216
9.2.5 Operation QoS Platform... 216
9.2.6 Evaluation of Platform ... 217
9.2.7 Contribution of QoS Standards .. 217

9.3 Future Work .. 218
9.3.1 Binding Architecture... 218
9.3.2 QoS Mapping... 218
9.3.2 Internet QoS Architecture .. 219

9.4 Concluding Remark.. 219

References . 221

-i-

Abstract

The notion of quality of service (QoS) has evolved rapidly over the past few years. Until

recently, the term QoS referred to certain characteristics of network performance outside the

control or influence of the end user. Recent years have seen great advances in field of QoS

research, due mainly to the emergence of multimedia networking and computing. These

technological developments are complemented by new user perspectives and the emergence

of QoS demanding, multimedia applications.

This thesis is motivated by these recent technological changes and the need to provide

QoS assurances to the end user. The first part of this thesis reports on the evolving notion of

QoS in research and standards and identifies a number of limitations in the existing work.

This thesis argues that for applications relying on the transfer of multimedia information, in

particular continuous media, it is important that QoS is configurable, predictable and

maintainable on an end-to-end basis.

The aim of this thesis is to contribute toward the development a generalised quality of

service architecture. To address this aim an integrated quality of service architecture (QoS-A)

is proposed, which offers a framework to specify and implement the required performance

properties of continuous media applications over asynchronous transfer mode (ATM)

networks. A major contribution of this thesis is the design, implementation and evaluation

of the QoS-A multimedia enhanced transport system (METS), and the required ATM network

and operating system support. The second part of the thesis evaluates the METS transport

system in a UNIX/ATM environment and attempts to place the work in the context of QoS

architecture research reported in the literature.

The notion of QoS has moved on from where the end user had no influence on the

delivered quality. Today, ATM networks not only have the capability of transmitting

information at high speed, but they have the potential to offer end-to-end QoS configurable

communications - and significantly this time under the management of the end user.

The research reported in this thesis has been influenced by the debates within the ATM

Forum, IETF and ISO communities on QoS research. While the QoS-A evaluation is

restricted to the operating system, transport and ATM networking areas it is hoped that this

work can contribute toward the assessment of a generalised QoS architecture that ultimately

will help harmonise the activities of these various communities.

-ii-

Acknowledgement

The author would like to thank the students, research assistants and academic staff at

Lancaster who contributed to the local ATM infrastructure on which the QoS-A transport

system reported in this thesis was implemented. Special thanks are due to David Pegler,

Nick Yeadon, Andrew Lunn, Andrew Scott and Doug Shepherd. The author would also

like to acknowledge the many fruitful discussions which took place within the group.

Special thanks are due to Frank Ball, Gordon Blair, Phillip Lougher and Andreas Mauthe. I

would also like to express my appreciation to Philippe Robin and Francisco García for their

contributions towards the formulation of a QoS-A model. Many thanks also to Aurel Lazar

and the COMET Group for teaching me the importance of timescales in communication

systems during my stay at Columbia University.

This thesis would not have been possible without the support of a number key people.

First, I would like to express my thanks to my supervisor David Hutchison for his

encouragement and sound judgement, and for giving me so many great opportunities to

grow as a researcher under his thoughtful guidance. On a technical note, this thesis

benefited enormously from contributions made by Geoff Coulson over the past four years.

Geoff made key contributions to the development of the QoS model and operating systems

support reported in this thesis. Next, a special thanks is due to my family - my sister Mary,

my brother Edward and my mother - for their support.

Finally, my deepest thanks to my wife Susan Zak for her continued support and

encouragement - and her amazing patience, thank you Susan!

The QoS-A project was funded as part of the UK SERC Specially Promoted Programme in

Integrated Multiservice Communication Networks (GR/H77194) in co-operation with GDC

(formally Netcomm Ltd).

-iii-

To William and Miles McGinty Campbell

 -1-

Chapter 1

Introduction

Recent years have seen great advances in computing and networking technology. At the

network level, new high-speed technologies such as Asynchronous Transfer Mode (ATM)

networks are actively being deployed in research institutions and industry. These networks

not only have the capability of transmitting information at high speed, but also have the

potential to offer a wide range of Quality of Service (QoS) properties including bounds on

delay, guarantees on throughput and isochronous communications.

Multimedia workstation technology for generating, processing and displaying streams

of digital video and audio is also available in the marketplace in a range of

price/performance categories along with very high capacity storage systems and real-time

video and audio codecs.

These technological developments are complemented by new user perspectives. New

classes of distributed applications have been developed such as distance learning, desktop

video-conferencing, virtual workshop and video on demand. These applications are

characterised by their highly interactive nature and their significant use of multimedia

information transfer. In these applications, communication requirements are extremely

diverse [Leopold,92] and demand varying levels of service in terms of parameters such as

latency, bandwidth, jitter and loss free delivery. Furthermore, it is often a requirement that

levels of service are guaranteed for digital video and audio communications.

Other time-critical distributed applications such as distributed real-time control systems

are also increasing in prominence. These may or may not involve multimedia information

transfer, but have stringent requirements for both reliability and guaranteed bounds on

message latency.

These various applications share the need for quality of service control and management

to ensure that the requirements of the users are honoured.

 -2-

1.1. Motivation

This thesis is motivated by the above mentioned recent technological changes and the

need to provide quality of service assurance to the end user. This thesis argues that for

applications relying on the transfer of multimedia information, in particular the continuous

media of digital audio and video, it is essential that quality of service is configurable,

predictable and maintainable on an end-to-end basis [NATO,88] [Anderson,90]; that is,

system-wide, including the distributed system platform, operating system, transport system

and the underlying network.

io
de

vic
es

io
bu

ffe
rs

os
 pr

oc
es

se
s

pr
oto

co
l s

tac
k

int
er

ne
tw

or
k

io
bu

ffe
rs

os
 pr

oc
es

se
s

pr
oto

co
l s

tac
k

int
er

ne
tw

or
k

media
source

playout
device flow

io
de

vic
es

end-to-end QoS control and management

Figure 1.1: End-to-End QoS

Meeting quality of service guarantees in distributed multimedia systems is

fundamentally an end-to-end issue: from application-to-application. For example, consider

the remote playout of a sequence of audio and video: in the distributed system platform,

quality of service assurances should apply to the complete flow of media: from the remote

server, across the network to the points of delivery. As illustrated in figure 1.1, this

generally requires the provision of a number of end-to-end QoS control and management

mechanisms. These include end-to-end admission testing and resource reservation in the

first instance, followed by careful co-ordination of disk and thread scheduling in the end-

system, packet scheduling and flow control in the network and, finally, active monitoring

and maintenance of the delivered quality of service. Although previous research has

addressed many isolated areas of QoS provision, little attention has so far been paid to the

definition of an integrated and coherent framework that incorporates QoS interfaces,

management and mechanisms across all architectural layers.

 -3-

1.2 Media Quality of Service Demands

With the emergence of multimedia information exchange, stronger requirements are

being placed upon communications support. Multimedia is characterised particularly by

continuous media (e.g., voice, video, high quality audio, and graphical animation) which

place greater demands on communications than still media such as text, images and

graphics. Different types of continuous media require different levels of latency, bandwidth

and delay jitter and they also require guarantees that levels of service can be maintained. For

example, video communication requires high throughput guarantees but telephone audio

requires only modest bandwidth. Error control should also be configurable. For example,

uncompressed video is highly tolerant of communications errors whereas compressed voice

cannot tolerate high errors rates and file transfers should be 100% error free. Delay jitter

(i.e., variation in end-to-end delay) is an additional factor that must be taken into account

for continuous media transfers and must be kept within particularly rigorous bounds to

preserve the intelligibility of audio and voice information at playout devices.

1.2.1 Packet Video QoS

Many factors influence QoS demands made by video applications on underlying

communications infrastructure. The problem of specifying and modelling quality of service

for compressed video is rather challenging since bandwidth requirements and tolerance to

loss are intimately related to both the coding scheme (e.g., MPEG, JPEG or H.261) and

the source material (e.g., "talking head" or very high action). Some general observations

concerning compressed video communications are:

i) burstiness is heavily dependent on the content of the image being coded and the

coding algorithm used;

ii) source generation rates are highly sensitive to scene and background changes;

and

iii) highly correlated source traffic is potentially persistent over very long periods.

All this makes specifying and modelling QoS for compressed video applications

rather difficult.

To illustrate continuous media quality of service demands on a transport system a real

video stream trace is considered. Figure 1.2 shows a bandwidth trace for over 1700

 -4-

compressed video frames from an MPEG video clip. The video sequence represents a

mixture of material from low motion action to rapidly changing scenes. The playout video

window dimension of 144 lines x 122 pixels (i.e., the spatial QoS) at the receiver translates

to modest bandwidth demands on the communications system. The variable bit rate nature

of MPEG video streams is apparent from the trace, which shows MPEG frame picture sizes

as a time series. The peak frame size is in the order of 70 ATM cells with the minimum

frame size less than 10 cells. This results in bursty traffic when injected into the network.

The variable bit rate nature of the clip is a feature of MPEG coding algorithms that result in

three different types of pictures (called I, P and B). On inspection, the I, P and B frames

are visible in the trace. The I frames represent the major peaks at the top of the trace, the P

pictures the dark peaks in the middle of the trace, and the B pictures the white peaks at the

bottom of the trace. An important feature of MPEG (which will be discussed in Chapter 6)

is that it can tolerate the occasional loss of certain pictures (e.g., B pictures) during

transmission with little reduction of the perceived quality at a playout device.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800

ba
nd

w
id

th
 (

ce
lls

/fr
am

e)

time(frames)

canyon.mpg time series

Figure 1.2: Bandwidth Trace (Time Series) of an MPEG Video Sequence

Delay requirements are dependent on the application itself. For example, if the video

applications illustrated above represented an interactive session such as video conferencing

the total end-to-end delay would be critical and should not in general exceed two to three

 -5-

hundred milliseconds [Leopold,92]. In contrast, one-way video communications are not as

sensitive to delay. Bounding jitter is, however, important in both cases and should be

continuously monitored and maintained within fairly tight bounds.

In summary, QoS demands for multimedia communications are media, source and

application dependent. In the case of compressed packet video communications, throughput

is generally quite bursty, loss tolerance is picture dependent, delay is application dependent,

and jitter is always important. These QoS characteristics are derived from analysing

compressed video communications requirements [Leopold,92]. In general, however, each

class of media (voice, video, animation, images) has different traffic characteristics and

idiosyncrasies and each application of that medium may have quite different application

level quality of service demands (e.g., colour or black and white playout).

1.2.2 End-to-End Demands

For distributed multimedia applications the concept of quality of service becomes

applicable on a full end-to-end basis. In addition to the communications sub-system, this

has implications for operating system scheduling for threads which are producing or

consuming information for quality controlled communications. End-to-end QoS also

involves distributed application platforms which are layered on top of the operating system

to provide distribution transparencies and object based computational models.

The requirements of multimedia synchronisation such as ‘lip-sync’ impose quality of

service constraints over multiple related transport level flows. The latter requirements is

referred to as orchestration [Garcia,93]. QoS properties in this context are concerned with

the ‘tightness’ of the orchestration required and the strategies required when QoS provision

degrades.

Finally, the concept of QoS is also applicable to areas other than the traditional arena of

point-to-point communications. For example, the prevalence of multicast and group

communications in distributed multimedia systems leads to considerations such as the

ordering semantics of group message delivery, meeting individual quality of service needs

for each member of a multicast group, and resolving heterogeneity issues where individual

senders and receivers may have differing capabilities to produce and consume audio-visual

flows.

 -6-

1.3 The Evolving Notion of Quality of Service

1.3.1 Retrospective

In the early 1990s, when this work commenced [Campbell, 92a], the notion of quality

of service in communications architectures was a narrow one. Traditionally, the term

‘quality of service’ referred to certain characteristics of network services as observed by

transport users. These characteristics were not generally controllable by users and described

only those aspects of services attributable to the network provider. At that time, quality of

service parameters in communications standards issued by the International Standards

Organisation (ISO) Open Systems Interconnection (OSI) and International

Telecommunication Union-Telecommunication Standardisation (ITU-TS) (formally

Consultative Committee on International Telegraphy and Telephony (CCITT)) permitted the

specification of some user requirements but these were rarely supported by the underlying

network. For example, the OSI standards treated quality of service in a layer-specific

fashion. This was a product of the QoS definition being addressed by separate ISO

committees (i.e., the presentation, session, transport, network and data link committees),

each working in isolation from one another. Thus, the relationship between the QoS layers

was not clearly defined and there was no consistent, integrated notion of quality of service

which related user requirements to the network provider services.

1.3.1.1 Open System Interconnection

The OSI service definitions do not provide for the specification of a comprehensive

QoS parameterisation. In addition, there is no support for QoS negotiation and monitoring

and the precise semantics of responsibilities and guarantees are not clear. Even more

limiting is the fact that at the protocol level there is no notion of QoS management in terms

of QoS re-negotiation, mapping, resource reservation and QoS maintenance. It is simply

assumed that the underlying network provider will support the requested QoS levels.

Another important observation is that the OSI upper layers are not QoS-aware. QoS

parameters are simply mapped unchanged through to the transport layer. If users want to

specify QoS they are forced to drop below the level of abstraction provided by the upper

 -7-

layer architecture and interact with layers that are intended to be hidden from applications.

1.3.1.2 Internet 'Base Service'

During the same time the Internet only permitted the specification of qualitative QoS

hints to the IP base service (using the type of service field in the IP header) such as ‘low’

delay, ‘high’ throughput and ‘high’ reliability. Even these limited QoS specifications are

rarely honoured by the underlying network. Furthermore, the Internet architecture was

based on a best effort performance model which was never designed to support quantitative

QoS needed for a full range of multimedia communications. In the Internet, the support of

reliable data transfer was a primary design goal and until recently (cf. Integrated Services

Internet [Braden,94]) performance QoS was a marginal consideration.

1.3.1.3 ATM Networking

 The ITU-TS in their 'I-series' recommendations recognised the need for QoS

configurability in the emerging ATM standards for the Broadband Integrated Services

Digital Network (B-ISDN) and also defined a fairly comprehensive set of parameters and

reference model. These recommendations did not consider how the traffic characterisation

at the ATM layer was to be derived from user QoS needs at the transport layer and above.

Below the service interface, the state of ATM standardisation suffered from a lack of QoS

management support comparable to that found in the OSI field. At that time there was no

consensus on how resources would be allocated and how requested QoS levels could be

maintained, policed and re-negotiated.

1.3.1.4 Evaluation

 A limitation of most of these architectures was the static nature of service provision. In

OSI protocols, the value of a QoS parameter remained constant for the duration of a

connection, i.e., once negotiated a QoS parameter was never re-negotiated. One implication

of this limitation was that users cannot dynamically adjust the communication QoS without

undergoing a disconnection/re-establishment phase or opt for QoS trade-offs in the face of

limited resources. For example, users could not choose to scale back the quality of an

existing video connection in terms of spatial or temporal performance to allow the

possibility of opening a new audio connection. Another implication was that the service-

 -8-

provider was committed to provide the QoS over the lifetime of the connection. If the

provider was unable to maintain its commitment there was no mechanism to inform the user

and allow him/her to adapt intelligently to the new level of service. The only option

available to the provider in the case of OSI and ATM protocols was the unilateral closure of

connections. Unilateral disconnection in the face of QoS fluctuations of this type is

generally too severe an action to take and, more important unsuitable as a paradigm for

continuous media communications. Deriving suitable methods and mechanisms for

adapting to fluctuations in delivered quality of service is more appropriate than closing the

connection for continuous media applications.

1.3.2 New QoS Initiatives

Recent years have seen the emergence of a number of important initiatives from the

standards and research communities. These initiatives broadly address limitations in the

current QoS provision in light of new multimedia communication requirements.

1.3.2.1 Integrated Services Internet

The work by the Integrated Services (int-serv) Group [Braden,94] of the Internet

Engineering Task Force (IETF) is a significant contribution to providing QoS guarantees

for multimedia applications over an integrated services Internet. The int-serv group have

defined a comprehensive integrated service model [Shenker,93] and QoS framework

[Shenker,95a] used to specify the functionality of internetwork system components (known

as 'QoS-aware elements') which make multiple, dynamically selectable qualities of service

available to applications in an internetwork.

The behaviour of elements, which constitute routers, subnetworks and end-system

operating systems, is captured as a set of services of which some or all are offered by each

element. Each element is QoS-aware and supports interfaces required by the service

definition. The concatenation of these service elements along an end-to-end data path used

by an application provides an overall statement of end-to-end QoS. Each service definition

also specifies QoS parameters used to invoke the service. The current set of defined

services (viz. controlled delay, guaranteed delay and predicated delay) are appropriate for a

wide range of multimedia flows. These new services will be offered in addition to the

current best effort service.

 -9-

The int-serv QoS framework document [Shenker,95a] defines a flow as:

"a set of packets traversing a network element all of which are

covered by the same request for control of quality of service. At a

given network element a flow may consist of packets from a single

application session, or it may be an aggregation comprising the

combined data traffic from a number of application sessions".

While the definition emphasises the 'network' element the framework in its full

generality it is equally applicable to both the end-system and network. The goal of the int-

serv group is to focus on the network in the first instance.

1.3.2.2 ATM Forum Networking

ATM standards have progressed over the past several years. The ATM Forum is

comprises a group of users, vendors and telecommunications providers that have been

responsible for the fast track development of a set of interim ATM standards. These

standards have helped to clarify some of the shortcomings evident in earlier ITU-TS draft

standards regarding quality of service specification, control and management. Prominent

among the approved standards are the service model definition, the user-network interface

(UNI) [ATMF,95a] and the pending network-to-network [ATMF,95b] interface draft

standard. With the approval of UNI 4.0 by the Forum, ratified ATM standards now

support several classes of service suited to carry multimedia information with QoS

configurable connections.

The Traffic Management and QoS Adhoc Working Groups [ATMF,95c] have been key

in the development, rationalisation and progression of earlier Forum and ITU-TS

contributions. New QoS initiatives proposed by the Forum and int-serv groups are likely to

have a profound effect on multimedia networking over the next decade. At this time both

groups are equally poised to shape the future of QoS driven communications. With this in

mind it is interesting to note that while the services and QoS parameterisation proposed by

both groups have some similarities, interworking between the two worlds (i.e., mapping

one set of services and traffic characterisation to the other) will prove very challenging.

1.3.2.3 ISO QoS Initiatives

Two new ISO QoS initiatives have emerged recently in the ISO. These are the ISO QoS

 -10-

Framework by the ISO SC21 QoS Working Group and the Enhanced Communication

Functions and Facilities (ECFF) by the ISO SC6 ECFF Working Group.

ISO SC21 QoS Working Group

A significant contribution to the field of quality of service support for OSI

communications is the OSI QoS Framework [IS0,95a] developed by the SC21 QoS

Working Group. The QoS framework broadly defines terminology, concepts and

mechanisms for QoS and provides a model for the identification of objects of interest to

QoS in open system standards. The QoS associated with objects and their interactions is

described through the definition of a set of QoS characteristics.

The key QoS framework concepts include:

i) QoS requirements, which are realised through QoS management and maintenance

entities;

ii) QoS characteristics, which are fundamental aspects of QoS that have to be

managed;

iii) QoS categories, which represent a policy governing a group of QoS

requirements specific to a particular environment such as time-critical

communications; and

iv) QoS management functions, which can be combined in various ways and

applied to various QoS characteristics in order to meet QoS requirements.

ISO SC6 ECFF Working Group

The subject of QoS emerged as an important activity in another ISO project addressing

enhanced communication functions and facilities for the lower layers of the OSI reference

model. The SC6 ECFF Working Group has been instrumental in introducing key

multimedia communication requirements [Hutchison,92] into the ECFF guidelines

document [ISO,92] which, as anticipated, will direct the development of current and future

ISO transport and network standards.

The Esprit OSI 95 project played a leading role in initiating and contributing toward the

new project. The OSI 95 project's major contribution to the new work item was the

specification of a new multimedia-capable transport system called TPX [Danthine,92]. TPX

 -11-

provides support for connection-oriented services with sequenced delivery, QoS

configurability and error notification. The enhanced connection-oriented service takes QoS

parameters relating to throughput, delay, delay jitter, error selection policy and relative

priority. Three novel transport quality of service semantics (viz. compulsory, threshold and

maximal QoS) have been proposed in the specification while maintaining the best effort

service.

ECFF service semantics are now being considered by the OSI QoS group for inclusion

in the QoS Framework Committee Draft (CD) standard resulting in continuity between the

"architects" view (i.e., SC21 committee) and "protocol designers" thinking (i.e., SC6

committee). It is anticipated that by building strong liaisons between the various groups

working on aspects of layer specific QoS the ISO QoS group can have a major impact on

the treatment of QoS across all layers of the OSI reference model. It is interesting to

observe that there is little consistency between the services being proposed by the ISO

ECFF and QoS groups and those being offered by the ATM Forum and int-serv groups.

Such discontinuity may result in barriers to future interworking.

1.3.3 Limitations

To date, most of the developments in the provision of quality of service support have

occurred in the context of individual architectural layers. Much less progress has been made

in addressing the issue of end-to-end QoS for multimedia communications. There has been,

however, considerable progress in the separate areas of Open Distributed Processing

(ODP), end system and network support for quality of service. In end-systems, most of the

progress has been made in the specific areas of scheduling, flow synchronisation and

transport support. In networks, research has focused on providing suitable traffic models

and service disciplines, as well as appropriate admission control and resource reservation

protocols. Many current network architectures, however, address quality of service from a

providers point of view and analyse network performance, comprehensively failing to

address the quality needs of applications. Until recently there was little work on quality of

service support in distributed systems platforms. Such work has been done in the context

of the Open Distributed Processing ISO standard in SC21.

The essential characteristics of the current state of QoS research can be summarised as

follows:

 -12-

i) incompleteness in service: current service interfaces are generally not QoS

configurable and provide only a subset of the facilities needed for control and

management of continuous media;

ii) lack of mechanisms to support QoS guarantees: research is needed in distributed

control, monitoring and maintenance QoS mechanisms so that contracted levels of

service can be predictable and assured;

iii) lack of continuity: current QoS initiatives are primarily network-centric and do

not address the suitability of network QoS semantics extended in to the end-system,

i.e., can ATM Forum, int-serv and ISO QoS models be extended successfully to the

distributed platform and operating system environments or is there an intrinsic

discontinuity? and

iv) lack of overall framework: it is necessary to develop an overall architectural

framework to build on and reconcile the existing notion of quality of service at

different systems levels and among different network architectures.

1.4 Quality of Service Architectures

In recognition of the issues discussed above, the development of an integrated QoS

model which spans both end-systems and networks and takes the support of QoS for a

wide range of multimedia applications as its primary goal is proposed here. These models

are called QoS architectures [Campbell,92a]. These architectures promote a systems

approach to quality of service management in distributed systems.

The primary intention of QoS architecture research is:

"to define a set of quality of service configurable interfaces, services

and mechanisms that formalise quality of service in the end-system

and network, providing a framework for the integration of control,

maintenance and management mechanisms to meet application level

end-to-end QoS requirements".

Because of the increased range and complexity of QoS provision required by the

emerging distributed multimedia applications, it becomes evident that the necessary

extensions to QoS provision cannot be carried out in a piecemeal fashion. Instead, the

notion of a comprehensive QoS architecture is advocated whereby application requirements

 -13-

can be mapped through all the levels of the system. Thus,

"communications abstractions at the application platform level

should provide QoS abstractions which can be mapped down

through all intermediate layers to the network access point in a

coherent and integrated way - this strategy is described as integrated

QoS in this thesis".

This mapping - called QoS mapping - should be simple and efficient, protecting

application programmers from communication details.

1.5 Thesis Aims

The aim of this thesis is to contribute toward the development of a generalised quality of

service architecture. To address this aim an integrated Quality of Service Architecture (QoS-

A) is designed which offers a framework to specify and implement the required

performance properties of continuous media applications operating over ATM networks.

recently

physical layer

transport layer

user planecontrol plane

QoS maintenance plane

flow management plane

distributed sytems platform

network layer

data link layer

protocol plane

orchestration layer

Figure 1.3: Quality of Service Architecture (QoS-A)

The QoS-A illustrated in figure 1.3 retains the best effort service model as a special case

but augments it with new classes of service providing hard and soft end-to-end

performance guarantees. These new service classes will be applicable in the end-system and

 -14-

network and will be designed to fit into a highly dynamic application environment

providing support for control, monitoring and maintenance of end-to-end QoS.

In addition to the need for a richer service model which allows the QoS requirements of

the new applications to be fully specified, the QoS-A requires the integration of a range of

QoS mechanisms in both the end-system and the network to meet end-to-end needs. In end-

systems, this will include thread scheduling, traffic shaping, buffer management and jitter

correction. In the communications subsystem, protocol support such as end-to-end QoS

negotiation, re-negotiation and indication of QoS degradation are required. In networks,

suitable resource reservation protocols, service disciplines in switch queues and multicast

QoS support are needed. The QoS-A provides a framework for the maintenance and

management of QoS over all system layers. This includes flow management functions such

as QoS mapping between different layers of the architecture, admission testing for new

flows and monitoring to ensure that QoS levels can be maintained.

 A major contribution of this thesis is the realisation of the QoS-A at the transport layer

and its assessment in the context of a generalised quality of service architecture. A new

transport service and protocol collectively called the Multimedia Enhanced Transport

System (METS) is proposed, designed and implemented. The METS transport system

builds on previous work on continuous media transports [García,93] and includes QoS

control, maintenance and management mechanisms to support multicast flows. It will be

shown how QoS levels contracted at the transport level application programmers' interface

(API) can be assured in the context of the Lancaster ATM Research Networking

Environment.

1.6 Thesis Structure

The structure of the thesis is as follows. Chapter 2 sets out a framework for discussing

QoS support in distributed multimedia systems. QoS terminology, principles and concepts

are introduced which underpin quality of service architecture philosophy. Next, a set of

modules used in building quality of service into distributed multimedia systems are

described. These modules include QoS specification which captures application level

quality of service requirements and a set of QoS mechanisms that realise the desired

behaviour.

 Following this, in Chapter 3, an initial review of QoS research by surveying layer-

 -15-

specific work is developed; the distributed systems platform layer, operating systems, and

transport and network research, respectively, are considered. A number of fledgling QoS

architectures that have recently been reported in the literature are then evaluated.

In Chapter 4 the QoS-A model is described, primarily focusing on the role of transport

layer in the architecture. The QoS-A incorporates the notions of flows, service contracts

and flow management. Flows characterise the production, transmission and eventual

consumption of single media streams, service contracts are binding agreements between

users and providers and flow management provides for the monitoring and maintenance of

the contracted QoS levels. A multimedia enhanced transport service, flow management and

transport layer service contract is outlined. It is shown how QoS levels contracted at the

transport API can be assured in the context of the Lancaster ATM Research Networking

Environment.

Next, in Chapter 5 the QoS-A operating system support is described. The chapter

begins by providing the necessary background material on the Chorus micro-kernel and the

extensions made to the kernel to support QoS driven communications. The major

components of the QoS-aware operating system are then detailed. These include a Chorus

QoS-based API, split-level scheduling framework, QoS controlled communications and

QoS-driven memory management and flow management system.

Chapter 6 addresses the challenge of meeting QoS demands in multicast

communications. The salient features of scalable video flows are presented in this chapter,

then a set of scaling objects used in the QoS-A architecture together with an extended

application programming interface are described. Following this, the Dynamic QoS

Management (DQM) of adaptive multicast flows is reported. The detailed operation of a

number of specific types of scaling objects is described, followed by the introduction of an

adaptive network service, a definition of the notion of weighted fair share (WFS) resource

allocation, an explanation the rate control scheme and, finally, an outline of the use of

several network oriented QoS filters.

The implementation details presented in Chapter 7 correspond to the end-system and

network domains. In the end-system, METS communications support is embedded in the

Linux operating system [Linux,94] and interfaces directly to the Lancaster ATM Research

Networking Environment. In the network, METS signalling and QoS control mechanisms

are embedded in the ATMos operating system [French,93] resident in the Olivetti Research

Laboratory (ORL) 4x4 ATM switches.

 -16-

To evaluate this implementation an MPEG Networked Video System (NVS)

[Yeadon,95] has been developed. In Chapter 8, the performance impact of the METS

transport system using NVS running on Pentium based PCs and RAID-3 based storage

servers interconnected by ORL ATM switches is evaluated. Following this a discussion of

QoS-A in relation to the other QoS architectures reported in the literature is presented.

Chapter 9 presents a number of general conclusions and areas where further work is

required.

 -17-

Chapter 2

Quality of Service Terminology,
Principles and Concepts

This chapter presents the terminology, principles and concepts used in later discussions

of quality of service in QoS-based architectures. Where appropriate the terminology used is

that adopted by the ISO QoS group in the QoS Framework committee draft standard. A set

of modules utilised in building quality of service support into distributed multimedia

systems is described. These modules include: QoS principles which govern the

construction of integrated QoS architectures, QoS specification which captures application

level quality of service requirements and QoS mechanisms which realise the desired end-to-

end QoS behaviour.

2.1. Terminology

As a first step in the analysis of QoS provision in distributed systems, the term activity

is introduced to refer to those aspects of a system to which it is useful to ascribe quality of

service characteristics. Examples of activities are processes, communications, or complete

computer systems. One particularly important type of activity in the context of multimedia

and real-time distributed applications is the notion of a flow [Partridge,92] which is defined

[Campbell,92] as:

"the production, transmission and eventual consumption of a single

media source (viz. audio, video, data) as an integrated activity

governed by a single statement of QoS; flows are always simplex

but can be either unicast or multicast; flows generally require end-to-

end admission control and resource reservation, and support

heterogeneous QoS demands".

In characterising the QoS of activities, it is necessary to identify dimensions along

which QoS can be measured and quantified. To take a familiar example, it is common to

measure the QoS of a timesharing computer system along the dimensions of system

 -18-

throughput and user response time. It is also useful to group sets of QoS dimensions into

QoS categories where each category contains dimensions pertaining to some logically

identifiable aspect of QoS. As an example, a “system reliability” category which contains

system-related reliability dimensions may be defined as the mean time between failure

(MTBF) or mean time to repair (MTTR). Another reliability category relating more

particularly to the field of multimedia and real-time distributed systems may contain

dimensions relating to, for example, the permitted percentage of loss of media frames in a

flow or the permitted bit error rate in ATM cells.

Other important QoS categories of relevance to the distributed multimedia application

area are timeliness and volume. The timeliness category contains dimensions relating to the

end-to-end delay of control and media packets in a flow. Examples of such dimensions are

delay, measured in milliseconds and defined as the time taken from the generation of a

media frame to its eventual display, and jitter, also measured in milliseconds and defined as

the variation in overall nominal latency suffered by individual packets of the same flow.

The volume category contains dimensions that refer to the throughput of data in a flow. At

the level of end-to-end flows, an appropriate QoS dimension may be video frames delivered

per second (fps). Alternatively, at the ATM layer, a typical volume QoS dimension would

quantify throughput in terms of peak-rate throughput and statistical throughput measured in

cells per second. These examples illustrate that certain dimensions are often only applicable

at certain system layers and imply that a complete category should contain dimensions for

each system layer involved in the support of that category.

The above list of categories and dimensions is far from exhaustive. Other categories

worthy of mention are criticality which relates to the assignment of relative priority levels

between activities, quality of perception which is concerned with dimensions such as screen

resolution or sound quality, and logical time which is concerned with the degree to which

all nodes in a distributed system see the same events in an identical order. Cost is another

important category. Cost considerations are also typically applied to the level of QoS

provided in the various other QoS categories. A more complete selection of QoS categories

can be found in [ISO,95a].

2.2 QoS Principles

Five principles govern the construction of QoS architectures. These are the principles of

 -19-

integration, separation, transparency, asynchronous resource management and

performance.

2.2.1 Integration Principle

The integration principle states that quality of service must be configurable, predictable

and maintainable over all architectural layers to meet end-to-end quality of service

[Campbell,93]. Flows traverse resource QoS modules (e.g., CPU, memory, devices,

network) at each layer from source media devices, down through the source protocol stack,

across the network, up through the receiver protocol stack to the playout devices. Each QoS

module traversed must provide QoS configurability (based on a QoS specification),

resource guarantees (provided by QoS control mechanisms) and maintenance (based on

monitoring mechanisms) of on-going flows.

2.2.2 Separation Principle

The separation principle states that media transfer, control and management are

functionally distinct architectural activities [Lazar,92]. The separation principle states that

these activities should be separated in architectural frameworks. One aspect of separation is

the distinction between signalling and media-transfer. Flows, which are isochronous in

nature, generally require a wide variety of high bandwidth, low latency, non-assured

services with some form of jitter correction at the playout devices. On the other hand,

signalling, which is full duplex and more asynchronous in nature, generally requires low

bandwidth, assured-type services with no jitter constraint.

2.2.3 Transparency Principle

The transparency principle states that applications should be shielded from the

complexity of underlying QoS specification and QoS management functions such as QoS

monitoring and maintenance. An important aspect of transparency is the QoS-based API

[Campbell,94] [Bansal,95] at which desired quality of service levels are stated (see QoS

management policy in Chapter 4). The benefit of transparency is three-fold. It reduces the

need to embed quality of service functionality in applications. It hides the detail of

underlying service specification from the application and it delegates the complexity of

handling QoS management activities to the underlying QoS framework.

 -20-

2.2.4 Asynchronous Resource Management Principle

The asynchronous resource management principle [Lazar,92] guides the division of

functionality between architectural modules and pertains to the modeling of control and

management mechanisms. It is necessitated by, and is a direct reflection of fundamental

time constraints that operate in parallel between activities (e.g., scheduling, flow control,

routing, QoS management) in distributed communications environments. The “state” of the

distributed communication system is structured according to these different time scales. The

‘operating point’ of communication activities is arrived at via asynchronous algorithms that

operate and exchange control data periodically among each other.

2.2.5 Performance Principle

Finally, the performance principle subsumes a number of widely agreed rules for QoS-

driven communications design and implementation. These rules guide the division of

functionality in structuring communication protocols for high performance in accordance

with Saltzer’s systems design principles [Saltzer,84], avoidance of multiplexing

[Tennenhouse,90], recommendations for structuring communications protocols such as

application layer framing and integrated layer processing [Clark,90], and the use of

hardware assists for protocol processing [Chesson,88] [Zitterbart,92].

2.3 QoS Specification

QoS specification is concerned with capturing application level quality of service

requirements and management policy and is generally different at each system layer and is

used to configure and maintain QoS mechanisms resident at each layer. For example, at the

distributed system platform level QoS specification is primarily user-oriented rather than

system-oriented. Lower-level considerations such as tightness of synchronisation for

multiple related transport flows, or the rate and burst size of flows, or the details of thread

scheduling should all be hidden at this level.

QoS specification is therefore declarative in nature; users specify what is required rather

than how this is to be achieved by underlying QoS mechanisms.

Quality of service specification encompasses the following areas:

 -21-

2.3.1 Flow Synchronisation ("Orchestration") Specification

Flow synchronisation specification characterises the degree (i.e., tightness) of

synchronisation between multiple related flows [Little,90]. For example, simultaneously

recorded video perspectives (shown as video 1 and 2 in figure 2.1) must be played in

precise frame by frame synchrony so that relevant features may be simultaneously

observed. On the other hand, lip synchronisation in multimedia flows does not need to be

absolutely precise when the main information channel is auditory and video is only used to

enhance the sense of presence.

text

audio

video 2

synchronisation
constraints

video 1multimedia
document

Figure 2.1: Flow Synchronisation / Orchestration

2.3.2 Flow Performance Specification

Flow performance specification characterises the user's flow performance requirements

[Partridge,92]. The ability to guarantee traffic throughput rates, delay, jitter and loss rates,

is particularly important for multimedia communications. These performance-based metrics

are likely to vary from one application to another. To be able to commit necessary end-

system and network resources a QoS architecture one must have prior knowledge of the

expected traffic characteristics associated with each flow before resources can be committed

and resource guarantees made.

2.3.3 QoS Commitment

QoS commitment specifies the degree of end-to-end resource commitment required

(e.g., deterministic [Ferrari,90], predictive [Clark,92], adaptive [Campbell,95] and best

 -22-

effort). While the flow performance specification permits the user to express required

performance metrics in a quantitative manner, QoS commitment allows these requirements

to be refined in a qualitative way so as to allow a distinction to be made between hard, firm

and soft performance guarantees. QoS commitment expresses a degree of certainty that the

QoS levels requested at flow establishment or re-negotiation will actually be honoured.

2.3.4 QoS Management Policy

QoS management policy captures the degree of QoS adaptation [Campbell,95]

(continuous or discrete) that a flow can tolerate and scaling actions to be taken in the event

of violations in the contracted QoS [Campbell,95]. By trading-off temporal and spatial

quality to available bandwidth, or manipulating the playout time of continuous media in

response to variation in delay, audio and video flows can be presented at the playout device

with minimal perceptual distortion. The QoS management policy also includes user-level

selection of QoS indications (called event QoS signals) in the case of violations in the

requested quality of service, and periodic bandwidth, delay, jitter and loss notification (i.e.,

QoS signals) which are suitable for adaptive applications [Shenker,93a].

2.3.5 Cost of Service

Cost of service specifies the price the user is willing to incur for the level of service;

cost of service is an important factor when considering QoS specification. If there is no

notion of cost involved in QoS specification, there is no reason for the user to select

anything other than maximum level of service (e.g., guaranteed QoS at peak rate). This

philosophy would inevitably lead to resource inefficiencies. To counter this condition the

cost function must incorporate pricing differentials [Chocchi,91] to encourage the user to

select the optimum QoS commitment and performance QoS parameters such as a lower-

commitment-costs-less pricing policy.

2.4 QoS Mechanisms

Quality of service mechanisms are selected according to user supplied QoS specification

(described above), resource availability and resource management policy. In resource

management, QoS mechanisms are categorised as either static or dynamic in nature. Static

 -23-

resource management deals with flow establishment and end-to-end QoS re-negotiation

phases (which is described as QoS provision) and dynamic resource management deals

with the media-transfer phase (which is described as QoS control and management). The

distinction between the former and latter is due to the different time scales on which they

operate and is a direct consequence of the asynchronous resource management principle.

QoS control distinguishes itself from management in that it operates on a faster more

reactive timescale (e.g., cell scheduling operates on faster timescales than evolving the

playout time for a particular flow at the playout device).

2.4.1 QoS Provision

QoS provision is comprised of three components: QoS mapping, admission testing and

resource reservation.

2.4.1.1 QoS Mapping

QoS mapping performs the function of automatic translation between representations of

QoS at different system levels (i.e., operating system, transport layer, network) and thus

relieves the user from the necessity of thinking in terms of lower level specification. For

example, the transport level QoS specification may express flow requirements in terms of

QoS commitment, average and peak bandwidth, jitter, loss and delay constraints - all

related to transport packets.

period quantum

deadline scheduling time

jitter

Figure 2.2: Scheduler QoS Parameters derived by QoS Mapping

For admission testing and resource allocation purposes this representation may need to

be translated to something more meaningful to the end-system scheduler. For example (as

illustrated in figure 2.2), one function of QoS mapping is to derive the period, quantum

(i.e., unit of work) and deadline times of the threads associated with the transport level

flow performance specification [Coulson,95].

 -24-

2.4.1.2 Admission Testing

Admission testing is responsible for comparing the resource requirement arising from

the requested QoS against the available resources in the system. The decision regarding

whether a new request can be accommodated generally depends on system-wide resource

management policies and simple resource availability. Once admission testing has been

successfully completed on a particular QoS module, local resources are reserved

immediately and then committed later if the end-to-end admission control test (i.e.,

accumulation of hop by hop tests) is successful.

2.4.1.3 Resource Reservation

Resource reservation protocols arrange for the allocation of suitable end-system and

network resources in accordance with the user QoS specification. In doing so, the resource

reservation protocol interacts with QoS-based routing to establish a path through the

network in the first instance, then, based on QoS mapping and admission control at each

local QoS module traversed (e.g. CPU, memory, I/O devices, switches, routers) end-to-

end resources are allocated and committed. The net result is that QoS control and

management mechanisms such as network-level cell scheduler and transport-level flow

monitors are configured appropriately.

2.4.2 QoS Control Mechanisms

QoS control mechanisms operate on timescales close to media transfer speeds. They

provide real-time traffic control of flows based on requested levels of QoS established

during QoS setup. This is achieved by providing suitable QoS control mechanisms and

arranging for time-constrained buffer management, scheduling and communication protocol

operations. The principle QoS control building blocks include flow shaping, flow

scheduling, flow policing, flow control and flow synchronisation.

2.4.2.1 Flow Shaping

Flow shaping regulates flows based on user supplied flow performance specifications

as described in Section 2.3.2. Flow shaping can be based on a simple fixed rate throughput

 -25-

(i.e., peak rate) or some form of statistical representation (i.e., peak rate, sustainable rate

and burstiness factor) of the required bandwidth.

The benefit of shaping traffic is that it allows the QoS architecture to commit sufficient

end-to-end resources and to configure flow schedulers and shapers to regulate traffic

through the end-systems and network. It has been mathematically proven that the

combination of traffic shaping at the edge of the network and scheduling in the network can

provide hard performance guarantees. Parekh [Parekh,93] has shown that if a source flow

is shaped by a token bucket with leaky bucket rate control and scheduled by the weighted

fair queueing service discipline [Keshav,91], it is possible to achieve strong guarantees on

delay. This is the theory behind int-serv's guaranteed delay service soon to be offered in an

integrated services Internet [Braden,94].

2.4.2.2 Flow Scheduling

Flow scheduling manages the forwarding of flows (chunks of media based on

application layer framing) in the end-system [Lui,73] and network (packets/cells) in an

integrated manner [Zhang,91]. Flows are generally scheduled independently in the end-

systems but may be aggregated or scheduled independently in the network. This is

independent of the QoS commitment and the scheduling scheme adopted.

2.4.2.3 Flow Policing

Flow policing can be viewed as the dual of monitoring. The latter - usually associated

with QoS management - observes whether the QoS contracted by a provider is being

maintained whereas the former observes whether the QoS contracted by a user is being

adhered to.

Policing is often only appropriate where administrative and charging boundaries are

being crossed, for example, at a user-to-network interface [ATMF,95a]. A good flow

shaping scheme at the source allows the policing mechanism to easily detect misbehaving

flows. The action taken by the policing function can range from accepting violations and

merely notifying the user, through to shaping traffic to an acceptable QoS level. It is

considered that policing flows in the end-system or network should be a function of the

end-system or network level flow scheduling and shaping QoS control mechanisms.

 -26-

2.4.2.4 Flow Control

Flow control includes both open-loop and closed loop schemes. Open loop flow control

is used widely in telephony and allows the sender to inject data into the network at the

agreed levels given that resources have been committed in advance. In contrast, closed loop

flow control requires the sender to adjust the rate based on feed-back from the receiver

[Shenker,93] or network [ATMF,95a]. Applications using closed loop flow control based

protocols must be able to rapidly adapt to fluctuations in the available QoS. Fortunately,

many multimedia applications are adaptive [Jacobson,93] and can operate in such

environments. Alternatively, multimedia applications which cannot adjust to changes in the

delivered QoS are more suited to open loop schemes where bandwidth, delay and loss can

be deterministically guaranteed and managed in isolation from other competing flows (i.e.,

resources are fire-walled) for the duration of the session.

2.4.2.5 Flow Synchronisation

Flow synchronisation is required to control the event ordering and precise timing of

multimedia interactions. Lip-sync is the most commonly cited form of multimedia

synchronisation (synchronisation of video and audio flows at a playout device). Other

synchronisation scenarios reported include: event synchronisation with and without user

interaction, continuous synchronisation other than lip-sync, continuous synchronisation for

disparate sources and sinks. All place fundamental QoS requirements on flow

synchronisation protocols [Escobar,92]. Dynamic QoS management associated with flow

synchronisation is mainly concerned with the ‘tightness’ of synchronisation between flows.

 2.4.3 QoS Management

To maintain agreed levels of QoS it is often not sufficient to just commit resources.

Rather QoS management is frequently required to ensure that the contracted QoS is

sustained. QoS management of flows is functionally similar to QoS control. However, it

operates on a slower time scale. Over longer monitoring and control feed back intervals

[Pacafici,95].

QoS management mechanisms include the following: QoS monitoring, QoS

maintenance, QoS degradation, QoS signalling and QoS scalability.

 -27-

2.4.3.1 QoS Monitoring

QoS monitoring allows each level of the system to track the ongoing QoS levels

achieved by the lower layer. It often plays an integral part in a QoS maintenance (see

2.4.3.2) feedback loop which maintains the quality of service being achieved by the

monitored resource modules. Monitoring algorithms operate over different timescales. For

example, they can run as part of the scheduler (as a QoS control mechanism) to measure

individual performance of on-going flows at the transport packet level or as part of the flow

shaper which monitors cells injected into the network. In this case measured statistics can

be used to control packet scheduling and flow shaping (which may include cell discard

actions) and for admission control. Another use of flow monitoring is determining the

playout time of media at a delivery device in the face jitter - this is particularly pertinent for

adaptive applications. Alternatively, they can operate as part of a transport level feedback

mechanism [Campbell,92b].

2.4.3.2 QoS Maintenance

QoS maintenance compares the monitored quality of service against the expected

performance and then exerts a tuning operation (i.e., fine or coarse grain resource

adjustments) on resource modules to sustain the delivered QoS. Fine grain resource

adjustment counters QoS degradation by adjusting QoS modules (e.g., loss via the buffer

manager, queueing delays via the flow scheduler and throughput via the flow regulator

[Campbell,93a]) or remote resource to uphold the desired performance.

2.4.3.3 QoS Degradation

QoS degradation issues QoS indications (i.e., event QoS Signal) to the users when it

determines that the lower layers have failed to maintain the QoS of the flows and nothing

further can be done by the maintenance QoS mechanism. In response to such indications,

the user can choose either to adapt to the available level of service or scale to a new reduced

level of service (i.e., initiate an end-to-end renegotiation which is also known as QoS

scaling).

 -28-

2.4.3.4 QoS Signalling

QoS signalling allows the user to specify the interval over which one or more QoS

parameters (e.g., delay, jitter, bandwidth, loss, synchronisation) can be monitored and the

user is informed of the delivered performance (via a QoS signal) at the end of interval. Both

single and multiple QoS signals can be selected depending on whether the user requested

QoS management policy. Measured performance metrics are particularly useful in the case

of adaptive applications, e.g., adaptive video applications operating over best effort

networks as in the case of vic [McCanne,94] over today's best effort Internet.

2.4.3.5 QoS Scaling

QoS scaling is comprised of QoS filtering (which manipulates flows as they progress

through the communications system) and QoS adaptation (which scales flows at the end-

systems only) mechanisms. Many continuous media applications exhibit robustness in

adapting to fluctuations in end-to-end quality of service. Based on the user supplied QoS

management policy, QoS adaptation in the end-systems can take remedial actions to scale

flows intelligently; to either adapt to the available resource or scale to lower levels of

service.

Resolving heterogeneous quality of service issues is a particularly acute problem in the

case of multicast flows. Here individual receivers may have differing capabilities to

consume audio-visual flows; QoS filtering helps to bridge this heterogeneity gap (i.e.,

communication capability mismatch) while simultaneously meeting individual receivers'

quality of service requirements.

2.4. Summary

In this chapter the importance of QoS control, maintenance and management in

distributed systems has been indicated. It has been shown how these functions could be

used as building blocks for future QoS frameworks appropriate for the new environment -

that is, distributed multimedia applications operating over high-speed, QoS configurable

networks.

The fundamental modules which underpin thinking on end-to-end QoS have been

described and the terminology, principles and concepts which will used as a basis for

developing a QoS-A for continuous media communications have been introduced.

 -29-

Furthermore, the important notions of flow and QoS specification have been introduced as

concepts key to capturing, requesting and negotiating end-to-end QoS.

 -30-

Chapter 3

State of the Art in Quality of
Service Research

This chapter assesses the state of the art in quality of service research in distributed

multimedia systems. The approach taken is, first, to present work on QoS in standards

focusing on the work of the IETF, ATM Forum and ISO, respectively. It is the intention of

this thesis to build on the discussion of QoS presented in Chapter 1 by providing details on

the type of QoS specification, QoS commitment and service models being advocated by the

various standards bodies. Next, the current layer specific QoS research - considering the

distributed systems platform, operating system, transport and network layers - is

reviewed. Finally, the work on integrated approaches to QoS provision in system

architectures is highlighted by describing several relevant architectures that have emerged

recently from the computer communications and telecommunications communities.

3.1 QoS in Standards

Because the effects of the new technological and application environments discussed in

Chapter 1 are just beginning to have an impact, it is not surprising that current network

architectures fail to address comprehensively the need for QoS support for distributed

multimedia applications operating over high-speed networks. To give an impression of the

degree of QoS support in present-day systems, this section reviews the OSI reference

model, the ATM Forum's networking recommendations and the int-serv working proposed

draft standards. Some of this work is still in the early stages of development (e.g., the int-

serv working documents are not at present ratified as accepted standards). The int-serv

model, OSI reference model and ATM Forum's service model are highlighted as the most

prominent of the currently standardised network architectures.

 -31-

3.1.1 Open Systems Interconnection

The ISO has developed a set of standards for computer communications in the form of

the seven-layer OSI reference model and these standards are now mature and widely

implemented. However, the OSI reference model evolved in an environment of data-only

applications running over low-speed networks and the QoS support provided by the OSI

reference model reflects the limited QoS requirements of this class of applications.

Parameter Description

Throughput The maximum number of bytes, contained in Service Data Units (SDUs)

that may be successfully transferred in unit time by the service provider

over the connection on a sustained basis.

Transit delay The time delay between the issuing of a data.request and the

corresponding data.indication. The parameter is usually specified as a pair

of values, a statistical average and a maximum. Those data transfers where

a receiving service user exercises flow control are excluded. The

computations are all based on SDUs of a fixed size.

Residual error rate The probability that an SDU is transferred with error, or that it is lost, or

that a duplicate copy is transferred.

Establishment delay The delay between the issuing connect.request and the corresponding

connect.confirm.

Establishment failure

probability

The probability that a requested connection is not established within the

specified maximum acceptable establishment delay as a consequence of

actions that are solely attributable to the service provider.

Transfer failure

probability

The probability that the observed performance with respect to transit

delay, residual error rate or throughput will be worse than the specified

level of performance. The failure probability is, as such, specified for each

measure of performance of data transfer discussed above.

Resilience The probability that a service provider will, on its own, release the

connection, or reset it, within a specified interval of time.

 -32-

Release delay The maximum delay between the issuing of a disconnect.request primitive

by the service user and a corresponding disconnect.indication primitive

issued by the service provider.

Release Failure

Probability

The probability that the service provider is unable to release the connection

within a specified maximum release delay.

Figure 3.1: OSI Performance-oriented QoS Parameters (dimensions)

QoS support in the OSI reference model is limited to statically defined parameters

intended to be supported at the session and transport layers. To enable applications to

access QoS facilities, the OSI upper layers (application and presentation layers) simply map

QoS dimensions (parameters) through to the lower layers unchanged. At the transport

layer, QoS parameters relate to each of the phases of the session; that is, connection

establishment, data transfer (aka media transfer in the new environment) and connection

release.

Parameter Description

Protection The extent to which a service provider attempts to prevent unauthorised

monitoring or manipulation of user data. The level of protection is

specified qualitatively by selecting either (i) no protection; (ii) protection

against passive monitoring; (iii) protection against modification, addition

or deletion, or (iv) a combination of (i) and (ii).

Priority High-priority connections are serviced before lower ones. Lower- priority

connection packets will be dropped before high-priority packets should the

network become congested.

Cost determinants A parameter to define the maximum acceptable cost for a network

connection. It may be stated in relative or absolute terms. Final actions on

this parameter are left to the specific network providers.

Figure 3.2: OSI Non-performance-oriented QoS Parameters

The parameters are also classified as either performance-oriented or non-performance-

oriented. Non-performance-oriented parameters do not directly affect the performance of

 -33-

the communications but are concerned with protection, priority and cost QoS categories.

The complete set of parameters together with their interpretations is presented in figure 3.1

which lists the performance-oriented parameters and in figure 3.2 which lists the non-

performance-oriented parameters.

3.1.2 ITU-TS and ATM Forum

The ITU-TS and later the ATM Forum recognised the need for QoS configurability in

the emerging standards for B-ISDN which are to be based on ATM networking technology.

As a result of this recognition, the ITU-TS issued a series of draft recommendations,

known as the I-series recommendations, and ATM Forum a set of interim standards which

define a fairly comprehensive set of QoS parameters (which the ATM Forum describes as

QoS attributes) at the ATM and Adaptation layers. QoS characterisation in ATM networks

is applicable at three different levels. The call control and connection levels are concerned

with the establishment (i.e., QoS provision) and release of calls and the allocation of

resources along a path of ATM switch nodes. The cell control level is concerned with the

media transfer phase itself.

The list of QoS attributes in figure 3.1 is comprehensive. It is intended to allow traffic

(flows) to be characterised in advance so that the network resource management function

(i.e., signalling protocols) can allocate resources to support the desired traffic patterns. The

QoS attributes are also used as a baseline to police the traffic inserted at the network by the

user to ensure that the user does not attempt to inject media into the network at a higher QoS

than previously agreed to. It is also intended to use these parameters to support QoS

renegotiation (known as in-call renegotiation). Renegotiation of connection QoS has not as

yet been approved by the ATM standards bodies.

Parameter Description

peak cell rate (PCR) The maximum instantaneous rate at which the user can transmit. For

bursty traffic the inter-cell interval and the cell rate varies considerably.

The PCR is the inverse of the minimum inter-cell interval.

sustained cell rate

(SCR)

This is the average rate measured over a long time interval.

 -34-

cell loss ratio The percentage of cells that are lost in the network because of error or

congestion and are not delivered to the receiver.

cell transfer delay

(CTD)

The delay experienced by a cell between network entry and exit points is

called the cell transfer delay. This includes the propagation delays,

queueing delays at the various intermediate switches and service times at

queueing points.

cell delay variation

(CDV)

This is a measure of variance of CTD. High variation implies large

buffering for delay sensitive traffic such as voice and video.

burst tolerance (BT) This determines the maximum burst size that can be sent at the peak rate.

This is a bucket size parameter for a leaky bucket algorithm. This is also a

product of the maximum burst size (MBS).

minimum cell rate

(MCR)

This is the minimal rate desired by the application.

Figure 3.3: ATM Forum UNI 4.0 and PNNI QoS Attributes

The ATM Forum's UNI 4.0 [ATMF,95a] includes a traffic contract that provides an

indication for the traffic class selected by the user in addition to an associated list of QoS

attributes. Figure 3.3 illustrates the complete list of QoS attributes. Not all QoS attributes

apply to each of the service classes. Figure 3.4 indicates the QoS attributes that are used for

each of the service classes. The set of service classes currently specified by the ATM

Forum and ITU-TS includes:

• Constant Bit Rate (CBR) which emulates a leased line and is suitable for real-time

applications which generate constant bit rate flows. The service is essentially circuit

emulation and for applications which need a strong bound on delay and jitter;

• Variable Bit Rate (VBR) which allows applications to send at a variable rate is

sub-divided into two categories: real-time VBR and non-real-time (NRT) VBR. The

major difference between the two categories is that while CTD is applicable to both

categories, CDV is only meaningful for real-time (RT) VBR;

• Available Bit Rate (ABR) primarily designed for data but is also considered by

many to be appropriate for continuous media as well. Depending on the congestion

 -35-

state of the network, the source is obliged to control its rate using a feedback

mechanism; and

• Unspecified Bit Rate (UBR) this approximates the best effort service offered by

today's Internet. UBR is designed for those applications that desire the use of any

left over resources and are insensitive to cell loss and delay variation.

QoS Attribute ATM Layer Service Categories

CBR VBR (RT) VBR (NRT) ABR UBR

CLR for CLP = 0 specified specified unspecified

CLR for CLP = 1 optional specified unspecified

CTD specified specified unspecified unspecified

CDV specified unspecified unspecified unspecified

PCR and CDVT specified specified specified

SCR and BT n/a specified not applicable

MCR not applicable specified n/a

Control Information not applicable yes n/a

Figure 3.4: ATM Layer Service Categories and QoS Attributes

3.1.3 IETF int-serv and RSVP Groups

The IETF int-serv [Braden,94] and RSVP working groups [Zhang,95] are the primary

generators of solutions to the end-to-end QoS problem stated in Chapter 1. While the int-

serv charter broadly covers the definition of services and mechanisms to support end-to-end

QoS, in an internetwork the work of RSVP is solely focused on the design, implementation

and integration of a new reservation signalling protocol called RSVP. The two work items

are crucial to the advancement of multimedia services in the Internet.

Work by the int-serv group (which is outlined in Chapter 1) has included the definition

of a QoS framework used to specify the functionality of internetwork system components

(called 'elements') which support the multiple, dynamically selectable qualities of service to

 -36-

applications in an internetwork. The behaviour of elements such as routers, subnetworks

and end-system operating systems is captured as a set of services some or all of which are

offered by each element. Each element is QoS-aware and supports interfaces required by

the service definition [Shenker,95]. The concatenation of these services along an end-to-

end media path used by an application provides an overall statement of end-to-end QoS.

The following int-serv services are offered in addition to the current best effort service:

• controlled delay [Shenker,95b], which tries to provide several levels of delay

which the application can choose between;

• predicted delay [Shenker,95b], which provides a statistical delay bound similar to

the Tenet Group's statistical service [Ferrari,92] and the Comet Groups guaranteed

service [Lazar,90];

• guaranteed delay [Shenker,95b], which provides an absolute guaranteed delay

bound.

Each service definition also specifies QoS parameters used to invoke the service. The

current set of defined services are appropriate for a wide range of multimedia flows and

data applications. While the definition emphasises the 'network' element the framework in

its full generality is as applicable in the end-system as the network. The goal of the int-serv

group is to focus on the network, in the first instance, then the end-system.

Flows are characterised by two specifications: (i) a traffic specification (TSpec), which

is a specification of the traffic pattern which a flow expects to exhibit. An example of this

specification might take the form of the flow's bandwidth and burstiness specified by a

token bucket [Partridge,92]; and (ii) a service request specification (RSpec), which is a

specification of the quality of service a flow desires from a network element and the form

which is highly specific to a particular service. An example of this specification might take

the form of representing the maximum tolerable delay. In the case of the guaranteed delay

service outlined above, the service is invoked specifying the traffic (TSpec) and the desired

service (RSpec). The TSpec takes the form of a token bucket, with a bucket depth (b) and

bucket rate (r). The RSpec is a rate (R), where R must be greater than or equal to r. Traffic

specifications are most frequently created by the originator of the data flow. In contrast,

service request specifications may originate from either the sender or receiver of a flow.

The integrated service model is restricted to the network in the first instance and

comprises four components:

 -37-

i) a packet scheduler, which forwards packet streams using a set of queues and

timers;

ii) a classifier, which maps each incoming packet into a set of QoS classes;

iii) an admission controller, which implements the admission control algorithm to

determine whether a new flow can be admitted or denied; and

iv) a reservation setup protocol (e.g., RSVP [Zhang,93]), which is necessary to

create and maintain the flow-specific state in the routers along the path of the flow.

3.1.4 Assessment

The current OSI service definitions do not provide for the specification of a range of

QoS dimensions including jitter, criticality and cost. In addition, there is no support for

QoS monitoring or interface for renegotiation. The precise semantics of responsibilities and

guarantees are not clear. More limiting is the fact that at the protocol level there is no notion

of QoS management in terms of QoS negotiation, mapping, resource allocation, and QoS

maintenance. It is assumed that the underlying network provider will support the requested

QoS levels.

The ATM Forum recommendations are comprehensive and include a detailed traffic

characterisation model in terms of ATM service categories and associated QoS attributes.

The ATM service model characterises a flow by traffic type (based on the ATM service

categories) and a set of QoS parameters (based on the ATM QoS attributes) which are

subsumed in a traffic contract. This approach eliminates the need for QoS classes in UNI

3.0. At present each virtual connection has a traffic contract associated with it. The major

service-related limitation here is the lack of consideration of how traffic characterisation at

the ATM layer can be derived from user QoS needs at the transport layer and above. And

how applications level QoS requirements are mapped to the current set of categories and

QoS attributes. Below the service interface, the current state of ATM standardisation suffers

from a comparable lack of QoS management support to that found in the OSI field.

There are a number of similarities in the approach of the ATM Forum and IETF in

meeting QoS communications requirements. Both groups while approaching the QoS-

problem from different perspectives (vis-a-vis hard state and soft state approaches of the

Forum and IETF, respectively) have complementary approaches to the specification of

 -38-

flows. As noted by Borden et al. [Borden,95], within the Internet Community it is assumed

that traffic characterisation (TSpec) will, in general, be bursty and that bursty traffic can be

modelled by a token bucket. While ATM does not assume all traffic to be bursty, it uses an

equivalent formulation for QoS characterisations of traffic as the Internet Community. This

is referred to as the Generic Cell Rate Algorithm (GCRA) in UNI 4.0 [ATMF,95a].

Interworking between the services classes of the ATM Forum and IETF affords less

flexibility.

3.2 Layer-Specific QoS

In this section, layer-specific quality of service research (from non-standards

organisations) is reviewed. The distributed systems platform, operating system and

transport and network layers are considered.

3.2.1 Distributed Systems Platform

There has been considerable research in the area of distributed systems platforms over

the past ten years [Mullender,93]. Until recently, however, there has been very little work

on quality of service support in such platforms. With the emergence of distributed

multimedia applications, however, quality of service has become a major issue in

distributed systems research. In a distributed system, there are three areas where quality of

service is applicable: i) message passing services, which allow the programmer to explicitly

send a message between two or more processes in a distributed system; ii) remote

invocation, which allows operations in a server process to be invoked by a client process

[APM,91]; and iii) stream services, which are connections that support the transmission of

continuous media flows [ODP,92]. A number of experimental QoS-driven distributed

systems platforms are now beginning to emerge. Researchers at Lancaster University have

developed an extended version of ANSAware [APM,91] featuring bounded invocations

and QoS-controlled streams [Coulson,92]. Similar work has also been undertaken at

Cambridge University [Nicolaou,90]. More recently, research on quality of service has

centered on ODP standardisation. Ongoing research programs at CNET [Hazard,93], and

BBN and Rome Labs [Zinky,95] are developing new languages to specify QoS for both

operational and stream interface. The CNET work uses QoS logic statements in the

 -39-

language to generate quality of service monitors. The BBN and Rome Lab research

promotes object level QoS specification (i.e., methods per second) and not at the

communication level (i.e., bits per second). Both approaches allow quality of service to be

negotiated, measured and enforced. For full details on the state of the art in distributed

systems support for quality of service see [Vogel,94].

3.2.2 Operating Systems

There has been considerable progress in operating systems support for quality of

service with most progress having been made in the specific areas of communication

protocols [Feldmeier,93] and scheduling [Govindan,91]. There has been considerably less

work on the integration of the various components into an overall operating system

[Coulson,95]. Communication protocol implementation involves predictability issues such

as the need for correct scheduling of protocol activities and efficiency issues such as

minimisation of data copying, system calls, interrupt handling and context scheduling, an

avoidance of multiplexing, the use of hardware assists for protocol processing and the

importance of executing protocol code in a schedulable process rather than as a interrupt

service routine. Much of the work has looked to maintain a level of compatibility with the

de facto UNIX interface. Two main approaches can be identified: i) modifying existing

UNIX implementations, and ii) completely re-implementing UNIX. In the first approach,

alterations are made to the existing UNIX kernel to provide more predictable behaviour.

Hanko [Hanko,91] describes a proposal for time-driven resource management which

allows applications to signal their likely forthcoming resource requirements in terms of QoS

parameters such as quantity deadline and priority. The system will not attempt to guarantee

performance, but instead will bias available resources in the requested directions and

concentrate on degradation of service, optionally accompanied by notification of

degradation to the effected process. The second approach is to re-implement UNIX in terms

of the micro-kernel model. Examples of micro-kernels capable of supporting UNIX

interfaces are Chorus, Mach and Amoeba. Work has been undertaken at CWI, Amsterdam

to support continuous media in an Amoeba-based UNIX environment [Bulterman,91].

Other significant work is being carried out using Mach [Tokuda,93], Chorus [Coulson,95],

Peagus [Leslie,93] and YARTOS [Jeffay,93] (and its rate-based extensions [Jeffay,93]) as

the basis of a distributed system with end-to-end QoS support for continuous media. In the

area of device management several research groups have suggested a new architecture for

 -40-

multimedia systems in which multimedia devices that typically reside on the workstation I/O

bus are placed on a high-speed ATM network. These architectures are typically referred to

as Desk Area Network (DANs) [Hayter,91] [Tennenhouse,94]. It is still too early to

determine what, if any, new requirements DAN architecture places on future operating

system design [McAuley,94]. For full details on the state of the art in operating systems

support for quality of service see [Hutchison,94].

3.2.3 Transport Layer

A number of research teams have investigated the provision of quality of service at the

transport layer. Early work specifically addressed the provision of rate based protocols over

high speed networks, e.g., XTP [Chesson,88] and NetBlt [Clark,87]. More recently

protocols have emerged which are designed specifically to meet the needs of continuous

media. The Esprit OSI 95 project proposed an enhanced transport service and protocol

called TPX [Danthine,92]. TPX provides support for connection-oriented services with

sequenced delivery, QoS configurable and re-negotiable QoS and error notification. The

enhanced connection-oriented service takes QoS parameters relating to throughput, delay,

delay jitter, error selection policy and relative priority. Three transport quality of service

semantics in addition to “best effort” are proposed for this service: compulsory, threshold

and maximal QoS. The Tenet Group at the University of California at Berkeley has

developed CMTP[Wolfinger,91] which operates on top of RTIP [Ferrari,95] and provides

sequenced and periodic delivery of continuous media samples with QoS control over

throughput, delays and error bounds. Notification of all undelivered and/or corrupted data

can be provided if the client selects this option. The HeiTS project [Hehmann,91] at IBM

Heidelberg has developed a transport system which has concentrated on the integration of

transport QoS and resource management (primarily CPU scheduling). HeiTS places

emphasis on an optimised buffer pool which minimises copying and also allows efficient

data transfer between local devices. Other significant work has come from Schulzrinne,

Casener and Van Jacobson who have developed RTP [Schulzrinne,95] for the Internet suite

of multimedia tools [Kanakia,93]. Other work [Campbell,92] reports on the development

of a continuous media transport and orchestration service. For a full review of the state of

the art in transport protocols and services see [Feldmeier,93] [Doeringer,90].

 -41-

3.2.4 Network Layer

The subject of providing quality of service guarantees in integrated service networks

has been widely covered in the literature [Keshav,93]. The multimedia networking

community has developed sophisticated traffic models, control and management

architectures for multimedia communications. Extensive work has considered flow

specification, flow admission control, resource reservation, traffic shaping and queue

management schemes. For researchers working on multimedia networking, the primary aim

has been to provide performance bounds while exploiting statistical multiplexing of bursty

sources to efficiently utilise bandwidth. Kurose [Kurose,93] provides a categorisation of

the different approaches used in providing QoS guarantees found in the literature: (i) a

tightly controlled approach, which is based on non-work conserving multiplexing service

(queueing) disciplines (e.g., stop-and-go [Golestani,90] and Tenet’s EDD [Ferrari,90])

which preserves the traffic shape guaranteeing the delivered flow characteristics are the

same as the source; (ii) an approximate approach, which as its names suggests is based on a

simple characterisation of the source model (e.g., equivalent capacity [Guerin,91]) and

which can provide approximate guarantees using simple service disciplines such as FIFO

taking advantage of statistical multiplexing gain; (iii) a bounding approach, which takes into

account any distortion of the flow as it traverses work-conserving multiplexors (e.g.,

packetised generalised processor sharing [Parekh,93] and weighted fair queueing

[Keshav,91]) resulting in mathematically provable performance bounds for statistical and

deterministic service guarantees [Cruz,91]; and finally (iv) an observation-based approach,

which uses measured behaviour (e.g., COMET’s approach [Hyman,90] and Clark’s

predictive service [Clark,92]) of the aggregate traffic and the user supplied flow

specification when making admission decisions.

The work on an integrated services Internet [Braden,94] is a significant contribution to

providing QoS guarantees on a per-flow basis. The integrated service model is comprised

of four components: (i) a packet scheduler, which is based on the CSZ scheduler

[Clark,92] and Class Based Queueing (CBQ) [Floyd,93], which forwards packet streams

using a set of queues and timers; (ii) a classifier, which maps each incoming packet into a

set of QoS classes (iii) an admission controller, which implements the decision control

algorithm to determine whether a new flow can be admitted or denied and; (iv) a reservation

setup protocol, which is necessary to create and maintain flow-specific state in the end-

systems and in routers along the path of the flow. There have been a number of significant

 -42-

contributions to reservation protocols in communication networks which have emerged

over the past few years: ST-II [Topolcic,90] and SRP [Anderson,91], and more recently

RSVP [Zhang,93], RCAP [Banerjea,91] and HieRAT [Volg,95] and UNI 4.0 [ATMF,95].

For a full review of the state of the art in network support for QoS see [Keshav,93]

[Kurose,93].

3.3 Emerging QoS Architectures

Until recently, research in providing QoS guarantees has mainly focused on network

oriented traffic models and service scheduling disciplines. These guarantees are not,

however, end-to-end in nature, rather they preserve QoS guarantees only between network

access points to which end-systems are attached [Gopalakrishna,94]. Work on QoS-driven

end-system architecture must be integrated with network configurable QoS services and

protocols to meet application-to-application requirements [Campbell,92]. In recognition of

this, researchers have recently proposed new communication architectures which are

broader in scope and cover both network and end-system domains. This section reviews a

number of distinct approaches which have recently emerged in the literature and which are

born out of the Telecommunications, Computer Communications and Standards

communities:

• Extended Integrated Reference Model (XRM), which is being developed at

Columbia University;

• OSI QoS Framework, which is being developed by the ISO SC21 QoS Working

Group;

• OMEGA Architecture, which is being developed at the University of

Pennsylvania;

• Heidelberg QoS Model, which is being developed at IBM’s European Networking

Center;

• Tenet Architecture, which is being developed at the University of California at

Berkeley;

• End System QoS Framework, which is being developed at Washington

University;

 -43-

• IETF QoS Manager (QM), which is being developed by the int-serv group as part

of its strategy for an integrated services Internet;

• TINA QoS Framework, which is being developed by the TINA Consortium; and

• MASI End-to-End Architecture, which is being developed at Université Pierre et

Marie Curie.

In addition to examining the work above, section 3.3.10 outlines other QoS

frameworks reported in the literature.

3.3.1 The Columbia University Extended Integrated Reference Model

The COMET group at Columbia University (New York) is currently developing an

Extended Integrated Reference Model (XRM) [Lazar,94] as a modeling framework for

control and management of multimedia telecommunications networks (which comprise

multimedia computing platforms and broadband networks). The COMET group argues that

the foundations for operability (i.e., control and management) of multimedia computing and

networking devices are equivalent; both classes of devices can be modeled as producers,

consumers and processors of media. COMET organises the XRM into five distinct planes

as illustrated in figure 3.5:

i) management function, which resides in the network management plane (N-plane),

covers the OSI functional areas of network and system management;

ii) traffic control function, which comprises the resource control (M-plane) and

connection management and control (C-plane) planes. Resource control constitutes

cell scheduling, call admission, call routing in the network, process scheduling,

memory management, routing, admission control and flow control in the end-

systems;

iii) information transport function, which is located in the user transport plane (U-

plane), models the media protocols and entities for the transport of user information

in both the network and the end-systems; and

iv) telebase, which resides in the data abstraction and management plane (D-plane),

collectively represents the information data abstractions existing in the network and

end-systems. The telebase implements the principles of data sharing (via

 -44-

asynchronous resource management) among all other XRM planes.

The subdivision of XRM into different planes is motivated by a number of QoS

principles: the separation and layering principles [Lazar,92] and the asynchronous resource

management principle [Lazar,92]. The subdivision between the management and traffic

control functions, on one hand, and the information transport functions on the other, is

based on the principle of separation between control and communication. The separation

between management and traffic control is due to the different timescales on which these

planes operate. This is, in turn, motivated by the asynchronous resource management

principle.

 media protocols

node

node

agent

agent
manager

user access protocols

management

node

node

user information
transport and

connection
management
and binding

data abstraction
and management

resource
control

network and

agent

agent

protocol

telebase

Management
systems

computing

N-plane

M-plane

D-plane

C-plane

U-plane

broadband Networking multimedia Computing

Figure 3.5: The Columbia University XRM

The XRM is built on theoretical work guaranteeing QoS requirements in ATM networks

and end-systems populated with multimedia devices. General concepts for characterising

the capacity of network [Hyman,92] and end-system [Lazar,94] devices (e.g., disks,

switches) have been developed. At the network layer, XRM characterises the capacity

region of an ATM multiplexer with QoS guarantees as a scheduleable region. Network

 -45-

resources such as switching bandwidth and link capacity are allocated based on four cell-

level traffic classes (Class I, II, III, and C) for circuit emulation, voice and video, data, and

network management, respectively. A traffic class is characterised by its statistical

properties and QoS requirements. Typically QoS requirements reflect cell loss and delay

constraints. In order to efficiently satisfy the QoS requirements of the cell level, scheduling

and buffer management algorithms dynamically allocate communication bandwidth and

buffer space appropriately.

The scheduleable region represents the multidimensional capacity of the multiplexer; its

dimensionality depends on the number of traffic classes and represents the stability region.

The scheduleable region is a resource abstraction that allows a separation of times scales:

the time scales of cells and the time scale of call arrivals and departures. In [Hyman,92] it is

shown how separation of time scales is an appropriate tool for resolving admission control

decisions. Based on a calculus of scheduleable regions, the QoS in the network can be

guaranteed. The three traffic classes in figure 3.6 correspond to video, voice and data

flows. Class I traffic is characterised by a frame duration of 62.5 ms and a peak rate of 10

Mbps, Class II traffic is modelled as an on-off source with constant arrivals with an

exponentially distributed active period and 64 Kbps peak rate, and Class III traffic is

modeled as a Poisson source with 1 Mbps average rate. The surface depicted in figure 3.6

delimits the capacity region of the multiplexer. Any combination in the number of calls

(i.e., active flows) below this surface has its QoS guaranteed.

XRM models the end-system architecture as a multiprocessor based multimedia

workstation, comprised of the following multimedia devices: (i) an audio and video unit,

which is responsible for multimedia processing, and supports media processing tasks in a

deterministic manner, and runs on a dedicated processor(s); (ii) an input/output subsystem

is similarly modeled, separately through a disk storage unit, and is also run on a separate

processor(s); (iii) a main processor unit runs the system tasks, both to increase speed and to

remove external interrupts, as well as the other operating system overhead associated with

application tasks. In the end-system, flow requirements are modeled through service class

specifications with QoS constraints. For example, in the audio video unit the service class

specification is in terms of JPEG, MPEG-I, MPEG-II video and CD audio quality flows

with QoS guarantees. Quality of service for these classes is specified by a set of frame

delay and loss constraints. The methodology of characterising network resources is

extended to the end-system to represent the capacity of multimedia devices. Using the

 -46-

concept of a multimedia capacity region the problem of scheduling flows in the end-system

becomes identical to the real-time bin packing exercise of the network layer. One significant

difference between the scheduleable region and the multimedia capacity region is the

number of classes supported. The number of service classes at the user level is expected to

far exceed the number of traffic classes at the multiplexer. A number of service classes,

however, can be mapped onto a single traffic class of the multiplexer, and therefore, the

support of a large number of service classes will not require an increase in the number of

traffic classes.

Figure 3.6 Scheduleable Region

The implementation of XRM including key resource abstractions such as the

scheduleable and multimedia capacity region is currently being realised as part of a binding

architecture [Lazar,94]. The binding architecture achieves seamless binding between

networking and multimedia devices. The building blocks of the architecture consist of a set

of interfaces, methods and primitives. The former abstracts the functionalities of multimedia

networking devices and organises them into a binding interface base (BIB). The methods

and primitives are invoked for implementing binding applications. Communication between

the interfaces of the architecture is supported by OMG’s CORBA [OMG,93]. Binding

requirements arise in each of the planes of the XRM. Dynamic binding requirements,

however, are particularly demanding in the C and M planes of the XRM. The binding

architecture resides in the M, D and C-planes of the XRM. Specifically, the binding

interface base resides in the D-plane and the binding algorithms execute from within the M

and C-planes. The binding architecture represents a software environment on top of which

binding applications execute. Examples of binding applications arise in connection set up

for broadband networks, distributed systems implementing flow synchronisation protocols,

 -47-

resource allocation protocol such as those intended for the Internet [Zhang,93], multimedia

computing platforms, etc. New binding applications can be added without changing the

underlying binding architecture.

3.3.2 The OSI QoS Framework

One early contribution to the field of QoS-driven architecture is the OSI QoS

Framework [ISO,95a] which concentrates primarily on quality of service support for OSI

communications [Sluman,91]. The OSI framework broadly defines terminology and

concepts for QoS and provides a model which identifies objects of interest to QoS in open

system standards. The QoS associated with objects and their interactions is described

through the definition of a set of QoS characteristics.

The key QoS framework concepts include:

• QoS requirements, which are realised through QoS management and maintenance

entities;

• QoS characteristics, which are a description of the fundamental measures of QoS

that need to be managed in the communication system;

• QoS categories, which represent a policy governing a group of QoS requirements

specific to a particular environment such as time-critical communications; and

• QoS management functions, which can be combined in various ways and applied

to various QoS characteristics in order to meet QoS requirements.

The OSI QoS framework (illustrated in figure 3.7) is made up of two types of

management entity that attempt to meet the QoS requirements by monitoring, maintaining

and controlling end-to-end QoS.

Layer-specific entities: The task of the policy control function is to determine the policy

which applies at a specific layer of the open system. The policy control function models any

priority actions that must be performed to control the operation of the layer. The definition

of a particular policy is layer-specific and therefore cannot be generalised. Policy may,

however, include aspects of security, time-critical communications and resource control.

The role of the QoS control function is to determine, select and configure the appropriate

protocol entities to meet layer-specific QoS goals.

 -48-

System-wide entities: The system management agent is used in conjunction with OSI

systems management protocols to enable system resources to be remotely managed. The

local resource manager represents end-system control of resources. The system QoS

control function combines two system-wide capabilities: to tune performance of protocol

entities and to modify the capability of remote systems via OSI systems management. The

OSI systems management interface is supported by the systems management manager

which provides a standard interface to monitor, control and manage end-systems. The

system policy control function interacts with each layer-specific policy control function to

provide an overall selection of QoS functions and facilities.

(N)-QCF (N)-PE

CMIP

SMA

SQCF

RM

SMM

SPCF
(N)-service user

(N-1)-service provider

(N)-subsystem

Layer QoS entities
 PCF = Policy Control Function
 QCF = QoS Control Function
 PE = Protocol Entity
System QoS entities
 SPCF = System Policy Control Function
 RM = Resource Manager
 SQCF = System QoS Control Function
 SMA = System Management Agent
 SMM = System Management Manager

(N)-PCF

Figure 3.7 OSI QoS Framework

3.3.3 The Pennsylvania University OMEGA Architecture

During the last three years the University of Pennsylvania has been developing an end-

point architecture called the OMEGA architecture [Nahrstedt,95c]. OMEGA is the result of

 -49-

an interdisciplinary research effort examining the relationship between application QoS

requirements (which make stringent resource demands) and the ability of local (the

operating system) and global resource management (combining communication and

remotely managed resources) to satisfy these demands. The OMEGA architecture assumes

a network subsystem that provides bounds on delay, errors and can meet bandwidth

demands and an operating system which is capable of providing run time QoS guarantees.

The essence of the OMEGA architecture is resource reservation and management of end-to-

end resources. Communications is preceded by a call setup phase where application

requirements, expressed in terms of QoS parameters, are negotiated, and guarantees are

made at several logical levels, such as between applications and the network subsystem,

applications and the operating system, network subsystem and operating system. This

establishes customised connections and results in the allocation of resources appropriate to

meet application requirements and operating system/ network capabilities.

real-time
application

protocol
(RTAP)

real-time
network
protocol
(RTNP)

call
managment

connection
managment

Q
oS

 b
ro

ke
r

ap
pl

ic
at

io
n

su
bs

ys
te

m
tr

an
sp

or
t

su
bs

ys
te

m

Figure 3.8: OMEGA Communication Model

To facilitate this resource management process the University of Pennsylvania has also

developed a brokerage model [Nahrstedt,95a] which incorporates QoS translation and QoS

negotiation and renegotiation (see [Vogel,94] for full details on similar work on QoS

negotiation protocol at University of Montreal).The notion of eras is introduced in

[Nahrstedt,93] to describe variations in QoS parameters for complex, long-lived

applications. Negotiation and renegotiation provide a mechanism to signal variations in QoS

performance parameters at the user–network interface. They are invoked at era boundaries

and can aid resource allocation. In the model, application requirements and network

resource allocation are expressed in fundamentally different terms and languages. A key

part of the model, called a QoS Broker [Nahrstedt,95a] is responsible for the translation of

QoS at the user–network interface. More recent work has addressed operating system

issues such as admission control for guaranteed QoS [Nahrstedt,94] see also

 -50-

[Nahrstedt,95b] for a comprehensive survey of resource management issues in networked

multimedia

The OMEGA architecture is partitioned into distributed and local components:

communications model and a resource model at the end-points. The communication system

is modeled as a two layer system as illustrated in Figure 3.8. The transport subsystem layer

is based on the performance principle (integrated layer processing). Functions such as

connection management, forward error correction, timing failure detection and timely data

movement form the core of the Real-Time Network Protocol. The application subsystem

layer contains the functions of the application and session layers such as call management,

rate control of multimedia devices, input/output functions (e.g., display of video),

fragmentation and reassembly of application data units. These functions are the core of the

Real-Time Application Protocol. (RTAP). Both subsystems must provide QoS guaranteed

services over specified calls/connections for applications. Therefore, they require

guarantees on the resources needed for communications. Resource guarantees are

negotiated during call establishment by the QoS Broker protocol [Nahrstedt,95a] which is

present in both the application and transport subsystems. For full details of the

communication and resource models see [Nahrstedt,95d].

3.3.4 The Heidelberg QoS Model

The HeiProject at IBM’s European Networking Center in Heidelberg have developed a

comprehensive QoS model which provides guarantees in the end-systems and network

[Volg,92]. The communications architecture includes a continuous media transport system

(HeiTS/TP) [Hehmann,91] which provides QoS mapping and media scaling [Delgrossi,93]

as illustrated in figure 3.9. Underlying the transport is an internetworking layer based on

ST-II which supports both guaranteed and statistical levels of service. In addition, the

network supports QoS-based routing (via a QoS finder algorithm) and QoS filtering. Key

to providing end-to-end guarantees is HieRAT (resource administration technique), based

on initial work in [Anderson,91]. HeiRAT comprises a comprehensive QoS management

scheme which includes QoS negotiation, QoS calculation, admission control and QoS

enforcement, and resource scheduling [Volg,95]. The HeiRAT scheduling policy used in

the supporting operating system is a rate-monotonic scheme whereby the priority of an

operating system thread performing protocol processing is proportional to the message rate

accepted.

 -51-

C
P

U
, m

em
or

y,
 I

O
 r

es
ou

rc
es

ne
tw

or
k

re
so

ur
ce

s

ST-II agent

media scaling

QoS finder

transport
QoS mapping

network

HeiRAT

data link
network

application
flow

QoS calculatiion
admission testing
res. reservation
QoS enforcement
res. scheduling

QoS filtering

Figure 3.9: Heidelberg QoS Model

The Heidelberg QoS model has been designed to handle heterogeneous QoS demands

from individual receivers in a multicast group and to support QoS adaptivity via flow

filtering and media scaling respectively. Media scaling and codec translation

[Schulzinne,95] at the end-systems and flow filtering [Pasquale,92] [Yeadon,94] [Volg,95]

and resource sharing [Zhang,93] [Ferrari,95] in the network are fundamental to meeting

heterogeneous QoS demands. Media scaling matches the source with the receivers’ QoS

capability by manipulating flows at the network edges. In contrast, filtering accommodates

the receivers’ QoS capability by manipulating flows at the core of the network as they

traverse bridges, switches and routers. Both schemes compensate for a variation in network

load/performance by re-scaling or filtering the delivered QoS, respectively. Potentially this

includes manipulating hierarchical flows, for example, delivering the I frames of an MPEG

encoded flow and dropping the P and B frames to match the end system or network QoS

constraints. Network level filtering looks very promising when used in conjunction with

multicast protocols for dissemination of continuous media in support of heterogeneous

receivers. Pasquale et. al [Pasquale,92] suggest that several receivers having disparate QoS

communication requirements and needing to access the same video flow simultaneously can

be supported by a propagating filter scheme which delivers the appropriate QoS to each

receiver. This scheme promotes efficient use of network resources and, as the literature

 -52-

suggests, reduces the likelihood of the onset of congestion.

3.3.5 The Tenet Architecture

The Tenet Group at the University of California at Berkeley has developed a family of

protocols [Ferrari,95] which run over an experimental wide area ATM network. The

protocol family (as illustrated in figure 3.10) includes a Real Time Channel Administration

Protocol (RCAP) [Banerjea,91] as well as Real Time Internet Protocol (RTIP) and

Continuous Media Transport Protocol (CMTP) [Wolfinger,91]. The former provides

generic connection establishment, resource reservation and signaling functions for the rest

of the protocol family. RCAP spans the transport and network layers for overall resource

reservation and flow setup. CMTP is explicitly designed for continuous media support. It is

a lightweight protocol which runs on top of RTIP and provides sequenced and periodic

delivery of continuous media samples with QoS control over throughput, delays and error

bounds. The client interface to CMTP includes facilities to specify traffic characteristics in

terms of burstiness, which is useful for variable bit rate encoding techniques, and

workahead, which allows the protocol to deliver faster than the nominal rate if data and

resources are available. The Tenet Group [Ferrari,90] makes a distinction between

deterministic and statistical guarantees for hard real-time and continuous media flows,

respectively. In the deterministic case, guarantees provide a hard bound on the performance

of all cells within a session. Statistical guarantees promise that no more than x% of packets

would experience a delay greater than specified or no more that x% of cells in a session

might be lost.

application layer
signalling

data lin
k

sig
nallin

g

rca
p

tcp udp

ip

rmtp

rtip
aal

atmdata link data link

application layer

data delivery plane

control plane

Figure 3.10: Tenet Architecture

The Tenet Architecture includes an application layer signalling protocol which spans the

 -53-

end-system and the network and provides QoS mapping between the application, transport

and network layers, translating QoS constraints at each layer into a form which is needed

by resource reservation protocols RCAP. The architecture also includes a scheme for

dynamically managing real-time channels called Dynamic Connection Management (DCM)

which supports media scaling (i.e., QoS adaptation). The motivation that underpins

dynamic connection management is to increase network availability and flexibility. The

adaptation can be initiated by the application or by the network. For full details on

modification contract and adaptation algorithms see [Ferrari,95]. Dynamic connection

management guarantees either a transition from a primary to an alternative channel without

any bound violations or a transition where a number of packets involved in a performance

violation is bounded. Recently, the Tenet Group suite of protocols has been evolving to

support multicast flows with heterogeneous QoS constraints [Ferrari,95].

3.3.6 The IETF QoS Manager

In [IETF,95] Clark introduces some early work on a Quality of Service Manager (QM)

for an integrated services Internet suite of protocols. The QM (illustrated in figure 3.11)

presents an abstract management layer designed to isolate applications from underlying

details of specific services provided in QoS-driven Internet as described earlier in section

3.1.3. One motivating factor behind the introduction of a QM is that applications can

negotiate desired QoS without needing to know the details of a specific network service; in

this case, the QM provides a degree of transparency whereby applications express desired

levels of QoS in user-oriented language rather than using communication specifics. The QM

is responsible for determining what QoS management capabilities are available on the

application's communication path and choosing the path best suited to the application.

There are a number of benefits from the migration of specific services knowledge from the

application to the QM:

• heterogeneity is supported; the QM can match application needs with the

underlying QoS capability;

• transparency is provided; applications will not need to be aware of the details of

specific QoS management capability; and

• extensibility is supported; new QoS capabilities can be more easily deployed in the

Internet because applications need not be modified as new services become

 -54-

available.

application

RTP, etc

UDP

IP

data packets control packets

RSVP, etc

dispatcher

SA SA SA

SA: service agent
quality management interface:

Figure 3.11: IETF int-serv QoS Manager

The initial thrust of the work has been to map application specific needs to one of the

new set of integrated services (e.g., [Shenker,95]) and provide support for monitoring of

performance. In the future, however, the interface between the application and QM may

cover more general issues such as cost of service as well as more technical matters such as

delay and bandwidth. In related work, Partridge [IETF,95] presents a multimedia-based

Berkeley Sockets specification which includes support for flows in terms of a flow-spec

and QoS management aspects of Clark’s QM.

3.3.7 The Washington University End-System QoS Framework

Other work at Washington University by Gopal and Purulkar [Gopalakrishna,94] has

resulted in the development of a QoS framework for providing QoS guarantees within the

end-system for networked multimedia applications. There are four components of the

Washington University end-system QoS framework as illustrated in figure 12: QoS

specification, QoS mapping, QoS enforcement and protocol implementation. QoS

specifications are at a high level and use a small number of parameters to allow applications

 -55-

greater ease in specifying their flow requirements. Based on QoS specification, QoS

mapping operations derive resource requirements for each end-to-end session of the

application. Important resources considered are the CPU and network connection.

QoS specificationapplication

ap
pl

ic
at

io
n

le
ve

l
re

so
ur

ce
s

application & protocol threads

processing
requirements

buffer
requirements

network connection
connection
requirements

network session manageroperating system

CPU MEMORY NETWORK INTERFACE ADAPTOR CONNECTION

 Figure 3.12 End-System QoS Framework: QoS Specification and Mapping

The third component of framework is QoS enforcement. QoS enforcement is primarily

concerned with providing real-time processing guarantees for media transfer. A real-time

upcall (RTU) facility [Gopalakrishna,95] has been developed for structuring protocols.

RTUs are scheduled using a rate monotonic policy with delayed pre-emption that takes

advantage of the iterative nature of protocol processing to reduce context switching

overhead and increase end-system scheduling efficiency. The final component of the

framework is an application level protocol implementation model. Protocol code is

structured as RTUs with attributes that are derived from high level specifications by QoS

mapping operations. The research considers QoS specification, QoS mapping and QoS

enforcement (i.e., rate shaping) as fundamental end-system QoS mechanisms integrated

with the protocol implementation model. The notion of QoS within the end-system is

extended from the network interface driver, through the protocol layers and up to the

application threads that generate/consume media.

 3.3.8 The TINA QoS Framework

TINA (Telecommunications Information Networking Architecture) architectural

concepts are grouped into four functional domains: Computing Architecture, Service

Architecture, Network Architecture and Management Architecture [Nilison,95]. The TINA

 -56-

approach considers telecommunications software as a large, distributed software system

and applies to it distributed computing and object oriented design techniques. The TINA

Computing Architecture, which is largely based on the ODP reference model (RM-ODP)

[ODP] and influenced by the work of the OMG [OMG,93], provides a basis for

interoperability and reuse of distributed telecommunication software. The TINA QoS

Framework [TINACa,95] describes a framework for specifying QoS aspects of distributed

telecommunications within the context of the Computing Architecture. The QoS framework

addresses the computational and engineering viewpoints of distributed telecommunications

applications. Figure 3.13 illustrates the structure of the telecommunications software in the

TINA Computing Architecture. It is governed by the separation between telecommunication

applications and the Distributed Processing Environment (DPE) in the first instance;

multimedia services offered by a provider utilise the DPE and the underlying computing and

communications capabilities. These underlying capabilities correspond to operating system

functions that are characterised by distinct native configurations. A TINA node is

comprised of a DPE kernel, a Native Computing and Communication Environment

(NCCE) and a hardware platform.

The TINA QoS framework is partly based on work in the literature (e.g., ANSA QoS

Framework [Guangxing,94] and CNET Framework [Hazard,93]). In the computational

viewpoint, QoS parameters required to provide guarantees to objects are stated declaratively

as service attributes. In the engineering model, QoS mechanisms employed by resource

managers are considered. By stating QoS requirements declarative, applications are relieved

of the burden of coping with complex resource management mechanisms needed for

ensuring QoS guarantees; this is motivated by the principle of QoS transparency.

Computational specification describes applications in terms of computational entities

(i.e., objects) that interact with each other. Objects interact via operational interfaces (which

correspond to client-server interactions) and stream interfaces (which represent a set of

communication end-points producing or consuming continuous media). Computational

objects can support multiple operational and stream interfaces. The TINA QoS Framework

supports three types of QoS specification at the object and interface level:

i) the object QoS specification details any distinction between the offered and

expected quality of service of an object. The quality of service categories currently

considered at this level include availability, security, performance (in terms of

response time) and reliability;

 -57-

ii) the operational QoS interface specification focuses on timeliness and availability

of quality of service categories: availability is concerned with maximising the

likelihood that a service provided is available when requested and timeliness is

concerned with timing constraints of operational interactions;

iii) the stream QoS interface specification includes stream flow signatures and

synchronisation constraints on stream flows. The quality of service categories

currently being considered at the stream level include throughput, delay, jitter and

error rate.

telecommunications applications

DPE

telecommunications
network

native c&c environments
hardware

DPE
kernel

resources

Figure 3.13 TINA-C Schematic

A computational specification language has been developed by the TINA consortium:

TINA-ODL. It is an extension of OMG-IDL [OMG,93] for describing computational

objects and their operational and stream interfaces. TINA-ODL provides a service attribute

construct to capture the QoS specification of quality of service constraints. In related work

[Leydekkers,95], an environmental contract is introduced. This allows the applications to

specify the computational objects and related interfaces in a contract which is a binding

agreement between user and service provider. Three levels of QoS are described:

deterministic, statistically reliable and best effort. Each quality of service parameter

specified in the environmental contract may have a different level of service attributed to it.

The concept of “binding” is used to address the QoS of an interactive session involving

 -58-

multiple computational objects. The binding of computational interfaces is mapped down in

the engineering viewpoint as a “channel”. A channel is comprised of three modules: stub,

binder and protocol adapter. Figure 3.14 illustrates the computational and corresponding

engineering view of a set of objects interacting. In the engineering viewpoint, the objects

are distributed in different nodes. The TINA-DPE kernel running in each node offers

applications QoS support. Application level QoS requirements are mapped down to services

offered by the DPE kernel and the underlying NCCE. Mechanisms for reporting violations

in the contracted quality of service guarantees are provided. Quality of service provision is

considered to be either static (where the service contract is non-renegotiable) or dynamic

(where the service contract is open to renegotiation by either the DPE kernel or the

application).

engineering viewpoint

operational

DPE kernel

DPE
server

stream
interface

computational viewpoint

NCCE NCCE NCCE

DPE
Kernel

DPE
nodes

interface

DPE
Kernel

DPE
Kernel

distribution
transparency visible

kTN

A

B

A B

Figure 3.14: Computational and Engineering Viewpoints

The engineering viewpoint is concerned with the type of support required by the

environment for realising QoS guarantees. Provision of QoS guarantees is intimately related

to static and dynamic resource management (as described in section 2.3) of the different

type of resource involved. Hence, the engineering viewpoint is interested in identifying the

different resource managers involved in the provision of QoS, the resource domain under

the control of each resource manager, and how the various resource managers interact and

co-operate in the provision of end-to-end QoS.

While the TINA QoS Framework is still in the early stages of development, the

approach taken is encouraging. It is important that the work on quality of service in the

Computing Architecture is co-ordinated with on-going work in the rest of the TINA

Architectures (for example, in collaboration with the Service Architecture initiative).

Furthermore, the DPE nodes illustrated in figure 3.14 are interconnected to a kernel

 -59-

Transport Network (kTN) [TINACb,95]. The quality of service provided by the TDPE

infrastructure to the computational interactions implicitly relies on the service offered by the

NCCE and the kTN combined. This requires strong coordination between TINA

Computing and Network Architectures. In addition, quality of service management

activities call for the co-ordination between the Management Architecture and all other

TINA architectural components in turn.

3.3.9 The MASI End-to-End Architecture

The CESAME Project [Besse,94] at Laboratoire MASI, Université Pierre et Marie

Curie, is developing an architecture for multimedia communications which has end-to-end

QoS support as it primary objective. As with the Lancaster QoS-A, the MASI architecture

offers a generic QoS framework to specify and implement the required QoS requirements of

distributed multimedia applications operating over ATM-based networks. The CESAME

Project considers end-to-end resource management which spans the host operating system,

host communication subsystem and ATM networks. The research is motivated by i) the

need to map QoS requirements from the ODP layer to specific resource modules in a simple

and efficient manner; ii) the need to resolve multimedia synchronisation needs of multiple

related ODP streams [ODP,92]; and iii) the need to provide suitable communication

protocol support for multimedia services.

The MASI architecture addresses the multi-layer, multi-service QoS problem in a

comprehensive way. Concrete interfaces, mechanisms and services are defined

[Fedaoui,94]. The architecture is comprised of a number of layers (which loosely follow

the OSI reference model) and planes (which realise a number of QoS principles). As

illustrated in figure 3.15, these layers include:

i) application level, which refers to an ODP platform which provides QoS conscious

services to distributed multimedia applications; see [Besse,94] for full details of the

QoS specification and support environments;

ii) synchronisation layer, which includes intra-flow synchronisation and inter-flow

synchronisation between multiple related flows; and

iii) communication level, which subsumes the ATM, AAL and transport service and

protocol; see [Fedaoui,94] for full details and related work at the University of

Technology (UTS), Sydney [Fry,93].

 -60-

MASI takes an object-oriented viewpoint based, in part, on the RM-ODP [ODP,92]

approach for quality of service support of distributed multimedia applications. A number of

functions (realised in planes) which span the multi-layered architecture are recognised as

fundamental to resolving end-to-end resource management issues. These planes are

comprised of:

• QoS management, which is the central arbitrator of end-to-end QoS, and is

comprised of layer specific QoS managers that negotiate resources with peer QoS

managers and maintain the internal state associated with application specific QoS;

• connection management, which manages multimedia session establishment based

on a user supplied profile and which is made up of layer specific connection

managers that bind multimedia processing units (MPUs) at each layer in order to

meet end-to-end connectivity; and

• resource management, which is responsible for host operating systems and

communication subsystem resource; this performs both admission testing and

resource reservation at every level in the end-system.

The Application QoS Manager (AQOSM) translates application requests for multimedia

flows to a set of QoS, services and protocol requirements. MASI QoS mapping is based on

the concept of an application-level QoS profile. For each flow, the AQOSM derives suitable

profiles. QoS profiles are used in the selection of protocol functionality and as a basis for

determining flow specifications used by the communication subsystem. The AQOSM

selects the desired values for performance parameters encapsulated in a flow specification.

The AQOSM also selects appropriate communication and synchronisation protocol libraries

based on the QoS profile template; see [Fedaoui,94] for full specification of the profile and

the method of protocol selection. An important function of QoS management is to monitor

layer specific QoS and report any QoS violations of the contracted profile directly to the

applications. Other QoS violations fielded by QoS management include indications from the

resource management plane during the negotiation phase. In this instance, the resource

management function indicates the level of service provided to on-going flows, that is,

either at the desired or minimum levels.

 -61-

synchronisation

transport

application

AAL

AQOSM

SQOSM

TQOSM

CQOSM

CPU
memory
I/O

profile
API

network

re
so

ur
ce

 m
an

ag
em

en
t

Q
oS

 m
an

ag
em

en
t

co
nn

ec
tio

n
m

an
ag

em
en

t

Figure 3.15: MASI Architecture

The MASI architecture focuses on end-system resource management: CPU scheduling,

memory and I/O management. Network level admission testing and reservation will be

addressed in future work. The CPU scheduling scheme adopted by the CESAME team is

based on rate monotonic scheduling (RM) policy [Lehocky,89]. In this instance, the

resource management plane actively measures the CPU usage and periodically informs the

CPU scheduler of the utilisation. This is then used to accept or deny new flows in the end-

system. A novel aspect of the MASI work is the use of application, system and

communication libraries which are registered with known attributes in QoS Management

Information Base (MIB). Users’ QoS requirements captured in the QoS profile are used as

a basis for the dynamic selection of the appropriate system functions. The selection of

libraries is achieved at flow establishment time, QoS renegotiation time and is achieved

dynamically by the resource manager to optimise or change the level of service available to

a flow. The construction of profiles through re-usable software modules have been shown

to be viable in the CESAME project [Besse,94].

 -62-

3.3.10 Other QoS Frameworks

3.3.10.1 ATM Based QoS Models

Projects carried out at Indian Institute of Technology, Wollongong University, GMD

FOKUS Berlin, Rutgers University and Columbia University have designed new QoS

models which take application level QoS requirements and map them down to ATM based

networks.

 Native-Mode ATM Networking

 The Indian Institute of Technology, Delhi and AT&T Laboratories, Murray Hill have

developed a Native-Mode ATM Protocol Stack [Keshav,94] that allows the QoS provided

at the ATM level visibility to applications programs. The service interface to the stack

allows the establishment of simplex and duplex virtual circuits that feature error control,

leaky bucket and feedback flow control. The framework is designed with four principles in

mind: minimal functionality in the critical path, no logical layered multiplexing, separation

of data and control flow and specific targeting to ATM. The native-mode ATM stack is a

connection-oriented protocol stack which “bridges the gap between applications and the

network”. The protocol stack uses the Tenet Suite’s RCAP protocol for network resource

reservation and supports a set of orthogonal services which can be arbitrarily combined in

order to match application requirements. Currently, the native-mode ATM protocols

combine the services into three groups: i) guaranteed-performance service, which provides

open-flow control, specification of performance guarantees and simplex and duplex

multicast connections; ii) reliable service, which provides error control, feedback control,

and simplex and duplex connections; and iii) best effort service, which provides only the

choice of unicast or multicast service.

Simplified QoS Model

The Simplified QoS Model developed at GMD limits the number of performance

parameters which the user can select. In doing so it simplifies the QoS mapping function

and negotiation protocol. In [Damaskos,94] Damaskos and Gavras argue that applications

can not be expected to configure large numbers of QoS parameters for flows.

 -63-

Wollongong University QoS Model

Judge and Beadle [Judge,95] from Wollongong University describe a QoS model for

an ATM capable end-system connected to a low speed ATM network (i.e., ranging 512

Kbps to 2.4 Kbps). The architecture supports two network traffic classes (guaranteed and

best effort) for audio and data services. QoS mechanisms for monitoring are built on AAL

protocols. Degradation in the requested QoS may be forwarded to the application level

where compensatory actions may be taken.

GRAMS QoS Model

In [Hui,95] Hui, Zhang and Jun report on the progress of the development of the

GRAMS architecture which is based on a client/server model for QoS control of flows over

ATM networks. The major goal of GRAMS is to serve the heterogeneous QoS demands of

clients exploiting the end-system and network utility. End-to-end resource management is

based on a set of starvation counters used to measure system resource utilisation and

individual flow QoS. These counters are integral to admission and rate control algorithms.

 QuAL Based QoS Model

An important contribution by Florissi and Yemini [Florissi,94] from Columbia

University describes the development of a Quality Assurance Language (QuAL) for the

specification of QoS constraints on underlying computing and communication platforms.

The specifications are compiled into run-time components that monitor the delivered QoS.

Any QoS violations are fielded via user-level exception handlers. QuAL creates and

manages a QoS-based MIB on a per-application basis for the management of flow statistics.

The implementation work is based on Concert-C and ST-II networking. The network level

QoS specifications are detailed for both senders and receivers. A distributed application is

viewed by QuAL as a set of autonomous processes that communicate by message exchange

(Concert-C). At the application level, QuAL uses a contract identifier to present a set of

constraints to which a communication port must comply. Only ports with compatible QoS

attributes are connected.

 QoSMIC-TOMQAT QoS Models

Several projects in the European funded RACE program are concerned with QoS for

integrated broadband networks. A contribution has been made by the QOSMIC (R.1082)

 -64-

project which studied QoS concepts in broadband networks focusing on the user–network

interface in particular. The major goal of the project was the specification of a QoS model

for service life-cycle management which maps the user communication requirements to

network performance parameters in a methodological manner. In related work Jung and

Seret [100] propose a framework for the translation of the performance parameters between

the ATM Adaptation Layer (AAL) and ATM layers. They extend the QOSMIC model to

include QoS verification. In this case, the user can verify whether the achieved bearer QoS

provided by the ATM network meets the contracted requirements expressed in terms of

performance parameters. In related work, the TOMQAT project [TOMQAT,95] is

developing the concept of total quality management in the context of broadband networks,

analysing the end user quality of service requirements and designing QoS control and

management mechanisms to meet end-to-end QoS guarantees.

3.3.10.2 Distributed Systems QoS Models

Recently a number of QoS models have emerged from the distributing systems

community. These include the Integrated Multimedia Application Communication (IMAC)

architecture [Nicolaou,93] and ANSA QoS Framework [Guangxing,94] which provide a

model for real-time QoS.

IMAC-ANSA QoS Models

 The IMAC architecture is based on the ANSA [APM,91] architecture and has been

implemented as an extension to the ANSAware. IMAC provides a mechanism for

specification of communication oriented QoS on per-invocation basis; interface operations

may specify a set of QoS options. These QoS options are mapped to the underlying

communications protocols as a set of QoS constraints on streams or bounded RPC

communications. The work on the ANSA QoS Framework facilitates the enforcement of

stringent time constraints found in distributed real-time applications. The model provides

QoS specification and QoS-based binding for real-time programming in ANSA. The model,

moreover, incorporates task and communication channels as its basic programming

abstractions. It synthesises aspects of resource requirements, resource allocation and

resource scheduling into an object-based programming paradigm.

Networld-Vnet QoS Model

 -65-

The University of Pittsburgh is developing a distributed multimedia platform called

Networld [Chrysanthis,95]. In the Networld, they are developing an architecture for

integrating heterogeneous data repositories, service stations and viewing units. Within this

distributed architecture they are investigating models for real-time workflow (i.e., data

management and process scheduling), intermediate caching and resource allocation.

Furthermore, all these aspects are studied within and across individual sites to establish

multimedia delivery channels in WAN environments that support timing and reliability

requirements of multimedia applications. The Networld architecture assumes the V-net as

the network abstraction. The V-net is a versatile network abstraction that establishes flows

with deterministic, statistical and best-effort characteristics.

3.3.10.3 Open Systems QoS Models

A number of projects are looking toward providing enhanced services and mechanisms

for open systems; in particular the EuroBridge QoS-driven Architecture [Pronios,95] and

QoS-based Adaptive Architecture for Packet Scheduling (Q-ADAPTS) [Tran,95]. Like the

OSI QoS Framework, Q-ADAPTS and EuroBridge concentrate on quality of service for

OSI communications. The EuroBridge research focuses on the upper layer architecture and

the transport protocols and provides unifying concepts for the management of QoS. The

ADAPTS model developed at California State University and the Aerospace Corporation

supports dynamic management of flows through scheduling algorithms and resource

reservation. The work is based on the integration of existing OSI-based protocols and real-

time scheduling mechanisms in the end-system and network. The model addresses many

limitations regarding QoS management which exist in the current OSI standards.

3.3.10.4 Transport System QoS Models

The Technical University of Berlin [Miloucheva,95b] is developing a QoS-based

architecture with particular focus on support for the transport subsystem. The XTPX

transport protocol, developed as part of the CIO (Coordination, Implementation and

Operation of Multimedia Teleservices) Project, is at the heart of the architecture. The work

considers QoS contracts, which are binding agreements between the application and

transport provider; application classes, which flows are mapped into; and QoS management

for the maintenance of flows. A multi-layer architecture is described which includes XTPX

 -66-

operating over IP and ATM. Cross layer functions are used to map QoS between layers and

for resource management; multimedia synchronisation is implied in the literature.

3.4 Summary

In this chapter key research in QoS support has been summarised and evaluated. Recent

work directed at integrating and extending the layer-specific research into broader QoS

architectures has also been presented.

The proposed QoS architectures promote the idea of integrated QoS, spanning the end-

systems and the network and identifies the support for end-to-end QoS as an important

goal. The review of the layer-specific QoS research indicates that much research has

concentrated on applying QoS concepts described in Chapter 2 to either the network or the

end-system in isolation. Emerging QoS architectures, in contrast, coherently apply QoS

concepts across all architectural layers, resulting in a framework for the specification and

implementation of end-to-end QoS.

 In summary, while the area of QoS research in multimedia networking is mature, work

on QoS architectures represented by the state of the art remain in the very early stages of

development. Chapter 4 presents an outline of the author's contribution to end-to-end QoS

research, an integrated QoS architecture for continuous media communications (QoS-A). In

Chapter 8 the QoS-A will be compared to the QoS architectures presented above.

 -67-

Chapter 4

Quality of Service Architecture
(QoS-A)

This chapter proposes the development of an integrated quality of service architecture

which spans both end-systems and networks to address the QoS deficiencies of

communication architectures outlined in Chapters 1 and 2. The proposed quality of service

architecture takes as its primary goal the support of performance QoS for a wide range of

continuous media applications.

The QoS-A retains the best effort service model as a special case but is augmented by

new classes of service that provide hard and soft end-to-end performance guarantees. These

service classes are designed to fit into a highly dynamic application environment providing

support for control, monitoring and maintenance of end-to-end QoS. The QoS-A offers a

framework with which to specify and implement the required performance properties of

continuous media applications operating over ATM networks.

In addition to the need for a richer service model which allows the QoS requirements of

the new applications to be fully specified, the QoS-A requires the integration of a range of

QoS mechanisms in both the end-system and network to meet end-to-end demands. In end-

systems, this includes thread scheduling, flow shaping, buffer management and jitter

correction. In the communications subsystem, protocol support such as end-to-end QoS

negotiation, adaptation (i.e., QoS renegotiation) and indication of QoS degradation are

required. In networks, suitable resource reservation protocols, service disciplines in switch

queues and multicast QoS support are needed. The QoS-A provides a framework for

management of QoS over all of these system layers.

This chapter describes the QoS-A primarily focusing on the transport layer. The chapter

commences with an overview of the QoS-A model in section 4.1 and resource management

issues in sections 4.2 and 4.3. Next, in section 4.4, a multimedia enhanced transport

system based on the notion of a service contract agreed between the transport service user

and the network provider is described. Section 4.5 describes the means by which quality of

 -68-

service is contracted at the transport layer is realised in terms of suitable control,

maintenance and management mechanisms. These QoS mechanisms are encapsulated in the

METS Protocol (METSP) itself, a Transport QoS Manager (TQM) and a flow management

module. It is shown how the QoS levels contracted at the transport level application

programmers' interface can be assured in the context of the Lancaster ATM Research

Networking Environment.

4.1 The QoS-A Model

The QoS-A is based on a subset of the QoS principles presented in Chapter 2. These

principles govern the realisation of end-to-end QoS in a distributed systems environment:

 i) the integration principle states that QoS must be configurable, predictable and

maintainable over all architectural layers to meet end-to-end QoS [Campbell,93];

ii) the separation principle states that information transfer, control and management

are functionally distinct activities in the architecture and operate on different time

scales [Lazar,90];

iii) the transparency principle states that applications should be shielded from the

complexity of handling QoS management [Campbell,92]; and

iv) the performance principle guides the division of functionality between

architectural modules (viz. end-to-end argument [Saltzer,84], application layer

framing and integrated layer processing [Clark,90], and the reduction of layered

multiplexing [Tennenhouse,90]).

In functional terms, the QoS-A (see figure 4.1) is composed of a number of layers and

planes. The upper layer consists of a distributed applications platform augmented with

services to provide multimedia communications and QoS specification in an object-based

environment [Coulson,93]. Below the platform level is an orchestration layer which

provides multimedia synchronisation services across multiple related application flows

[Campbell,92]. Supporting this is a transport layer which contains a range of QoS

configurable services and mechanisms. Below this, an internetworking layer and lower

layers form the basis for end-to-end QoS support.

QoS management is realised in three vertical planes in the QoS-A. The protocol plane,

which consists of distinct user and control sub-planes, is motivated by the principle of

 -69-

separation. Separate protocol profiles are used for the control and data components of flows

because of the different QoS requirements of control and data: control generally requires a

low latency full duplex assured service whereas media flows generally require a range of

non-assured, high throughput and low latency simplex services.

The QoS maintenance plane contains a number of layer specific QoS managers. These

are each responsible for the fine grained monitoring and maintenance of their associated

protocol entities. For example at the orchestration layer the orchestration QoS manager is

interested in the tightness of synchronisation between multiple related flows. In contrast,

the transport QoS manager is concerned with intra-flow QoS such as bandwidth, loss, jitter

and delay. Based on flow monitoring information and a user supplied service contract, QoS

managers maintain the level of QoS in the managed flow by means of fine grained resource

tuning strategies.

recently

physical layer

transport layer

user planecontrol plane

QoS maintenance plane

flow management plane

distributed sytems platform

network layer

data link layer

flow
management
projection

protocol plane

orchestration layer

tim
es

ca
le

s

media transfer
QoS monitoring

QoS maintenance
QoS scaling

signalling
application

Figure 4.1: QoS-A

The final QoS-A plane pertains to flow management, which is responsible for flow

establishment (including QoS based routing, end-to-end admission control and resource

reservation), QoS mapping (which translates QoS representations between layers) and QoS

Scaling (which collectively describes QoS adaptation and QoS filtering for coarse grained

QoS management).

 -70-

Figure 4.2 extracts a canonical set of QoS parameters to characterise continuous media

communications and illustrate the relevant QoS mechanisms that realise each parameter. The

chosen set of parameters are: jitter, delay, throughput and error QoS parameters. In addition

to these fundamental parameters, two additional parameters are included: synchronisation

between media streams and aspects of multicast quality of service. The essence of these

latter two parameters is that they are applicable to multiple senders and receivers. The

protocol plane QoS mechanisms are illustrated in figure 4.2 and include scheduling, jitter

correction, rate regulation in the end-system and scheduling, flow control and QoS filtering

in the network. Flow and QoS maintenance plane QoS mechanisms while not represented

in figure 4.1 include mechanisms for resource reservation and QoS adaptation.

jitter delay throughput error synch multicast

per flow
QoS dimensions

multi-flow
QoS dimensions

scheduling scheduling scheduling

jitter
correction

scheduling congest.
control

FEC/
Selec Ret/

ARQ/
etc.

flow
control

network
error
bound

rate
regulation

multi-
session

rate
regulation

message
ordering
semantics

multicast
error

control

Q
oS m

aintenance

flow
 m

anagem
ent

Appl.
Plat
and
Op

Sys.

Orches-
tration

METS

ATM
Net-
work

(Q
O

S
m

ap
pi

ng
) synchron

-isation

scheduling filtering
QoS

Figure 4.2: QoS Parameters and Supporting Mechanisms [Campbell,93a]

4.2 Resource Management Tree

The resource management trees presented in figure 4.3 illustrates the relationship

between, on the one hand, layers, planes and QoS mechanisms and, on the other hand,

resource management functions (e.g., static and dynamic functions). The resource

management tree is subdivided into Static QoS Management (SQM) which includes

mechanisms for signalling and flow establishment, and Dynamic QoS Management (DQM)

which includes mechanisms for QoS management, maintenance and control.

 -71-

QOS-A resource management

static QoS management (SQM) dynamic QoS management (DQM)

control plane (CP) flow management plane (FMP) QoS maintanence plane (QMP) user plane (UP)

signalling flow establishment QoS management QoS maintanence QoS control

resource reservation

QoS mapping

admission testingconnection management

QoS adaptation flow monitoring

flow mainteance

flow scheduling

flow shaping

transport protocol

group management

Q
oS

m

ec
ha

ni
sm

s

DQM signalling

QoS filteringQoS routing

Figure 4.3: QoS-A Resource Management Tree

4.3 Timescales and Separation

QoS control mechanisms for media transfer operate on the fastest timescale in a QoS-A

and include modules for flow scheduling, shaping, QoS filtering and METS

[Campbell,93b] protocol control - all modules operate on the media directly and in real-

time. Figure 4.1 broadly illustrates the relationship between timescales that are evident in a

QoS-A model. The QoS maintenance plane includes flow monitoring and maintenance

mechanisms which operate on a timescale close to the protocol timescale (i.e., at media

transfer speeds). Flow management operates on a slower timescale than all other resource

management entities in this model. It is responsible for the initial establishment and coarse

gain QoS management of flows. The signalling QoS mechanism resides in the control plane

and includes group management, connection management, and DQM signalling protocols.

The division of QoS mechanisms into planes and layers is based on the principles of

separation between control and data, and that these multiple timescales operating on

communication resources.

The time constraints illustrated in figure 4.4 guide the division of functionality between

the signalling, control and management modules. The control time domain is the fastest and

operates close to the link speed of the network, signalling is at best one end-to-end or round

trip away in time, flow management response time is coarser than the former in that it

ranges from one round trip in time to seconds. It should be noted that flow management is

 -72-

distinguished from the broader timescales experienced by traditional network management

(e.g., SNMP or CMIP). QoS-A flow management lies in the time domain between

signalling and network management and is considered to operate closer to the protocol and

signalling speeds than traditional network management.

traffic control signalling flow management

traditional
network
management

line speed
(nano to micro
seconds)

one end-to-end
or one round trip
delay (mili
seconds)

at least one round
trip delay
(tens to hundreds of
msecs)

seconds to
hours to
days

time

Figure 4.4: Timescales

4.4 QoS Specification

The success of ATM-based networks is dependent upon the availability of QoS

configurable multimedia services with their strong emphasis on full end-to-end QoS

guarantees. Currently these services and the supporting protocols are yet to be fully

realised. A multimedia service is potentially composed of multiple flows which, in addition

to QoS support, may require orchestration to meet multimedia synchronisation constraints

and QoS scaling to meet multicast QoS demands.

An important aspect of a QoS enhanced communications service is the interface at

which desired levels of QoS can be requested, negotiated and contracted. In the QoS-A, the

QoS requirements of the user and the potential degree of service commitment of the

provider are unified and formalised in a service contract agreed by both parties.

Applications request the establishment of a continuous media flow with an agreed service

contract via the following primitive:-

flow_id join(tsap_t *source, *sink; service_contract_t *QoS);

Flows can be source or receiver initiated. The call above shows the establishment of a

 -73-

flow from a source transport service access point (tsap) to a destination tsap with a QoS as

specified in the third argument, the service contract. This is described as peer-to-peer QoS.

Note, however, that the multicast capable API described in Chapter 6 and implemented in

Chapter 7 extends to multiple receivers joining a source flow having different QoS demands

(i.e., all members having potentially different service contracts). Connectivity in this

instance is achieved via a multicast addressing and signalling scheme based on Ballardie

and Crowcroft's concepts for Core Base Trees multicasting [Ballardie,94].

 The service contract subsumes the well accepted QoS parameters of jitter, loss, delay

and throughput, but also allows the specification of a wider range of options. These are

characterised in terms of the following clauses:-

• flow_spec_t characterises the user's traffic performance requirements [Partridge,92];

• commitment_t specifies the degree of resource commitment required from the lower layers;

• adaptation_t identifies actions to be taken in the event of violations to the contracted service;

• maintenance_t selects the degree of monitoring and active QoS maintenance required;

• reservation_t either negotiated, fast reservation or forward reservation connection services;

• cost_t specifies the costs the user is willing to incur for the services requested.

In implementation, the clauses are collected into a C structure as follows:-

typedef struct {

flow_spec_t flow_spec;

commitment_t commitment;

 adaptation_t adaptation;

 maintenance_t maintenance;

 reservation_t service;

 cost_t cost;

} service_contract_t;

The following sections motivate and describe the QoS options specified in this

structure.

4.4.1 Flow Specification

The ability to guarantee traffic throughput rates, delay, jitter and loss rates is particularly

important in networks supporting distributed multimedia applications. These performance-

based metrics are likely to vary from one application to another. Moreover, the relative

importance of these parameters for a particular flow is also application dependent. For

 -74-

example, a digital voice connection requires a moderate throughput (e.g., 32 Kbps), a low

degree of reliability (10-1), a stringent upper bound on end-to-end delay (e.g., 250 ms) and

a maximum permissible jitter of 10 ms.

To be able to commit transport and network resources, the QoS-A must have prior

knowledge of the expected traffic characteristics associated with each flow. The flow_spec

structure below permits the user to specify such metrics. In the flow spec, throughput is

described in terms of frame size, frame rate, burst size and peak rate. The frame size and

frame rate represent the average throughput requirement, whilst the maximal throughput is

captured by the peak rate performance parameter. In addition, the flow spec accommodates

the potential burstiness of the offered traffic using the burst parameter.

typedef struct {

int flow_id; /* flow specification identification */

 int media_type; /* common flows for video, voice, data */

 int frame_size; /* frame/tsdu size */

int frame_rate; /* token generation rate */

int burst; /* size of the burst */

int peak_rate; /* max transmission rate */

int delay; /* end-to-end delay */

int loss; /* loss rate */

int interval; /* interval */

int jitter; /* end-to-end delay variation */

} flow_spec_t;

The precise interpretation of the performance parameters (i.e., throughput, delay, jitter

and loss) is determined by the commitment specification as described below. The flow id

field, which is allocated by the QoS-A and returned to the user for subsequent use,

uniquely represents the flow in the system. The media type field is used by the upper layer

architecture to specify commonly used flows with pre-specified flow specifications such as

StandardVideo, HifiAudio and LowQoSVoice.

4.4.2 QoS Commitment

While the flow spec permits the user to express the required performance parameters in

a quantitative manner, the commitment clause allows these requirements to be refined in a

qualitative way so as to allow a distinction to be made between hard and soft network

performance guarantees. There are broadly three classes of service commitment the network

 -75-

can support [Ferrari,92]:-

i) guaranteed, which is typically used for hard real-time performance applications;

ii) statistical, which allows for a certain percentage of violations in the requested flow

spec, and is particularly suitable for continuous media applications; and

iii) best effort, the lowest priority commitment and synonymous with a datagram service.

The format of the commitment_t structure is illustrated below.

typedef enum { guaranteed, statistical, best_effort } commit_t;

typedef struct {

commit_t class; /* commitment class */

int percentage; /* used for statistical service */

} class_t

Many continuous media applications require soft real-time guarantees as selected by the

statistical service commitment. A statistical commitment allows for a certain percentage of

violations of each QoS performance parameter. Taking loss as an example: an

uncompressed digital video flow may suffer 50% loss (commitment.loss.class = statistical,

commitment.loss.percentage = 50) and still reconstruct enough of the video signal to

maintain acceptable playout picture quality. In the case of statistical commitment, the

performance parameter values in the flow spec are interpreted as a target for the QoS-A

which, however, may be violated if resources become scarce.

An important distinction between the guaranteed and statistical commitments is that the

guaranteed commitment is based on fixed resource allocation where no resource gain is

feasible; in contrast, the statistical commitment is based on shared resource allocation which

encourages a high degree of resource utilisation [Campbell,93a]. It is for this reason that

future pricing policy should encourage users to select statistical commitment over the

guaranteed commitment when at all possible.

Together the flow spec and the commitment class are used by the flow reservation and

admission control functions of the flow management plane to establish end-to-end QoS. In

a QoS-A, resource reservation and admission control are conducted at each layer of the

architecture. This means there is a set of admission tests for the end systems (for cpu,

memory and network access) and the network (for bandwidth, delay, memory); for full

details of these admission control see Chapter 5.

 -76-

4.4.3 QoS Adaptation

Many continuous media applications can tolerate small variations in the QoS delivered

by the network without any major disruption to the user’s perceived service. In some cases

quite severe service fluctuations can be accommodated. In such cases, however, it is often

appropriate to inform the application of the service degradation so that it can intelligently

scale to the new QoS baseline. If the delivered performance violates the contracted QoS

then the user may choose to take some remedial action (i.e. adjust its internal state to

accommodate the current load conditions, re-negotiate the flow’s QoS, drop components of

a multi-layer coded flow - e.g., drop MPEG enhancements, disconnect from the service or

take no action).

To meet these requirements, the adaptation_t structure is used :-

typedef enum { loss, jitter, throughput, delay, disconnect } event_t;

typedef enum { adapt, signal, disconnect, no_action } action_t;

typedef struct {

 event_t event; /* QoS degradation */

 action_t action1; /* action */

 action_t action2; /* auxiliary action */

 flow_spec_t *new_flow; /* new FlowSpec for QoS scaling */

} adapt_t;

The user can select up to two actions to be taken in response to each event. As an

example of the use of the adaptation facility, consider the following:-

adapt_t action_list = {{delay, signal, no_action, 0},

 {throughput, signal, adapt, &newFlowSpec},

 {loss, no_action, no_action, 0},

 {jitter, signal, no_action, 0}};

The user is informed of QoS degradations in one of the following ways: (i) via a QoS

signal (i.e., a QoS degradation indication): this is an upcall from the lower layers which

notifies that one or more performance parameters in the flow_spec_t or commitment_t has

been violated; (ii) via a disconnect indication, the QoS-A unilaterally initiates a disconnect;

and (iii) via a QoS renegotiation indication: this is issued when the user has delegated the

responsibility for QoS adapt (i.e., re-negotiation) to the QoS-A and the QoS-A has just

 -77-

initiated a re-negotiation. Note that any combination of actions i), ii) and iii) can occur for

any one violation.

To complete the example above, the following are the actions taken in response to the

various possible events. If the maximum end-to-end delay is exceeded then the QoS-A will

inform the user of the QoS event signal(event, measured_value, desired_value) upcall. The

second action/event pair deals with degradation of measured throughput. If the throughput

falls below the predefined minimum specified in the flow spec the QoS-A will initially

inform the user of the event via a QoS signal and an adaptation indication (i.e., QoS

renegotiation indication), then will initiate a full end-to-end re-negotiation based on the

newFlowSpec, and finally issue a QoS renegotiation confirm to the user to inform him of

the outcome of the adaptation phase.

4.4.4 QoS Maintenance

The QoS maintenance function operates directly on on-going flows to maintain the

performance QoS requested in the flow specification and QoS commitment clauses,

respectively. Three options are available within the service contract for control over QoS

maintenance :-

typedef enum {signal, monitor, maintain } maintenance_t;

The signal and monitor option instructs the QoS-A to periodically deliver measured

performance assessments (called QoS signals) relating to the specified flow to the

application at the flow management interface which can be local (sender or receiver) or

remote. The flow management interface is specified as being:

typedef enum {source, receiver, remote} monitor_t;

The source and receiver options default to the local flow management interfaces

indicated as the "F" interface in 4.5. If the remote monitoring option is selected then QoS

assessment messages are forwarded to a remote flow management entity for processing.

This remote monitoring is particularly important for multicast QoS management and filter

management [Yeadon,93]. Periodic performance notifications include measured bandwidth,

delay, jitter and losses for on-going flows as measured at the source or receiver. The signal

 -78-

fields of the QoS policy (described in Chapter 6) allow the user to specify the interval over

which one or more of these QoS parameters can be monitored and the user informed.

Periodic assessment messages are not forwarded to the application if the maintain mode is

selected by the user.

In both monitor and maintain modes the QoS maintenance attempts to transparently

exert fine grained corrective action (e.g., thread scheduling [Coulson,93], communication

buffering, flow regulation and scheduling, queueing delays, jitter correction, playout time

calculation, etc.) to maintain QoS levels according to the service contract. In both cases,

coarse corrective action (i.e., QoS adaptation), should the contracted QoS drop below the

prescribed levels, may be taken depending on the selected adaptation_t option.

Finally, the signal mode explicitly disables the active maintenance of flows. In this role

the maintenance plane only forwards periodic signals to the application at the ‘F’ interface.

It is the responsibility of the application to act on this information as it sees appropriate.

Essentially the application is responsible for the maintenance role in this mode and can only

exert coarse QoS management by issuing new service contracts should it detect violation in

the requested QoS.

4.4.5 Reservation Styles

Reservations protocols can support full end-to-end negotiated service and in some

cases, a fast reservation service where the reservation and data transfer phases coincide. In

addition to these reservation styles, the QoS-A also offers a forward reservation mode

where network and end-system resources are booked ahead of time; here the user specifies

the expected starting time and duration of a flow. This service is useful to multimedia

applications that require a high degree of QoS availability such as collaborative sessions.

Three connection_t classes are defined in a fully generalised service contract to

accommodate the connection styles described above:-

typedef enum {fast, negotiated, forward} service_t;

typedef struct {

 service_t service; /* fast, negotiated, forward service */

 time_t start; /* start of service hrs:min:sec */

 time_t end; /* termination time hrs:min:sec */

} connection_t;

 -79-

The connection_t includes a start and end time for the forward reservation service.

However, it is clearly difficult to determine the duration of interactive communication

sessions, and therefore one remains somewhat sceptical about enforcing such a regime

upon the user. The duration time is included in the service as a marker for further study. In

[Ferrari,92] an advance reservation mechanism is described whereby the network may

provide the user with an extension after the specified duration has expired. This is achieved

without disruption to other users who have pre-reserved resources.

4.4.6 Cost

The thesis will not address the issues of cost and tariffing in detail, it is mainly

concerned with a realisation of the architecture in a local ATM environment were no

tarrifing apparatus exist. However, even in a local environment, cost is still likely to be an

important factor. If the notion of cost is not involved, there is no reason for the user to

select anything other than maximum levels of service commitment! This philosophy would

inevitably lead to resource inefficiencies in a QoS-A. To counter this condition, the cost

function must incorporate pricing differentials [Chocchi,91] to encourage the user selects

the optimum QoS commitment such as a lower-commitment-costs-less pricing policy.

In contrast to a cost based policy, Kelly [Kelly,93] describes a simple tariff structure

based on the user predicting a connection’s effective bandwidth requirement. The tariff

structure encourages the user to accurately declare this quantity over the duration of the

connection. The incentive to accurately predict the effective bandwidth requirement is

realised by admitting more flows in addition to optimising the network resources. The

penalty for over-estimation of the connection’s bandwidth is a possible reduction in QoS

provided.

4.5 Multimedia Enhanced Transport System (METS)

In this section suitable QoS mechanisms needed to realise the transport service interface

described above are presented. The mechanisms are embedded in the QoS-A flow

management projection as shown in figure 4.1. The flow management projection is shown

in greater detail in figure 4.5. Note that figure 4.5 only shows the transport layer and

below; the upper layers have been omitted for clarity. This section details the composition

and interaction between the various planes at the transport layer: flow management, QoS

 -80-

maintenance, user and control planes.

Q
oS

 m
aintenance

flow m
anagem

ent
flow

 adm
ission control

qos adaptation

resource reservation

qos m
apping

transport
QoS

manager
 KEY
F: signalling service access point (fm-socket)
S: signalling service access point (sig-socket)
T: transport service access point (media-socket)
N: network service access point
R: resource control interface
C: control interface
M: monitoring interface
P: policing interface
Qt: transport QoS maintenance interface
Qn: network QoS maintenance interface
Qd link QoS maintenance interface
Qs : switch QoS maintenance interface

Qt

T

flow protocol
projection

 control

plane

 user

plane

transport

network
network

QoS
manager

data
data
QoS

manager

physical
physical

QoS
manager

transport

network

data

physical

M

R

C

M

R

interfaces considered in detail

protocol plane

Qn

interface

P

S

Qd

Qs

 plane

 plane

N

F

Figure 4.5: QoS-A Flow Management Projection

4.5.1 QoS Interfaces

At each layer, the various mechanisms in each plane present well defined interfaces to

their peers. At the transport layer the support of QoS is dependent on interactions between

the transport protocol, transport QoS manager, the flow management plane (viz. QoS

adaptation, resource reservation and admission control, QoS mapping) and the network

layer. In contrast to traditional communications architectures, the QoS-A carries all flow

management and control messages on distinct out-of-band signalling channels. To reflect

this logical division, the transport service access point is internally divided into flow

management (fm-socket) /signalling interface (sig-socket) and media transfer interface

(media-socket) components (there are also equivalent primitives at the network layer) as

illustrated in figure 4.5:-

• the fm-socket ('F') interface contains primitives: openGroup, getInfo, closeGroup,

joinFlow, leaveFlow, changeQoS, signalQoS;

• the media-socket ('T') interface contains primitives: send, receive.

Later sections describe the use of the various primitives on these interfaces in more

 -81-

detail. In addition to the transport user’s interface, the QoS-A defines the following internal

interfaces between the three planes at the transport layer and below as illustrated in Figure

4.1 and Figure 4.5:-

• a resource control interface used to allocate, tune and release transport protocol

resources, and alert the QoS management plane if protocol resources are short. It

contains the following primitives: alloc_resource, tune_resource, resource_alert, and

free_resource;

• a monitor interface used by the transport QoS manager to configure and control

monitoring of flows in the transport protocol and to receive reports of actually

achieved QoS performance over a preceding interval. It contains the following

primitives: start_monitor, set_rate, qos_assessment, and stop_monitor;

• a control interface used by the QoS manager to set, modify and read internal transport

protocol states during flow connection, data transfer and re-negotiation. The interface

contains the following primitives: set_state and report_state;

• a maintenance interface that is supported by the transport QoS manager and used by

the flow management plane. It contains the following primitives: start_maintenance,

set_attributes, free_attributes, assessment, qos_alert and stop_maintenance;

• a signalling interface ('S') that is supported by the control plane signalling protocol. It

contains the following primitives: openGroup, getInfo, closeGroup, joinFlow,

leaveFlow, changeQoS.

4.5.2 User Plane

The METS transport protocol is based on a Continuous Media Transport and

Orchestration Service (CMTOS) developed at Lancaster [García,93] which evolved from

the work by Chesson on the XTP protocol [Chesson,92]. The CMTOS protocol provides

an ordered but non-assured, connection oriented transport communication service. It allows

the user to select upcalls for the notification of corrupt and lost data at the receiver and also

allows the user to negotiate QoS parameters such as bandwidth, jitter, delay and the

tightness of synchronisation between multiple related connections. The CMTOS protocol

does not, however, provide any form of QoS commitment other than best effort QoS, and

as such it is unsuitable to meet end-to-end QoS assurances.

 -82-

S

R R

flow
 m

onitor

resource m
anager

resource
interface

control
interface

monitor
interface

tsap

data flow
control

R

guaranteed
flow

statistical
flows

best effort
flow

to network

buffer manager

flow regulator

best effort
queue

statistical queue

flow scheduler

BBBB

guaranteed
queue

Figure 4.6: METS Protocol Mechanisms and Interfaces

It is the responsibility of the protocol to share communications resources in end-

systems among flows with widely diverse QoS requirements. To meet this need, the METS

protocol incorporates buffer sharing, rate regulation, scheduling, and basic flow monitoring

QoS modules as illustrated in figure 4.6. Also included is a resource management

component responsible for overseeing the allocation and adaptation of the various protocol

resources. The buffer management scheme is structured to avoid duplication across layers

[Hehmann,91] and uses separate pools for each commitment type [Robin,94]. Guaranteed

flows each receive a fixed buffer allocation based on the flows peak rate whereas statistical

flows share a common pool. For guaranteed and statistical flows the loss field in the Flow

Spec is also taken into consideration when determining the buffering needs at the end-

system and in the network. Best effort flows also use the common pool but are given a

lower priority than any statistical flow. The remaining transport protocol modules, rate

regulation, scheduling, flow monitoring and resource management are described in more

detail below (refer to figure 4.6).

4.5.2.1 Flow Regulator

The transmission of frames to the network must be regulated to prevent buffer overflow

at receivers and rate violations (via flow shaping) at the user-network interface and

 -83-

intermediate nodes. In the QoS-A, the throughput rate of a continuous media source is

characterised by the performance parameters and the service commitment clause. The

regulator is configured, at flow establishment or QoS adaptation (i.e., re-negotiation) time,

to shape the flow in accordance with this characterisation by assigning an eligibility time to

each frame segment to be transmitted. Only guaranteed and statistical flows are given

eligibility times; best effort flows are sent at a rate determined by the workload of the

scheduler (see below). Figure 4.6 shows that a flow can be viewed as a stream of media

taking a specific path through the sequence of buffers, regulators and scheduling queues.

4.5.2.2 Flow Scheduler

Once a flow has been shaped, the scheduler arranges for the transmission of frames in

accordance with a pre-determined end system delay allocation. End system delays are

allocated at flow establishment time when each intermediate switch commits to meeting a

particular fraction of the permitted end-to-end delay [Anderson,91] [Robin,94]. By limiting

the number of guaranteed and statistical flows (as part of flow admission control

schedulability test) one ensures that each deadline will be met and each frame delay

bounded. No such test is required for the best effort service queue.

Scheduling at the transport layer is based on an hierarchical deadline scheduling. Three

scheduler communication service queues are used [Ferrari,92]: one each for guaranteed,

statistical and best effort flows. The guaranteed and statistical queues are sorted by deadline

where deadline is calculated as eligibility time plus the delay component. The scheduler

queues are serviced in strict order of priority which is given first to the guaranteed queue,

second to the statistical queue and lastly to the best effort queue. The scheduler services

frames from guaranteed and statistical queues using a non pre-emptible discipline.

4.5.2.3 Flow Monitor

 In addition to the above described QoS mechanisms, the protocol includes a flow

monitoring mechanism which has been designed for point-to-point and multicast flow

environments. For multicast communications different receivers are likely to have

heterogeneous service contracts. It is also likely that the source and receivers will all have

disparate flow specifications. This is illustrated in figure 4.7 which shows a source (i.e.,

atc) and a number receiving end-systems (viz. mr-little, dwp, njy) interconnected via three

 -84-

ATM switches (viz. chuff, sparrow, rook). A multicast switched virtual circuit is

established as indicated which carries a flow from atc to njy, dwp and mr-little,

respectively. Each receiver has differing QoS demands on the flow as represented by

service contracts (viz. QoS_0, QoS_1, QoS_2, QoS_3). In Chapter 6 describes how

heterogeneous QoS demands are resolved in a QoS-A based network. At present, though,

the need for multicast based QoS monitoring will be highlighted.

sparrow rookchuffatc

mr-little dwp

njy

multicast switched
virtual circuit

source monitoring

receiver monitoring

core and multicast QoS management entity

QoS_1 QoS_2

QoS_3

QoS_0

Figure 4.7: QoS Monitoring

Flow monitoring is a core mechanism in the QoS-A and provides the basis for a number

QoS feedback loops that are fundamental to the operation of dynamic QoS management.

The transport protocol flow monitoring component gathers statistical information regarding

the ongoing flow of media, both at the source and the sink of the transport flow. This

information is used by the transport QoS manager during the on-going QoS maintenance of

flows. Based on a flow's measured performance the transport QoS manager and transport

protocol interact over the resource, control and monitor interfaces (described in section

4.5.1 and illustrated in figure 4.1 and figure 4.5) to maintain the flow's QoS.

The flow monitor is configured to operate in one of two possible flow monitoring

modes on a per-flow basis. These are:

i) source monitoring, which periodically monitors the flow, records its transmission

statistics as media is injected into the network; and

ii) receiver monitoring, which periodically monitors the flow and records the

reception details as media is received from the network.

In both cases, the resulting QoS assessment messages are forwarded to the transport

 -85-

QoS manager for processing. Flow monitor measurements are made over a predefined per-

flow measurement interval called an era [Nahrstedt,93] which is, by default, the reciprocal

of the frame rate specified in the flow spec (i.e., for a frame_rate of 25 frames per second

the interval is 40ms). In essence, the transport protocol monitors a flow’s on-going

performance and the transport QoS manager maintains it. In this sense, flow monitoring is

a passive mechanism and maintenance an active one.

Flow monitoring is initiated when a start_monitor command (indicating the maint mode)

is received by the transport protocol from the transport QoS manager at the protocol’s

monitor interface for a particular flow-id. When monitoring is enabled, the monitor operates

in one of the two defined modes; the mode is implicitly based on the direction of the flow.

4.5.2.4 Resource Manager

The resource interface provides access to the protocol’s buffer management, regulation

and scheduling modules which are used both during the flow establishment time and QoS

adaptation time. During flow establishment the various mechanisms are configured in

accordance with the flow spec and commitment clauses in the service contract. Figure 4.8

presents the performance parameters together with the mechanisms required for their

support and the resource configuration required for the three types of service commitment.

Guaranteed flows achieve guaranteed QoS by reserving dedicated communications

buffers (based on peak rate allocation) and using non pre-emptible deadline scheduling and

admission control. Statistical flows achieve a higher degree of resource utilisation by using

a flexible resource allocation policy whereby pools of communication buffers are shared

based on average rate allocation. Statistical flows also use deadline scheduling and

admission control, and can be pre-empted by guaranteed flows. In this case statistical flows

can potentially miss a percentage of their deadlines and still achieve the desired QoS

(missed deadlines are bounded by an admission test for statistical flows [Robin,94]). Best

effort traffic receives no resource or service commitment in the QoS-A; however, if

resources (buffers, scheduler, etc.) are available and not currently in use by statistical flows

they can be borrowed by best effort traffic. These borrowed resources, however, can be

reclaimed at any point, making the resources available to a best effort service pre-emptible.

QoS commitment

 -86-

 QoS

parameter

 QoS

 mechanism

guaranteed statistical best effort

loss buffer

management

fixed buffer

allocation based

on the peak rate

shared buffers

based on average

 rate

no guaranteed

buffer allocation

throughput regulation

(flow

shaping)

eligibility time

based on peak

rate

eligibility time

based on average

rate

no regulation

resources

committed

delay

and jitter

scheduling flow always

scheduled

at eligibility time

flow scheduled at

eligibility time

resources

permitting

flow scheduled if

scheduler idle

Figure 4.8: Commitment Class Based Resource Reservation

4.5.3 Control Plane

The METS signalling (METSig) protocol module illustrated in figure 4.1 is responsible

for the management of groups, the establishment of point-to-point and multicast

connections, and signaling support for dynamic QoS management required by the flow

management plane. Applications interact with the flow management plane over a flow

management interfaced (the 'fm-socket' as illustrated in figure 4.5). Furthermore,

applications issue group management (viz. openGroup, getInfo, closeGroup), connection

management (viz. joinFlow, leaveFlow) and dynamic QoS management (viz. changeQoS)

primitives on this interface. The flow management and QoS maintenance planes interact

with METS signalling protocol modules over the control planes' control interface (i.e., 'S'

interface) for the establishment, QoS management and tear down of multicast flows.

4.5.3.1 Meta-Signalling Protocol

METS signalling messages are conveyed on a dedicated connection called the METS

meta-signaling channel as illustrated in figure 4.9. Network level QoS-A signalling

modules resident in switches and end-systems interpret meta-signalling messages and

forward them to the appropriate signalling module for processing. The METS meta-

 -87-

signalling base service provides a low latency full duplex assured service for the

transmission of group, connection and dynamic QoS management primitives and is

implemented by the meta-signalling protocol.

dynamic
QoS

management

meta-signaling protocol

to network

meta-signaling channel

multicast
connection

management

group
management

control interface

open(),
getInfo(),
close()

join(),
leave() changeQoS();

flow management plane

Figure 4.9: METS Signaling (METSig)

4.5.3.2 Group Management

METS group management allows the user to create a multicast group. Each multicast

group is allocated a multicast group address. Group management advertises the service

contract of the source QoS. Receivers interrogate QoS groups to determine the traffic

characteristics of the offered media and select the components of the flow which meet their

QoS capabilities. Group management primitives include open group, get group information

and close group. For full details on group management and QoS groups see Chapters 6 and

7. When a multicast group has been created, via METS group management signalling,

users are free to establish a connection to the flow using METS connection management

signalling.

 -88-

4.5.3.3 Connection Management

METS connection management is based on Core Based Tree [Ballardie,94] multicasting

signalling where senders and receivers join and leave multicast flows in an independent

manner. Members of a multicast group rendezvous at special network nodes called cores as

illustrated in figure 4.10. The issue of de-coupling members of groups in this manner is an

important consideration when dealing with scaling in networks. When a group is created a

core is designated. When a core has been instantiated in this manner members of the group

can then issue join commands using an allocated multicast address. This address is based

on the address of the core in QoS-A connection management. Join messages are transmitted

along the meta-signalling channel and include the source or receiver's QoS requirements for

the flow specification and QoS commitment.

join.req()
/join.ack()

sparrow rookchuffatc

mr-little dwp

njyjoin.req()
/join.ack()

connection management
switched virtual circuit

Figure 4.10 : METS Connection Management Signalling

4.5.3.4 Dynamic QoS Management Signalling

When a source and at least one receiver (this is derivative of multicast, i.e., a point-to-

point connection) have successfully established connections media transfer can begin. In

this mode source nodes send media toward the core on the designated multicast address and

the core base tree disseminates the media to all receivers at the QoS level designated by each

receiver oriented join command. During the media transfer phase any member of the group

can renegotiate their QoS. In this case flow management signalling supports the QoS

adaptation protocol for renegotiation of QoS.

 -89-

4.6 QoS Maintenance Plane

The transport protocol and transport QoS manager are tightly coupled to operate in the

same time domain. This is crucial for fine QoS adjustment as the QoS maintenance plane

must be able to detect and react to real-time performance fluctuations which may occur in

the protocol time domain.

According to the three maintenance policies available (see section 4.4.4), the transport

QoS manager operates as follows. For all options the transport QoS manager receives

periodic QoS assessment messages generated by the transport protocol.

Based on the mode of operation QoS maintenance takes the following actions:

i) the signal policy dispatches these messages on to the flow management plane and

no other action is taken by QoS maintenance;

ii) the monitor mode dispatches the messages and attempts to actively uphold the

end-to-end performance parameters via a monitor-measure-adjust loop based on

whether the requesting node is a source or receiver;

iii) the maintain mode does not forward the QoS assessment messages but attempts

to actively uphold the end-to-end performance parameters via a monitor-measure-

adjust loop based on whether the requesting node is a source or receiver.

 If the requesting node is a source node the transport QoS manager attempts to actively

uphold the end-to-end QoS by making fine adjustments via the tune_resource primitive on

the transport protocol’s resource interface. Fine resource adjustment counters QoS

degradation by adjusting loss via the buffer manager, queueing delays via the flow

scheduler and throughput via the flow regulator. Within contracts, if the requesting node is

a receiver node the transport QoS manager attempts to compensate for: i) jitter correction by

adjusting playout delays via the flow scheduler and throughput via the flow regulator and ii)

loss by signalling any lost packet to the higher layer error control modules.

If the transport QoS manager detects that any of the QoS parameters have degraded

below their desired levels then a qos_alert message is sent to the flow management plane

which takes the appropriate action based on the adaptation clause.

In addition to its role in supporting the various maintenance policies described above,

the QoS manager is also responsible for implicitly maintaining the commitment clause in

statistical flows by means of the same monitor-measure-adjust loop. Note that it is not

necessary to actively maintain guaranteed flows or best effort flow. The former have

 -90-

resources exclusively dedicated to them and the latter are not maintained by definition.

However, service fluctuations are anticipated from time to time in statistical flows because

they share transport and network communication resources.

The information passed periodically for QoS assessment to the receiver, sender or

remote adaptation handler is as follows:-

typedef struct {

int flow_id; /* flow-id */

 int mode; /* source or receiver */

int originator; /* originator address */

int mcast; /* multicast group address */

int frame_seqno; /* Seqno of frame which generated msg */

int time_stamp; /* timestamp */

int interval; /* measurement interval */

int measured_delay; /* QoS assessment begins */

int measured_jitter;

int measured_loss;

int measured_rate;

int desired_delay;

int desired_jitter;

int deired_loss;

int desired_rate;

} qos_assess_msg;

Multicast QoS managers are able to develop a statistical representation of the end-to-end

QoS for each member of the group utilising the performance data supplied within QoS

assessment messages. The qos_assessment message is partitioned into measured and desired

QoS statistics; these include delay, jitter, throughput and loss rate measured during the era.

4.7 Flow Management Plane

 The flow management plane is responsible for a number of static and dynamic QoS

management functions as depicted in the resource management tree in figure 4.3. The major

functions, described below, consist of the provision of network signalling infrastructure,

resource reservation and QoS adaptation for the realisation of coarse grained dynamic QoS

management as specified in the flow spec’s adaptation clause. The flow management plane

also performs other management functions such as the mapping of QoS representation

between layers.

 -91-

4.7.1 Flow Reservation

A major part in flow establishment algorithm is reservation in the end-systems and in

the network - according to the user specified service contract. Resource reservation

allocates resources in accordance with the QoS commitment specified in the service

contract. For a guaranteed service all resources are allocated based on the peak rate. For the

statistical service resources are allocated based on the sustained rate. No resources are

allocated for best effort commitment. Flow reservation interacts with QoS mapping to

determine the QoS parameterisation for a particular layer. Then it interacts with admission

control to determine whether sufficient resources are available to accommodate a new flow.

The details of QoS mapping and admission testing will be discussed in Chapter 5.

For the purposes of efficient flow management and QoS control the network is

partitioned into domains [Crosby,93] which constitutes arbitrary collections of network

devices (e.g., switches, routers, multimedia workstations, continuous media storage

servers). In each domain, the network aspects of the flow management resource reservation

function are realised as a single domains server called a domain flow management (DFM)

as illustrated in figure 4.11.

domain

source

domain

domain

receiver

dfm dfm routes

device routes

device routes
dfm

dfm

receiver
uniuni

uni

joinFlow();

Figure 4.11: QoS-A Flow Management Domains

A number of architectural choices are possible for domain flow management realisation.

One proposal in the literature [Cidon,92] advocates a fully distributed architecture capable

 -92-

of making resource management decisions for the complete flow such as flow admission

control at any node. This has the advantage of reducing connection setup time since global

state is available locally. However, disadvantages include the latency associated with

maintaining consistency between multiple nodes and the additional network load incurred.

Our approach is partially distributed in nature (one server per domain) and thus reduces the

overhead incurred when maintaining database integrity while simultaneously avoiding

bottlenecks introduced by an excessively centralised solution.

When a joinFlow is issued by a transport user, the control plane consults its local DFM.

If the request can be satisfied, the DFM provisionally marks the requested resources as

allocated. The DFM then multicasts a set_attribute_request primitive to the network QoS

managers at all nodes in the data path toward the core to request that they allocate the

resources requested. It then sends a confirmation to its requesting transport service user

when all the QoS managers involved have acknowledged (via set_attribute_confirm)

allocation of the requested resources. When a connection traverses a domain boundary

DFMs interact directly to establish the connection.

4.7.2 QoS Adaptation

In its QoS adaptation role, the flow management plane is responsible for initiating the

coarse grained QoS adjustments specified in the service contract’s adaptation clause. The

behaviour of the flow management plane is also determined by the maintenance clause.

If the maintenance mode is in signal or monitor mode the flow management plane

simply receives periodic QoS assessments from the transport QoS manager and passes them

on to the application. In maintenance mode the flow management plane does not receive any

QoS assessments as the responsibility for flow management has been delegated to the layer

transport QoS manager.

The flow management plane may receive QoS alerts [Campbell,93a] from the transport

QoS manager if the latter is unable to maintain the flow within the prescribed bounds. In

this case, the flow management plane takes appropriate action based on the adaptation

clause. These actions consist of the issuing of a QoS degradation indication via a QoS event

signal to the user, the initiation of a QoS adaptation (i.e., QoS renegotiation) on one or

more specific performance parameters or QoS commitments.

QoS signals are forwarded to the application based on the monitor mode:

 -93-

typedef enum {source, receiver, remote } monitor_t;

Options source and receivers default to the flow management interfaces as indicated at

the "s" interface in figure 4.5. If the remote monitoring option is selected then QoS signal

messages are forwarded to a remote flow management entity for processing. This remote

monitoring is particularly important for multicast QoS management; see later for full details

of this service. Periodic performance notifications include measured bandwidth, delay, jitter

and losses for on-going flows as measured at the source or receiver. The signal fields of the

QoS policy (described in Chapter 6) allow the user to specify the interval over which one or

more QoS parameters are monitored and the user informed.

Remote QoS adaptation handlers are generally used for multicast QoS management.

Actions taken by the multicast QoS management entity can include QoS adaptation or

instantiation of new QoS filters to address fluctuation in the delivered QoS experienced by

members of the multicast group. These and other multicast QoS management issues will be

discussed in Chapter 6.

4.8 Baseline QoS-A

This thesis only considers the implementation of the transport and network layers of

QoS-A model. The transport comprises the METS protocol (METSP) in the user plane and

the corresponding METSig in the control plane. The flow management plane is realised as a

per end-system flow management protocol (FMP) which subsumes the flow management

functions of QoS mapping, admission control, resource reservation and QoS adaptation.

The physical network layer is based on ATM switching.

The METSig protocol provides a framework for the establishment of dynamic QoS

management of network resources using the meta-signalling protocol described in section

4.3.1. The FMP in the local ATM area has two primary resource reservation functions:
i) to request the allocation of CPU and memory resources on remote end-systems;
and

ii) to allocate and manage resources in the network via interactions with METSig.

Below the METSP layer in the user plane, an ATM Adaptation Layer service is used to

perform segmentation and reassembly of IP packets into/from 53 byte ATM cells. A

minimal AAL5 service is utilised for this purpose.

The lowest layer of the architecture is based on the Lancaster Research ATM

 -94-

Networking Environment. This delivers ATM to a combination of workstations, PCs, and

multimedia devices designed at Lancaster [Blair,93] [Lunn,94] and also interconnects a

number of Ethernets and interfaces to the rest of the UK via the SuperJANET 34 Mbps

Joint Academic Network. The PCs are directly connected to ATM switches manufactured

by Olivetti Research Limited (ORL) via 4x4 ORL ATM interface cards. The ATM switches

are implemented using ‘soft’ switching and run a small micro-kernel called ATMos as

identified in figures 4.12a and 4.12b. The PCs run an extended Chorus or Linux in order to

provide the necessary operating system support for QoS-A. Next, in Chapter 5 the detailed

design of the QoS-A operating system support will be presented.

ATM

AAL5

transport
QoS

manager
M

R
C

METSP

chorus /linux environment ATMos environment

Qt

AAL5

A

T

continuous
media

F

flow
management

S

signalling

METSPMETSig

physica
l

ATM QsSwitch
QoS

manager
M

R

flow
 m

anagm
ent

protocol

M
E

T
S signalling protocol

 Figure 4.12a: Flow Protocol Projection Figure 4.12b: Flow Management Projection

4.9 Summary

This chapter outlined the QoS-A and focused, in particular, on the transport system.

The METS transport system is comprised of signaling (METSig) and protocol (METSP)

modules which map to the control and user plane of the QoS-A, respectively. To meet

transport level QoS requirements, METSP incorporates buffer sharing, rate regulation,

scheduling and basic flow monitoring QoS modules. Each module is configured based on

the flow specification and QoS commitment described in the service contract QoS

specification. Group management, multicast connection management and a signalling

component are components of METSig. The QoS maintenance plane is comprised of a

 -95-

transport QoS manager for the fine grained QoS management of on-going flows.

Applications interact with a flow management protocol over the fm-socket interface for the

establishment and dynamic QoS management of multicast flows.

This chapter concluded with a description of the baseline QoS-A which will be

addressed in the implementation and evaluation chapters (Chapters 7 and 8, respectively).

 -96-

Chapter 5

 Operating System Support for
Quality of Service

 Operating systems support for QoS configurable communications is an important

aspect of a generalised QoS-A. This chapter focuses on resource management components

of the flow management, QoS maintenance and protocol planes in the end-systems with

particular emphasis on CPU scheduling, network resource management and memory

management issues. With a trend toward the use micro kernels in switches for the purposes

of signalling and server creation (e.g., the ORL uses the ATMos microkernel [French,93])

the content of this chapter is also applicable (with certain restrictions) to network switch

operating system design. The focus of this chapter is, however, the idealised end-system

operating system support for a QoS-A which guarantees QoS levels of both

communications and processing with varying degrees of QoS commitment as specified by a

user level service contract. The flow management plane of the QoS-A uses admission tests

to determine whether or not new activities can be accepted and modules for QoS mapping

of flow specification into representations usable by the scheduling, network and memory

management subsystems.

This chapter aims at providing system software support for continuous media

applications in an environment of standard workstations utilising ATM based networking.

Our specific aims are as follows:-

• to support a heterogeneous system consisting of PC and workstation end-systems

connected by ATM,

• to enable continuous media applications to enjoy predictable performance in both

communications and processing according to user provided QoS parameters,

• to retain the ability to run standard UNIX applications alongside continuous media

applications.

The approach taken is to use the Chorus [Bricker,91] and Linux operating system

[Linux,93] to underpin both UNIX and multimedia applications. This chapter primarily

 -97-

focuses on extensions made to the Chorus micro-kernel to support QoS-A requirements.

Many of the design decision made for Chorus are, however, applicable with certain

relaxation to Linux; this is discussed this further in Chapter 7.

This Chapter begins by providing, in section 5.1, some necessary background material

on Chorus. Following this section 5.2, presents an overview of the proposed QoS

extensions to Chorus. This consists of:-

• a CPU scheduling framework which minimises kernel context switches in both

application and protocol processing,

• an ATM based communication stack a in the QoS-A baseline architecture;

• a framework for QoS driven memory management, and

• a framework for flow management which integrates the management of resources

in both end-systems and the network.

Section 5.3 investigates the management of CPU, communications and memory

resources in this architecture. The various resource management functions are categorised

as either static or dynamic. In essence, static QoS management deals with connect time

aspects of the control and flow management planes including issues such as QoS mapping

(i.e. deriving resource quantities from QoS parameters), and admission testing (i.e.

determining whether new sessions can be created given their specific resource requirement

and current resource availability) and resource reservation.

Dynamic QoS management (DQM) aspects of the flow management, QoS maintenance

and user planes, on the other hand, deals with media-transfer time issues. In its full

generality dynamic QoS management subsumes maintenance, monitoring, flow scheduling,

flow shaping and QoS adaptation of QoS levels. The role of DQM QoS control, which is

the only dynamic aspect treated in this chapter, is to actually achieve the requested levels of

QoS given the resources statically dedicated at resource allocation time - e.g. by providing

suitable scheduling mechanisms, and arranging for time constrained memory access and

protocol operation.

5.1 Background on Chorus

Chorus is a commercial micro-kernel technology which supports the implementation of

conventional operating system environments through the provision of ‘personalities’ (for

 -98-

example a personality is available for UNIX SVR4 as mentioned above). The micro-kernel

is implemented using modern techniques such as multi-threaded address spaces and

integrated message based communications. The basic Chorus abstractions are actors,

threads and ports, all of which are named by globally unique identifiers. Actors are address

spaces and containers of resources which may exist in either user or supervisor space.

Threads are units of execution which run code in the context of an actor. They are

scheduled according to either a pre-emptive priority based or round robin timeslicing

scheme. Ports are message queues used to hold incoming and outgoing messages. The

inter-process communication sub-system supports both request/reply messages and

asynchronous messages.

Chorus has several desirable real-time features and has been fairly widely used for

embedded real-time applications. Its real-time features include pre-emptive scheduling, page

locking, timeouts on system calls, and efficient interrupt handling. Unfortunately, Chorus’

real-time support is not fully adequate for the requirements of distributed real-time and

multimedia applications, principally because there is no support for QoS specification and

resource reservation:-

• although it is possible to specify thread scheduling constraints relative to other

threads, absolute statements of requirement for individual threads cannot be made,

• in the communications sub-system, the exclusive use of connectionless datagrams

makes it impossible to pre-specify communications resource allocation,

• due to the use of a paged virtual memory system it is not possible to place bounds

on memory access latency except by the extreme measure of wiring pages.

Note, however, that such limitations are not unique to Chorus: they are shared by most

of the other micro-kernels in current use (e.g. [Accetta,86], [Tanenbaum,88]).

5.2 Operating System Support for Quality of Service

5.2.1 Chorus API with QoS Extensions

To remedy its current deficiencies for QoS specification and real-time application

support, the Chorus system call API has been extended with new low level calls and

abstractions as required by the QoS-A. The new abstractions, provided in both the kernel

and a user level library, are illustrated in figure 5.1 and described below.

 -99-

application
programmer's
interface (API)

rtport on device

user level
library

rtport
on
device

kernel
device

rthandlers

kernel

application

null
device

Figure 5.1: Devices, Rtports and Handlers

• rtports: these are extensions of standard Chorus ports and serve as access points

for real-time communications. Rtports have an associated QoS which defines

timeliness constraints on communication. They also provide direct application

access to buffers thus minimising copy operations.

• devices: these are producers, consumers and filters of real-time data which support

the creation of rtports and provide the memory for their buffers. One special type of

device is the null device which is implemented in a user level library and permits

user code to produce/ consume real-time data through the use of rthandlers.

• rthandlers: these are user supplied C routines which provide the facility to embed

application code in the real-time infrastructure. They are attached to rtports at run

time and upcalled on real-time threads by the infrastructure when data is available/

required. They encourage an event-driven style of programming which is

appropriate for real-time applications and also avoid the context switch overhead

associated with a traditional send()/ recv() based interface.

• QoS controlled connections: these are communication channels with a specific

QoS1. A connection is established between a source and a sink rtport according to a

1 QoS controlled connections are abstractions and are uniformly used for both remote and local communications. In
the remote case, they are implemented in terms of the communications architecture described in section 3.3. In the
local case, they are implemented in terms of optimised memory mapping mechanisms described in section 4.5.3.

 -100-

given QoS specification. There are two types of connection: stream connections for

periodic and continuous media data, and message connections for time-constrained

messages. Stream connections are active in the sense that they initiate the transfer of

data by upcalling a source rthandler (if attached). Message connections differ in that

they passively wait for a source thread to pass them data via an ipcSend() call.

• QoS adaptation handlers: these are upcalled by the infrastructure in a similar way

to rthandlers but are used to notify the application layer when QoS commitments

provided by connections have been violated.

In addition to these features, the Chorus API includes calls for dynamically re-

negotiating the QoS of open connections and for building pipelines of ‘software signal

processing’ modules for local continuous media processing such as QoS filtering and

scaling. It also has synchronisation primitives based on event counters and sequencers

which incorporate the notion of deadline inheritance [Coulson,94b] whereby a ‘worker’

thread carrying out a task on behalf of a calling thread inherits the deadline of the caller.

Full details of the continuous media API are specified in [Coulson,94a] and [Coulson,94b].

5.2.2 End-System Scheduling

The scheduling architecture exploits the concept of lightweight threads which are

supported in a user level library and multiplexed on top a single Chorus kernel thread per

actor. In this context, Chorus kernel threads are referred to as virtual processors (VPs).

The scheduling architecture is a split level configuration [Govindan,91] consisting of a

single kernel scheduler (KLS) to schedule VPs, and per-actor user level schedulers (ULSs)

to schedule lightweight threads on those VPs (see figure 5.2).

The advantage of lightweight threads and user level scheduling is that context switch

overhead is minimal. On the other hand, the drawback of user level scheduling is that, by

definition, it cannot ensure that CPU resources are fairly shared across multiple actors. This

is the role of kernel level scheduling. The split level architecture combines the benefits of

both user level and kernel level scheduling by maintaining the following invariants:-

i) each ULS always runs its most urgent1 lightweight thread, and

ii) the KLS always runs the VP supporting the globally most urgent

lightweight thread.

1 The notion of ‘urgency’ is dependent on the scheduling policy used (e.g. it would be deadline for EDF
scheduling and priority for rate monotonic scheduling). The issue of scheduling policies is deferred until section
4.3.

 -101-

user level
library

ULS

user level
threads

KLS

kernel
thread

user level
library

ULS

user level
threads

kernel
thread

Figure 5.2: Split level scheduling architecture

The scheduling invariants are maintained via a KLS/ ULS information exchange

realised in terms of shared KLS/ ULS memory areas and software interrupts

[Govindan,91]. The shared memory area is divided into per-VP areas, each of which

contains the urgency of the most urgent runnable lightweight thread known to its associated

VP (along with some other information as described below). These urgency values are read

by the KLS on each kernel level rescheduling operation to determine the next VP to

schedule. Software interrupts are used by the KLS to inform VPs of the occurrence of real-

time events in a timely fashion. Such events include timer expirations (used to implement

pre-emption in user level scheduling), and data arrivals from local kernel devices or from

the network. Software interrupts are always targeted at VPs but can be initiated either by

kernel components (e.g. the KLS) or by library code in other application actors (see section

5.3.5.3).

The scheduling scheme also embodies the notion of conditional urgency. This allows

not only the urgency of the most urgent runnable lightweight thread to be taken into account

by the KLS (as above), but also the urgency of currently blocked threads. The

implementation, which again exploits the shared memory area, uses per-VP conditional

urgency sets which contain {thread_id, event, urgency} triples. In each triple, urgency

represents the urgency that thread thread_id would have if only event was available to

unblock it. The urgency values must all be greater than the urgency of that VP’s most

urgent runnable lightweight thread and the event values must all refer to events expected

 -102-

from an external source. Thus, when the KLS has an event to deliver, it will run the VP to

which event is addressed iff there is a matching triple in that VP’s conditional urgency set

and the indicated urgency value is globally more urgent than that of any other lightweight

thread.

To avoid potential violations of the scheduling invariants, the system call interface seen

by lightweight threads in terms of non-blocking system calls is implemented[Marsh,91]. If

lightweight threads performing system calls were permitted to block their underlying VP,

they would also necessarily block all other lightweight threads multiplexed on that VP.

Then the scheduling invariants would be violated if one of these other threads happened to

be the globally most urgent. Non-blocking system calls avoid this problem by returning

immediately from system calls, thus allowing ULSs to block the calling lightweight thread

at the library level while continuing to run other lightweight threads on the actor’s VP. The

results of calls are eventually notified to the ULS via software interrupts. On receipt of such

an interrupt the ULS stores the result in the data structures of the original lightweight thread

and then lets it ‘return’ from its system call. Thus application code sees only blocking

system calls (as per standard Chorus), and the complexities of non-blocking calls are

masked by library code.

The implementations of software interrupts and non-blocking system calls also exploit

the shared kernel/ user memory area. To deliver a software interrupt, the kernel places an

event identifier and parameters in the shared memory area and then alters the program

counter field of the user VP’s context structure (also in shared memory) to point to a well-

known entry point in the ULS. Thus, when the VP is next scheduled by the KLS, the VP

immediately enters the ULS which picks up the event identifier and parameters, and

schedules a lightweight thread to deal with the event. The implementation of the proposed

variant of non-blocking system calls which, because of the analogy with software interrupts

is referred to as asynchronous system calls [Coulson,94b], is similar. The user level library

places an operation identifier and parameters in shared memory and then sets an ‘operation

request’ bit. The KLS, when it runs at the next system clock tick, notices that the operation

request bit is set and copies the user’s parameters to the appropriate VP or kernel server

thread as determined by the operation identifier. Note that both software interrupts and

asynchronous system calls avoid a special domain crossing; the call is actually effected the

next time the recipient context (i.e. the ULS or the kernel) gets control by other means.

 -103-

5.2.3 Communications

The standard Chorus communications stack was designed for the support of

connectionless datagram services and uses retransmission strategies to enhance reliability.

In contrast, the QoS-A baseline architecture (see chapter 4) is intended to support QoS

controlled connection oriented communications. Because of these disparate design goals,

the stack has been initially designed to operate entirely separately from the existing Chorus

facilities.

 In implementation, the baseline architecture is mapped partly onto per-actor user level

libraries and partly onto a single, per machine, supervisor actor called the network actor.

The transport protocol signalling is implemented as part of a flow management actor. The

remaining transport functions and transport QoS manager are implemented in the same user

level library that supports the service contract API discussed below so that its service

interface can be provided using the rtport and rthandler abstractions. The media transfer

aspects of transport protocol communicates with the network actor via system calls for send

side communications, and software interrupts for receive side communications. All

signalling associated with a flow communications with the flow management actor via

system calls for the send side, and software interrupts for the receive side.

Below the transport protocol, the rest of the communications architecture, including the

ATM card and AAL5 device driver, is also implemented in the network actor. A software

AAL5 implementation is required because the ATM interface cards used only support data

transfer at the granularity of ATM cells which is required for the cell based scheduling

experimentation. The AAL5 implementation uses per-flow threads to perform segmentation

and reassembly on both the send and receive side, with optional checksumming. This

implementation choice reduces multiplexing in the stack to an absolute minimum as dictated

by the performance principle.

Currently, the maximum service data unit sizes for the AAL5 and transport layers alike

is restricted to 64 KBytes. This means that no further segmentation/ reassembly is required

above the AAL5 layer1. The ATM cards are interrupt driven and communication between

the interrupt service routines and the per-flow AAL5 threads is via Chorus ‘mini-ports’.

See section 5.3.4.3 for more details of the low level cell handling functions and AAL5

implementation.

1 It would be a relatively straightforward extension to support arbitrarily sized buffers at the API level by
supporting segmentation and reassembly in the transport protocol if this proved necessary.

 -104-

5.2.4 Memory Management

The standard abstractions used by the Chorus virtual memory system are segments,

regions and mappers :-

•segments are the unit of information exchange between the outside world (e.g. files

or swap areas) and the virtual memory (VM) layer in the kernel. In main memory

segments are represented by so-called local caches of physical pages.

•regions are the unit of structuring of actor address spaces. A region contains a

portion of a segment mapped to a given virtual address. Regions have associated

access rights which are policed by the VM layer.

•mappers are supervisor actors which implement the link between external segments

and their main memory representation and maintain the protection and consistency

of segments. Mappers are accessed from the kernel via an upcall RPC interface

when the kernel needs to bring in or swap out a page of a segment.

The purpose of the extended memory management architecture, which is built on top of

the above abstractions, is to ensure that applications and QoS controlled connections can

access memory regions with bounded latency. It is of little use to offer guaranteed CPU

resources to threads if they are continually subject to non predictable memory access latency

due to arbitrary page faulting1. Our design encapsulates most of the QoS driven memory

management functionality inside a QoS enhanced agent called the QoS mapper. The roles of

the QoS mapper are:-

• supplying application actors with memory regions offering latency bounded

access,

• determining whether or not requests for QoS controlled memory resources should

succeed or fail,

• pre-empting QoS controlled memory from ‘low urgency’ threads on behalf of

‘high urgency’ threads when necessary, and,

• efficiently re-mapping QoS controlled memory regions from one actor to another.

In addition to servicing requests from the kernel VM layer, the QoS mapper is used to

1 Note that, in addition to buffers, it is also necessary to provide bounded latency access to code and stack
regions of QoS controlled threads if QoS guarantees are to be maintained.

 -105-

implement the connection abstraction in the intra-machine connection case (see section

5.3.5.3). User level code can also invoke the QoS mapper via extended versions of the

rgnAllocate() and rgnFree() Chorus system calls. These respectively allocate and free a QoS

controlled region of memory at connection establishment time.

5.2.5 Flow Management

Flow management includes aspects of both static and dynamic QoS management. In the

case of static QoS management, the flow management actor must arrange, at flow

establishment time, for the allocation of resources according to the user specified service

contract. As illustrated in figure 5.3 the flow management protocol (FMP) co-operates with

the CPU, memory, and network resource management modules and partitions the

responsibility for QoS support among the individual resource managers. For example, for

remote communications, the FMP partitions the API level delay QoS parameter between the

network and the CPU resource management module in the end-system.

The FMP is also responsible for the dynamic QoS management described in chapter 4.

In this role, it can adapt to degradations in resources based on the QoS adaptation clause.

The maintenance function embedded in the flow management actor will compensate for

momentary degradation in one resource in terms of another. In this mode it will do this

without either involving the application or violating the service contract. For example, and

increase in jitter caused by the network can be transparently compensated by increasing the

buffer allocation and adjusting the playout time of the media - as long as the delay QoS in

the service contract is not thereby compromised.

I realise the functionality of the flow management and control planes under a flow

management scheme which adopts a split level structure to the end-systems and

communications resources. First, when a new joinFlow requests for QoS controlled

connection is requested, the QoS mapping function in a user level library determines the

resource requirements of new connection requests. The output of the QoS mapper is then

directed to each resource management module in turn to performs admission testing and

resource allocation for the end-system and network resources. Flow management must

communicate with each of the CPU, network and memory resource managers

independently, and only if all are able to provide the required resource commitment can the

connection request be granted.

 -106-

flow
management

actor

memory
resource
manager

network
resource

manager
resource
manager

CPU

group management
connection management
dynamic QoS management
primitives

METSig

Figure 5.3: Flow Management

Connection management is necessary for remote communications. In this role flow

management invokes METSig connection management to do this. In the end-system

METSig is embedded in the network actor along with the transport and communication

device driver functions.

5.3 Resource Management

Prior reservation of resources to connections is necessary to obtain guaranteed real-time

performance. This section describes the resource reservation framework and shows how

user level QoS parameters are used to derive the resource requirements of connections and

make appropriate reservations. It also examines some dynamic QoS management issues.

This chapter concentrates on the reservation of specific resources (i.e. CPU, memory and

network resources) rather than treating resource reservation as an integrated activity driven

by the FMP.

In outline, there are two stages in the resource reservation process. QoS mapping is the

process of transforming service contract QoS parameters into resource requirements and

admission testing determines whether sufficient uncommitted resources are available to

fulfil those requirements.

5.3.1 Chorus Service Contract

Prior reservation of resources to connections is necessary to obtain real-time

 -107-

performance. This section describes the resource reservation framework in the

implementation and show how the user level service contract is used to derive the resource

requirements of the connections and to make appropriate reservations. The are two stages to

resource reservation: QoS mapping is the process of transforming the service contract's

flow spec and commitment clauses into resources and flow admission control determines

whether sufficient uncommitted resources are available to fulfil those requirements.

Our experimental ATM platform only uses a subset of the general service contract API

described in section 5.2. The general service contract visible at the API is as follows:

typedef struct {

flow_spec_t flow_spec;

 commitment_t commitment;

 delivery_t delivery;

 maintenance_t maintenance;

 adaptation_t adaptation;

 } service_contract_t;

The QoS parameters (which are further discussed in the text below) are visible at the

API level are as follows:-

typedef enum {best_effort, guaranteed} com;

typedef enum {isochronous, workahead} del;

typedef struct {

int flow_id;

int frame_size;

int frame_rate;

int priority;

int burst;

int delay;

int loss;

int interval;

int jitter;

 } flow_spec_t;

Only two levels of QoS commitment are supported. If commitment is guaranteed,

resources are permanently dedicated to support the requested QoS levels. Otherwise, if

 -108-

commitment is best effort, resources are not permanently dedicated and may be preempted

for use by other activities. The frame size is used to determine the required size of the

internal buffer associated with the connection’s rtports. Priority is a new QoS parameter f

that was not described in chapter 4. It is used for fine grained control over resource pre-

emption for connections; all things being equal, a connection with a low priority will have

its resources pre-empted before one with a higher priority.

 Delay refers to the maximum tolerable end-to-end delay, where the interpretation of

‘end-to-end’ is dependent on whether or not rthandlers are attached to the rtport. If

rthandlers are attached, latency subsumes the execution of the rthandlers; otherwise it refers

to rtport-to-rtport latency. When rthandlers are attached a further, implicit, QoS parameter

called quantum becomes applicable. The value of this parameter is dynamically derived by

the infrastructure whenever an rthandler is attached to an rtport. It is defined as the sum of

the rthandler execution time and the execution time of the protocol code executed by the

same thread directly before/ after the rthandler is called1. To determine the quantum value,

the infrastructure performs a ‘dummy’ upcall of the handler and measures the time taken for

it to return (a boolean flag is used to let the application code in the rthandler know whether a

given call is ‘real’ or dummy). It is the responsibility of the application programmer

providing the rthandler to ensure that the dummy execution path is similar to the general

case. Although the value of quantum is dynamically refined as the connection runs, an

inaccurate initial value will inevitably cause QoS violations.

Jitter, measured in milliseconds, refers to the permissible tolerance in buffer delivery

time from the periodic delivery time implied by buffrate. For example, a jitter of 10ms

implies that buffers may be delivered up to 5ms either side of the nominal buffer delivery

time. Delivery is also an extension to the flow specification laid out in chapter 4 . It refines

the meaning of buffrate. If isochronous delivery is specified, connections attempt to deliver

precisely at the rate specified by buffrate; otherwise, if delivery is workahead, it is

permitted to ‘work ahead’ (ignoring the jitter parameter) at rates temporarily faster than

buffrate. One use of the workahead delivery mode is to more efficiently support

applications such as real-time file transfer. Its primary use, however, is for pipelines of

processing stages (e.g., QoS filters) where isochronous delivery is not required until the

last stage [Coulson,94a].

1 Actually there is a third component to the quantum value which is the per-buffer time taken by per-connection
transmit threads at the ATM level. See section 4.4.3 for details.

 -109-

5.3.2 Resource Classes

The following sections distinguish four major classes of QoS controlled connection for

resource management purposes. These resource classes, named GI, GW, BI, and BW are

selected on the basis of the commitment and delivery QoS parameters described above.

They are defined and illustrated below:

{Best effort - isochronous (BI)
- workahead (BW)

{Guaranteed - isochronous (GI)
- workahead (GW)

In addition to the two best effort classes a third best effort class, BC, is distinguished

which refers to non real-time Chorus and UNIX threads out of the scope of the real-time

extensions. Additionally, all three best effort classes are often grouped together and referred

to by the shorthand name B.

5.3.3 The CPU Resource

5.3.3.1 QoS Mapping

For admission testing and resource allocation purposes for stream connections, it is

necessary to know the period and quantum of the threads associated with the connection.

The period is simply the reciprocal of the buffrate QoS parameter and the quantum is

implicitly derived at connect time as explained in section 5.3.1. Figure 5.4 illustrates the

notions of period and quantum together with the related scheduling concepts of scheduling

time, deadline and jitter.

period quantum

deadline scheduling time

jitter

Figure 5.4: Periodic thread scheduling terminology

For message connections, sporadic server threads are used at the receive side1. One

1 There is no thread implicitly associated with the source side of message connections. Dedicated threads are only
applicable when rthandlers are used and, as pointed out in section 3.1, it is not useful to attach rthandlers to the
source of message connections as message connections are not active in the sense of stream connections.

 -110-

sporadic server per application actor is provided for each of the two applicable commitment

classes (viz. GW and B; isochronous delivery is not applicable to message connections),

and each sporadic server handles all the message threads in its class. The quantum of each

server is set to the maximum of the quanta of all the message threads in its class to ensure

that adequate processing time is available for any of the server’s associated threads. The

period of each server is heuristically derived as follows:-

period = min(recv_ latency1, ..., recv_ latencyn)

Recv_latencyi is the proportion of the total end-to-end latency allocated by the FMP to

the receive end-system for message connection i. This method of calculating period is a

compromise which requires less resource than an optimal period (i.e. the optimal period, 1 /

quantum, would ensure that the server was always ready to service a message but would

take all the CPU resource allocated to the class!) while offering a reasonable probability that

the server will be ready when a message arrives.

5.3.3.2 Admission Testing

The semantics of thread scheduling for each of the three resource classes are as

follows:-

• GI: threads for these connections are scheduled to run such that the completion of

a quantum is guaranteed to be completed by the logical arrival time + quantum + j

(where j is the jitter QoS parameter and logical arrival time is the start of the

requisite period). An extended earliest deadline first [Liu,73] (EDF) algorithm and

admission test is used to ensure this behaviour.

• GW: these are scheduled according to the preemptible EDF policy. The jitter QoS

parameter is ignored and quanta may be scheduled ahead of their logical arrival time

to permit workahead. Again, an admission test is performed.

• B: these are scheduled according to the preemptible earliest deadline first policy

but no admission test is used.

Each of the G and B resource classes is allocated a fixed portion of the CPU resource.

Note, however, that the 'firewall' that this separation implies is used only to limit the

number of threads in each class - not to restrict the use of CPU cycles at run time. If there

are unused resources in one class, these resources are automatically exploited by the other

 -111-

class at run time (see section 5.3.3.3).

The firewalls can be dynamically altered at run time by the programmer, but a typical

configuration will allow a relatively small allocation for G threads. This is to encourage

users to choose best effort threads wherever possible. Best effort threads should be

perfectly adequate for many ‘soft’ real-time needs so long as the system loading is relatively

low. The guaranteed classes should only be used when absolutely necessary - in particular,

guaranteed isochronous threads should only be used for connections which are delivering

data to an end device intended for human perception such as a video frame buffer.

The admission tests for GI threads are:-

quantumi

periodi

 ≤ RG
i=1

NG

∑ , 0 ≤ RG ≤ 1

quantumi

quantumi + jitteri

 ≤ 1
i=1

NG

∑
The admission test for this class is a two stage process, and each of the two tests are

modifications of the well known Liu/Layland test [Liu,73] (this guarantees that each

quantum in the given set of tasks can be completed at least by the end of its period as long

as it is runnable at the start of its period). The first test ensures that the overall resource

used by all G threads is not greater than the allocated portion. NG refers to the total number

of G threads in the system and RG refers to the portion of CPU resources dedicated to this

class of threads (such that RG + RB = 1 where RB represents the portion of the CPU

resource dedicated to B threads).

The second test imposes the additional constraint that each quantum must complete by

the end of its user stated jitter bound rather than simply by the end of the requisite period.

Note that this second test is rather conservative (e.g. if a thread with zero jitter is requested

the test will pass only this one thread!). However, this over-conservative property is

relaxed by also taking into account the notion of harmonic sets (i.e. sets of threads all of

whose periods are divisible by the period of the member with the smallest period). It can be

shown [Mauthe,94] that harmonic sets can be scheduled without clashes as long as, in each

period of the thread with the smallest period, it is possible to fit the quanta of all the threads

in the set that fall within this period. This remains true even where the threads involved

have a requirement for zero jitter. Future work optimally exploits the degrees of freedom

allowed by the threads with relaxed jitter constraints for use by those with tight constraints

[Mauthe,94].

 -112-

For GW threads the admission test is simply:-

quantumi

periodi

 ≤ RG
i=1

NG

∑

For B threads there is no admission test and the test for GW sporadic servers is identical

to that for GW periodic threads. Each time a new message connection is created which alters

the period or quantum of its server, a new admission test must be performed to ensure that

the modified sporadic server can still be accommodated in the appropriate resource class.

5.3.3.3 QoS Control

At run time, the dynamic operation of the scheduling scheme uses a combination of

priorities1, deadlines and scheduling times to capture the abstract notion of ‘urgency’. The

scheduler uses three distinct priority bands into which the four classes of thread are

mapped. The semantics of priority are that at any given time there is no runnable thread in

the system that has a priority greater than the currently running thread. Within each priority

band, all threads are made runnable when their scheduling time is reached and actually run

when their deadline is earlier than the deadline of all other runnable threads in the band.

The GI class is given a single high priority band (only critical Chorus server threads

such as the pager daemon are allocated a higher band). B threads are given the next highest

band and GW threads are initially assigned to the lowest priority band. GI threads are made

runnable whenever their logical arrival time is reached (i.e. the start of the period pertaining

to their current quantum). As mentioned above, GW threads are initially assigned to the

lowest priority band but they are 'promoted' to the GI band when their logical arrival time is

reached. This means that they can enjoy workahead when resources allow, but not at the

expense of GI and B threads. BW threads are also runnable before their logical arrival time

but are not similarly promoted. Finally, BI threads only become scheduleable at a time

indicated by the deadline minus the quantum time. This approximates isochronicity to the

extent that it removes the possibility of jitter causing threads to complete before time

although it still leaves the possibility of them completing after time. This overall scheme, in

conjunction with the admission tests, ensures that GI threads always meet their jitter

1 Note that the ‘priority’ in this discussion is different from the priority API level QoS parameter. In this
section priority is an internal thread scheduling attribute which is not visible or directly manipulable from the
API level.

 -113-

constraints, GW threads always at least meet their rate requirement, and B threads optimally

share the resources left to them.

Non real-time threads in the BC class (e.g. those from conventional UNIX applications)

are assigned appropriate priorities so that they receive reasonable service according to their

role. Their deadline and scheduling time are always set to now so that they are effective

scheduled solely on the basis of their priority. As an example BC threads fulfilling an

interactive role would have relatively high priority which may be greater than that of B

threads. Other BC threads, such as compute bound applications and non time critical

daemons, will have accordingly lower priorities.

5.3.4 The Network Resource

5.3.4.1 QoS mapping

The network sub-system offers guarantees on bandwidth, delay bounds and packet

loss. To enable it to do this, the QoS mapping function maps the API level QoS parameters

onto a flow spec which is a representation of QoS appropriate to the AAL5 and ATM

levels:-
typedef struct {

int flow_id;
 cmt commitment;
 int mtu_size;

int rate;
int delay;
int loss;

} flow_spec_t;

Flow_id uniquely identifies the network level flow. It is the virtual circuit identifier for

flow specs used at the AAL5/ATM level. Mtu_size1 refers to the maximum transmission

unit size and rate refers to the rate at which these units are transmitted. These are directly

derived from the buffsize and buffrate API level QoS parameters. Delay comprises that

portion of the API level latency parameter which has been allocated, by the FMP, to the

network. It subsumes both propagation and queuing delays in the network. Finally, loss is

an upper bound probability of mtu loss due to buffer overflow at switches and routers.

1 Although the discussion and admission tests in this section apply generically to both the IP++ and ATM
layers, the admission tests are described here, for clarity, in an ATM context only. Mtu_size in the case of ATM
cells is 53 bytes and in the case of IP++ packets is 64 KBytes. One restriction of the admission tests is that they
are only applicable to switches/ routers with a single CPU. As we use single CPU ATM switches, this
assumption is justified in our implementation environment.

 -114-

Loss is trivially derived from the error and error_interval API level QoS parameters.

5.3.4.2 Admission Testing

In the network, only two traffic classes are recognised: guaranteed and best effort as

denoted by the commitment API level QoS parameter. Admission testing and resource

allocation are only performed for the former; best effort flows use whatever resource is left

over.

For guaranteed flows, three admission tests are performed at each switch along the

chosen path: a bandwidth test, a delay bound test and a buffer availability test. If, at the

current switch, the admission control tests are successful, the necessary resources are

allocated. Then the switch appends details of the cumulative delay incurred so far, and

forwards the flow spec to the next switch. Eventually, the remote end-system performs the

final tests and determines whether or not the QoS specified in the flow spec can be realised.

If the required QoS is realisable, the remote end-system returns a confirmation message

to the initiating end-system. As it traverses the same route in reverse, the admission test

protocol relaxes any over-allocated resources at intermediate switches [Anderson,91].

Bandwidth Test

The bandwidth test consists in verifying that enough processing (switching) power is

available at each traversed switch to accommodate an additional flow without impairing the

guarantees given to other flows. The admission test must satisfy worst case throughput

conditions; this happens when all flows send packets back to back at the peak rate. As in

section 5.3.3.2 the admission control test is based on [Liu,73]:-

ti

i=1

N

∑ . ratei ≤ R

Here, ti refers to the service time (cf. mtu quantum) of flow i in the current switch,

where there are N flows and ratei is the rate of the i’th flow (i.e. 1/ mtu period). R, 0 ≤ R ≤
1, represents the portion of resource dedicated to guaranteed flows.

 Delay Bound Test

The delay bound test determines the minimum acceptable delay bound which does not

cause scheduler saturation. There are two phases in the delay bound test. First, each switch

 -115-

on the data path computes a local delay bound. Second, it is checked that the sum of all the

local delay bounds do not exceed the flow spec’s delay parameter.

The first phase calculation is taken from [Ferrari,90]:-

d = ti
i=1

NU

∑ + T

Here, d is the local delay bound incurred at the current switch by the current flow. As

before, it refers to the service time of flow i in the current switch, but here the index

variable i ranges over the members of a set U. The set U contains those flows supported by

the current switch whose local delay bound is lower than the sum of the service times of all

flows supported by the current switch. NU represents the cardinality of U. T represents the

largest service time of all flows in a set V where V is the complement of set U. A full proof

of the theorem underlying this formula can be found in [Ferrari,90]

The second phase calculation is:-

dn
n=1

NS

∑ ≤ delay

This merely requires that sum of the delays at each switch is less than the delay

parameter in the flow spec. Ns refers to the number of switches on the path and dn refers to

the n’th value of d obtained from the first phase calculations.

Buffer Availability Test

The amount of per-switch memory allocated to a new flow must be sufficient to buffer

the flow for a period which is greater than the combined queuing delay and service time of

its packets. The calculation for buffer space is:-

buffersize = mtu_ size d . rate . loss 
Here, buffersize represents the amount of memory that must be allocated at the current

switch for the current flow. The combination of the queuing delay and service time is

bounded by d as derived from the first phase delay formula above.

5.3.4.3 QoS Control

Much of the dynamic QoS maintenance for the execution of communications protocols

in the end-system is encapsulated either in the protocols themselves (e.g. error control), in

the scheduling subsystem (e.g. rate control, maintaining latency and jitter bounds) or in the

 -116-

memory management subsystem (i.e. buffer management). However, one interesting QoS

maintenance issue not in this category is the interleaving of ATM cells at the network

interface from different connections on the basis of their QoS demands [Campbell,94]. On

many ATM interface cards with on-board AALs this is taken care of in hardware but this

testbed has been able to investigate this issue in software due to the fact that the

experimental interface cards only deal with the ATM level.

The receive side cell processing is simple. The receiver interrupt service routine1 reads

the VCI of the current cell while it is still on the ATM interface card. The interrupt service

routine then dispatches a receiver thread to copy the cell payload into the appropriate

partially assembled AAL5 packet, and when the receiver thread sees the last cell of an

AAL5 packet, it raises a software interrupt to the appropriate VP. Unfortunately, no QoS

driven scheduling could be performed on the receive side as it proved imperative to get each

cell off the board as quickly as possible to avoid excessive cell loss due to FIFO overrun.

Thus the receive thread is given a scheduling priority higher than even GI threads.

On the transmit side, cells were scheduled more intelligently by an EDF based cell level

scheduler. Application actors running send side user level transport protocol code deliver

buffers to the network actor via a system call. This informs the network actor of i) the

location in its address space into which the buffer has been mapped and ii) the deadline of

the buffer (which is the end of the quantum of the transport protocol thread).

The cell level scheduler runs in the context of the transmit interrupt service routine

which is periodically activated by the ATM card to signal that cells can be copied to the card

for transmission. The scheduler chooses to run one of a number of per-connection transmit

threads by sending a message to a mini-port on which the transmit thread is waiting (see

figure 5.5). The choice of thread to activate is made on the basis of priority, deadline and

scheduling time as described in section 5.3.3.3. Each transmit thread is given the same

priority band as its associated user level lightweight thread, and the deadline of each thread

is derived from the deadline of the next cell in the thread’s associated buffer. Cell deadlines

themselves are derived by giving each cell in the buffer a specific temporal offset from the

deadline of the entire buffer. The scheduling time of each thread becomes now whenever

the thread has a buffer to send.

1 Although the card interrupts on each cell arrival, the receive thread ‘greedily’ consumes any cells waiting in the
card’s FIFO each time it runs, thereby avoiding an interrupt for each cell.

 -117-

cell level
scheduler

GW

B

ATM cells
to network

AAL5 pkt

AAL5 pkt

AAL5 pkt

transmission
interrupt thread

per flow
tranmission threads

GI

Figure 5.5: Cell level scheduler

The transmit threads are allocated at connection establishment time and are taken into

account in the scheduling admission tests. This is done by adding a time ttx to the quantum

parameter of the connection’s transmit side lightweight thread (see section 5.3.1); ttx is

calculated as cells x tcell where cells is the number of ATM cells in a buffer of size buffsize

and tcell is the average time taken to transfer an ATM cell to the interface card.

5.3.5 The Memory Resource

5.3.5.1 QoS mapping

Two memory related quantities can be deduced from the user supplied QoS parameters

at connection establishment time: i) the number of buffers required per connection, and ii)

the required access latency associated with those buffers. Buffers are implemented as

Chorus memory regions.

Number of buffers

To calculate the end-system buffer requirement, the buffsize, buffrate and jitter QoS

parameters are used. It is also necessary to take into account the network delay bound,

delay, offered by the FMP. The network delay bound will typically permit a larger degree

of jitter than the API level jitter bound and any discrepancy must be made good through the

use of additional jitter smoothing buffers. Given these input parameters, the expression for

the number of buffers required at the receiver is:-

buffers = buffrate (delay + quantum + jitter

2
)

In this formula, the expression in the brackets represents the maximum time for which

 -118-

any single buffer must be held. Delay is the delay bound specified in the network level flow

spec while quantum, jitter and buffrate are API level QoS parameters. Jitter is divided by

two because the jitter parameter expresses both lateness and earlyness and it is only the

lateness component that need be taken into consideration.

Only one buffer is required at the sender due to the structure of the send-side

communications architecture: each buffer is assumed to be ‘on the wire’ before the start of

the next period.

Region access latency

There are basically two qualities of memory access available in the standard Chorus

system. These relate to the access latency of swappable pages and the access latency of

locked pages. The latency bound of the former is a function of i) the delay due to the RPC

communication between the VM layer and the mapper, and ii) the delay associated with the

external swap device1. The latency bound of the latter is much smaller and is a function of

the system bus and clock speed.

Swappable or locked regions are assigned to connections on the basis of their resource

class as follows:-

• GI: buffer regions allocated to these connections are locked and non-preemptible.

• GW : buffer regions for these connections are locked but are potentially

preemptible by memory requests from GI connections if memory resources run

low.

• B: buffer regions for these connections are assigned from standard swappable

virtual memory. These regions may be explicitly locked by the API library code but
are subject to pre-emption from by both GI and GW connections. The decision as to

whether the library code should lock buffers or not is determined by the priority

API level QoS parameter.

The QoS mapper can deduce the class of each memory request on the basis of the

commitment, delivery and priority QoS parameters which are initially passed to the

extended rgnAllocate() system call and retained to validate future operations on regions.

1 We intend in the future to look at the possibility of bounding the access latency to swappable pages (e.g.
through specialised page replacement policies and disc layout strategies), but our present design simply considers
the access latency of swappable pages to be unbounded.

 -119-

5.3.5.2 Admission testing

In its admission testing role, the QoS mapper maintains tables of all the physical

memory resources in the system. In a similar way to the kernel level scheduler (KLS), it

also maintains firewalls and high and low water marks between resource quantities

dedicated to the different connection classes. The B section is used by all standard and non

real-time applications as well as best effort connections.

If no physical memory is available to fulfil a request from a GI connection, the QoS

mapper can preempt a locked memory region from an existing B or GW connection.

Similarly, GW connections can preempt locked regions from B connections. The QoS

mapper chooses for pre-emption the buffer associated with the connection with the lowest

priority in the lowest class available. The effect of pre-emption is simply to transform

locked memory into standard swappable memory. This, of course, may result in a failure of

the preempted connection’s QoS commitment. However, a software interrupt is delivered to

the ULS of a thread whose memory has been preempted so that if QoS commitments are

violated, the connection concerned can deduce the likely reason.

5.3.5.3 QoS Control

The only dynamic QoS mapper function considered in detail is the region re-mapping

function. This is used when buffers are mapped from one actor to another in a QoS

controlled connection between local rtports. Region re-mapping is particularly important in

the context of pipelines which arise when applications are structured as chains of modules

which sequentially process a stream of real-time data. Pipelines can be implemented either

within single actors or across multiple actors (or, indeed, across multiple machines

although it is only the intra-machine cases that concern us here).

Pipelines across multiple actors are implemented using software interrupts as the control

transfer mechanism. When a pipeline stage wants to send a buffer of data to a subsequent

stage in another actor, the user level library implementing the QoS controlled connection

performs a software interrupt:-

int raiseEvent(VP *dest; int event; bool unmap; VmAddr addr; VmSize size);

 -120-

The raiseEvent() system call specifies a destination actor and details of the memory

region to be remapped. When the kernel receives this call, it invokes the QoS mapper which

maps the specified region into the destination address space (the boolean argument is used

to control whether or not the region is also unmapped from the caller’s address space). The

QoS mapper then forwards a software interrupt to the target VP, passing as an argument the

virtual address at which the region is mapped (see figure 5.6). Note that, in many cases, it

is only necessary to perform this mapping the first time data is passed along the pipeline.

Subsequent transfers can be accomplished using the existing shared region that raiseEvent()

has already established and simply passing control with a call of raiseEvent with null addr

and size parameters.

The extra cost due to the QoS mapper invocation is minimal. It incurs no protection

boundary crossing and no virtual memory context switch as the QoS mapper is executed as

a supervisor actor and thus shares the kernel’s address space.

Connection between two actors

QoS
mapper

Kernel

User level
library

Application

rthandlers

Software interrupt

rtport

Memory region

(1) (2)

Figure 5.6 Pipeline example

The QoS mapper is also currently used as a repository of QoS related statistics of

relevance to user level library code when it detects QoS degradations. The primary statistic

is the number of page faults incurred by a region associated with a B connection. This

information is used to better inform the choice of which B regions to lock and which to

leave unlocked.

 -121-

5.4 Summary

This Chapter has presented an idealised design of a QoS driven communications stack

in a micro-kernel operating system environment. The discussion has focused on resource

management aspects of the end-system operating system design and in particular has dealt

with CPU scheduling, network resource management and memory management issues.

The architecture minimises kernel level context switches and exploits early demultiplexing

so that incoming media can always be treated according to the QoS of its associated API

level connection. It also eliminates data copying on both send and receive (except for

unavoidable copies to/from the ATM interface card). On send, the user’s buffer is mapped

to the lower layers which process it in situ, and, on receive, the lower layers allocate a

buffer and map it to the transport layer which subsequently passes it to the application by

passing the address of the buffer as an argument to an rthandler.

The Chorus micro-kernel QoS extensions provided an ideal operating system

environment for QoS-A driven communications in the end-system. The idealised

environment was not, however, available during the experimental phase of this work.

Instead a Linux environment with ATM interconnect was considered to be flexible enough

to realise a number of the important aspects of QoS support presented in this Chapter.

Following this Chapter 7 describes a Linux-ATM implementation for the end-system and

then, Chapter 8 presents an evaluation of the implementation.

 -122-

Chapter 6

Dynamic QoS Management (DQM)
of Scalable Multicast Flows

Distributed continuous media applications need to adapt to fluctuations in delivered

quality of service. By trading off temporal and spatial quality to available bandwidth, or

manipulating the playout time of continuous media in response to variation in delay, audio

and video flows can be made to adapt to fluctuating QoS with minimal perceptual

distortion. This Chapter extends the QoS-A model described in Chapter 4 by populating the

QoS management planes of the architecture with a framework for the control and

management of multi-layer coded flows operating in heterogeneous multimedia networking

environments.

Two key techniques are proposed:

i) an end-to-end rate shaping scheme which adapts the rate of MPEG-coded flows

to the available network resources while minimising the distortion observed at the

receiver; and

ii) an Adaptive Network Service, which offers “hard” guarantees to the base layer

of multi-layer coded flows, and “fairness” guarantees to the enhancement layers

based on a bandwidth allocation technique called Weighted Fair Sharing.

I also discuss a number of types of scaling object which are used to manage and control

QoS. These include QoS filters which manipulate multi-layered coded flows as they

progress through the communications system, QoS adaptors which scale flows at end-

systems based on the flow's measured performance and user supplied QoS policy, and

QoS groups which provide baseline QoS for multicast flows. All these components are

inter-related by the QoS-A model and function as part of the dynamic QoS management

(DQM) branch of the resource management framework described in chapter 4.

The structure of the chapter is as follows. First the salient features of scalable video

flows is presented in section 6.1 before describing, in section 6.2, the set of scaling objects

 -123-

used in the QoS-A architecture together with the application programming interface to

DQM. Section 6.3 then presents a scheme for end-to-end DQM of adaptive multicast flows.

In this section the detailed operation of a number of specific types of scaling object is

described. Following this, section 6.4 introduces an adaptive network service, defines the

notion of weighted fair share resource allocation, explains the rate control scheme used in

the network, and describes the use of some network oriented QoS filters.

6.1 Characteristics and Composition of Scalable Video Flows

The fundamental design goal of digital audio-visual information representation schemes

in the past several decades has been that of compactness: describe the signal's content with

as few bits as possible. The algorithmic foundation of this work has been based on the

assumption that information transport occurs over constant bandwidth and constant delay

channels: an assumption that does not necessarily hold valid in an environment of packet

switched networks working on the premise of multiplexing gain.

Our primary focus in this chapter is multi-layered coded video such as MPEG. Within

this framework, there are two alternative techniques which underpin QoS adaptation:

intrinsic and extrinsic techniques. The former are provided by the encoder, and are

embedded in the coded bitstream. The latter are provided by QoS filters that operate directly

on the compressed bitstream, performing the desired manipulations. Their difference lies in

their complexity and performance. Intrinsic techniques can have a very simple

implementation, but offer only a discrete range of possibilities. Extrinsic techniques are

computationally more complex but can operate on a continuum of possibilities. The

following section briefly describes the architecture of MPEG-2, with particular emphasis on

the intrinsic adaptation capabilities it provides in the form of scalability profiles. Extrinsic

adaptation can be provided through the use of dynamic rate shaping QoS filters

[Eleftheriadis,95], which are discussed in section 6.3.2.1.

6.1.1 MPEG

The algorithmic foundation of MPEG is motion-compensated, block-based transform

coding MPEG-1 and MPEG-2 [H.262,94]. Each block is transformed using the Discrete

Cosine Transform (DCT), and is subsequently quantised. Quantisation is the sole source of

quality loss in MPEG and, of course, a major source of compression efficiency. The

 -124-

quantised coefficients are converted to a one-dimensional string using a zig-zag pattern and

then run-length encoded. There are three types of pictures in a sequence as illustrated in

figure 6.1: I, P, and B. I or intra pictures are individually coded, and are fully self-

contained. P pictures are predicted from the previous I or P picture, while B (or bi-

directional) pictures are interpolated from the closest past and future I or P pictures.

Prediction is motion-compensated: the encoder finds the best match of each macroblock in

the past or future picture, within a prespecified range. The displacement(s), or motion

vector(s), is sent as side information to the decoder.

I B B P B B P

Figure 6.1: MPEG Picture Sequence

In order to increase the coding efficiency, MPEG relies heavily on entropy coding.

Huffman codes (variable length codewords) are used to represent the various bitstream

quantities (run-length codes, motion vectors, etc.). As a result, the output of an MPEG

encoder is inherently a variable rate bitstream: the ratio of bits per pixel varies from one

block to the next. Figure 6.2, which shows a bandwidth trace over time for an MPEG-1

video clip at 24 frame per second, illustrates both the variable bit rate nature and multi-layer

composition of MPEG-1 video. The I frames which represents the base layer (BL) in the

trace average approximately 200 ATM cells per second. By adding an enhancement layer

E1, which represents the P pictures in MPEG, the bandwidth demand peaks above 400

cells per second. The final enhancement layer E2 (i.e., B pictures) increase the peak

bandwidth demand to close to 600 cells per second.

 In order to construct a constant rate bitstream, rate control is used. This is achieved by

connecting a buffer to the output of the encoder. The buffer is emptied at a constant rate,

and its occupancy is fed back to the encoder. This information is used to control the

selection of the quantiser for the current macroblock. High buffer occupancy leads to more

coarsely quantised coefficients, and hence less bits per block, and vice versa. Through this

 -125-

self-regulation technique one can achieve a constant output rate.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

ba
nd

w
id

th
 (

ce
ll/

se
c)

time (sec)

Bandwidth for canyon.mpg at 24 fps at transmitter

BL+E1+E2
BL+E1

BL

Figure 6.2: MPEG-1 Bandwidth Trace at 24 Frames Per Second

For transport purposes, video and audio are multiplexed according to the system layer

of MPEG-2, which defines the packetisation structure and synchronisation algorithms

between the audio and video signals. Two different packetisation structures are defined,

namely program streams and transport streams. Both are logically constructed from

“packetised elementary stream” (PES) packets; these are the basic units in which individual

audio, video, and control information is carried. Program streams are designed for use in

relatively error-free environments, use variable length packets, and combine PES packets

that have a common time base. Transport streams are designed for noisy channels, utilise

fixed-length packets (188 bytes), and can carry programs with independent time bases. The

system layer's timing model is based on the assumption that a constant delay transport

mechanism is used. Although deviations from this are allowed, the way to address them is

not specified. All timing information is based on a common system clock, and timestamps

(i.e. an absolute timing method) ensure proper inter-media synchronisation between the

audio and video signals upon presentation.

 -126-

6.1.2 Scalability Modes

From the above discussion it is clear that MPEG is especially tuned for transmission

over traditional constant bandwidth and delay channels. Some support for flexible and/or

robust transmission is provided through the use of scalability modes for channels exhibiting

dynamic behaviour. The situation is even more challenging for scalable flows, i.e. in cases

where the available bandwidth may vary over time. However, here benefits of multiplexing

gain are possible.

MPEG-2 provides for the simultaneous representation of a video signal at various

different levels of quality, through the use of multiple independent bitstreams or sub-

signals. This is achieved through the use of pyramidal, or hierarchical coding: one first

constructs a coarse or base representation of the signal, and then produces successive

enhancements. The latter assume that the base representation is available, and only encode

the incremental changes that have to be performed to improve the quality. There are four

different scalability modes: spatial, SNR, temporal, and data partitioning. MPEG-2 allows

the simultaneous use of up to two different scalability modes (except for data partitioning)

in any combination, hence resulting in a 3-level representation of the signal. In spatial

scalability, the base and enhancement layers operate at different spatial resolutions (e.g.

standard TV and HDTV). In SNR scalability, both layers have the same resolution and the

enhancement refines the quantisation process performed in the base layer. In temporal

scalability the enhancement layer increases the number of frames per second of the base

layer (e.g., from 30 frames per second to 60 fps). Data partitioning is slightly different

from the other three scalability modes in the sense that the encoder does not maintain two

different prediction loops and hence the base layer is not entirely self-contained. Its benefit

is that it can be applied even in single-layer encoders.

As an example, the spatial scalability mode can be used to transmit digital TV in both

standard and HDTV formats. Although two sub-signals are actually generated, this is not

identical to simulcast: the total bandwidth required is much smaller, since the HDTV layer

uses the base, standard TV layer as a reference point. Scalability can be very useful in

transmission of video over adaptive channels.

 -127-

6.1.3 Discrete and Continuous QoS Adaptation

Although MPEG-2's scalability features are useful in resolving heterogeneity problems

described above [Delgrossi,93], and are useful in numerous applications, their use in

continually QoS-varying channels is problematic. This is because they only allow the

representation of the signal at a fixed number of discrete quality points (temporal or spatial

resolution, or spatial quality). These points are typically significantly apart, and transitions

between the two are perceptually significant. Table 6.1 [Paek,95] shows an example of

hybrid scalability with spatial (E1) and SNR (E2) enhancement layers.

 layer name profile symbol frame size bit rate subjective QoS

 base layer main BL 304x112 0.32 Mbps VHS

 enhancement 1 layer spatial E1 608x224 0.83 Mbps super VHS

 enhancement 2 layer SNR E2 608x224 1.85 Mbps laser disc

Table 6.1: MPEG-2 hybrid scalable bitstream using spatial and SNR scalability (24 fps)

Consider, for example, a channel that temporarily undergoes rate variability for a period

of a few seconds. Switching to a lower quality point (by discarding the enhancement

layer(s)) for such a brief interval can create a perceptual “flash”. An additional issue is that,

as soon as compression parameters are established, it is impossible to modify them later on

(after compression is completed). Hence scalability modes can only really be used for well-

defined, simple channels that vary slowly. Since the wide range of different access

mechanisms to multimedia information makes it very difficult to select a priori a set of

universally interoperable coding parameters, it is necessary to provide extrinsic mechanisms

that allow the representation of the “signal at a continuum of qualities and rates”

[Delgrossi,93], so that scalable flows can be accommodated.

This is possible through the use of a class of dynamic rate shaping QoS filters

[Eleftheriadis,95b] and the provision of adaptive network services - providing a QoS

continuum for fully scalable flows. The adaptive service introduced in this chapter uses

explicit feedback from network resource management to dynamically shape the video

source based on available network resources. Some benefits of an adaptive scheme are non-

reliance on video modelling techniques and statistical QoS specification and specific support

 -128-

for the semantics of scalable video flows e.g. MPEG-2 scalable profiles. Dynamic rate

shaping filters manipulate the rate of MPEG-coded video, matching it to the available

bandwidth (indicated by the adaptive service) while minimising the distortion observed by

the receiver.

6.2 Scaling Objects and API Extensions

This section introduces a set of scaling objects used to manipulate hierarchically coded

flows as they progress through the communications system. These comprise QoS adaptors,

QoS filters and QoS groups as defined above. This section also introduces an extension to

the QoS-A application programmer’s interface which gives access to the scaling object

types.

6.2.1 Scaling Objects

6.2.1.1 QoS Adaptors

QoS adaptors are used in conjunction with the QoS-A flow monitoring function to

ensure that the user and provider QoS specified in the service contract are actually

maintained. In this role QoS adaptors are seen as quality of service arbiters between the

user and network. QoS adaptors scale flows at the end-systems based on a user supplied

QoS scaling policy (see section 6.2.2) and the measured performance of on-going flows.

QoS adaptation is discussed in detail in section 6.3.

6.2.1.2 QoS Filters

QoS filters manipulate multi-layer coded flows [Shacham,92], [Hoffman,93]

[Zhang,95] at the end-systems and as they progress through the network. Three distinct

styles of QoS filters are described:

i) shaping filters, which manipulate coded video and audio by exploiting the

structural composition of flows to match network, end-system or application QoS

capability; shaping filters are generally situated at the edge of the network at the

source; they require non-trivial computational power; examples are the dynamic rate

shaping (DRS) filter and the source bit rate (SBR) filter - see section 6.3.2;

ii) selection filters, which are used for sub-signal selection and media dropping

(e.g. video frame dropping) are of low complexity and low computational intensity

- selection filters are designed to operate in the network and are located at switches;

 -129-

they require only minimal computational power; examples are sub-signal filter,

hierarch filter, hybrid filter - see section 4.6.3;

iii)temporal filters, which manipulate the timing characteristics of media to meet

delay bound QoS are also low in complexity and trivial computationally - temporal

filters are generally placed at receivers or sinks of continuous media where jitter

compensation or orchestration of multiple related media is required; examples are

sync filter, orch filter - see section 6.3.3).

6.2.1.3 QoS Groups

Before potential senders and receivers can communicate they must first join a QoS

group [Aurrecoechea,95]. The concept of a QoS group is used to associate a baseline QoS

capability to a particular flow. All sub-signals of a multi-layer stream can be mapped into a

single flow and multicast to multiple receivers [Shacham,92]. Then, each receiver can select

to take either the complete signal advertised by the QoS group or a partial signal based on

resource availability. Alternatively each sub-signal can be associated with a distinct QoS

group. In this case, receivers “tune” into different QoS groups (using signal selection) to

build up the overall signal. Both methods are supported in DQM. Receivers and senders

interact with QoS groups to determine what the baseline service is, and tailor their capability

to consume the signal by selecting filter styles and specifying the degree of adaptability

sustainable (viz. discrete, continuous; see section 6.1.3).

6.2.2 QoS Specification Extensions for Scalable Flows

 The original QoS-A service contract based API which formalised the end-to-end QoS

requirements of the user and the potential degree of service commitment of the provider.

This section proposes a number of extensions to the flow specification, QoS commitment

and QoS scaling policy (which subsumes the QoS adaptation and QoS maintenance) clauses

of the service contract required to accommodate adaptive multi-layer flows. The API

presented here is not complete in that there are no primitives given for establishing and

renegotiating connections or for manipulating QoS groups. Full details of these aspects are

given in chapter 4 and chapter 7.

Multi-layered flows are characterised by three sub-signals in the flowSpec flow

specification: a base layer (BL) and up to two enhancement layers (E1 and E2). Each layer

is represented by a frame size and subjective or perceptive QoS as illustrated in Table 1.

 -130-

Based on these characteristics, the MPEG-2 coder [Paek,95], [Eleftheriadis,95] determines

approximate bit rate for each sub-layer. In the case of MPEG-2's hybrid scalability, BL

would represent the main profile bit rate requirement (e.g. 0.32 Mbps) for basic quality, E1

would represent the spatial scalability mode bit rate requirement (e.g. 0.83 Mbps) for

enhancement, and E2 would represent the SNR scalability mode bit rate requirement (e.g.

1.85 Mbps) for further enhancement. The remaining flow specification performance

parameters for jitter, delay and loss are assumed to be common across the all sub-signals

(i.e. a single layer of a multi-layer video flow). The QoS commitment field which is

subsumed by the flow specification has been extended to offer an adaptive network service

that specifically caters for the needs of scalable audio and video flows in heterogeneous

networking environments (see section 6.4).

typedef enum {MPEG1, MPEG2, H261, JPEG} mediaType;
typedef enum {continuous, discrete} adaptMode;
typedef enum {besteffort, adaptive, statistical, guaranteed} commit;

typedef enum {
DRS, SBR, sub_signal, hierarch, hybrid, sync, orch

} filterStyle;

typedef struct {
adaptMode adaptation;
filterStyle filtering;
events adaptEvents;
actions newQoS;
signal bandwidth;
signal loss;
signal delay;
signal jitter

} qosPolicy;

typedef struct {
gid flow_id;
mediaType media;
commit commitment;
subFlow BL;
subFlow E1;
subFlow E2;
int delay;
int loss;
int jitter;
qosPolicy policy

} flowSpec;

 -131-

The qosPolicy field of the flowSpec characterises the degree of adaptation that a flow

can tolerate and still achieve meaningful QoS. The QoS policy consists of clauses that cover

adaptation modes, QoS filter styles, and event/ action pairings for QoS management

purposes. Two types of adaptation mode are supported: continuous mode, for applications

that can exploit any availability of bandwidth above the base layer; and discrete mode for

applications which can only accept discrete improvement in bandwidth based on a full

enhancement (viz. E1, E2).

The QoS scaling policy provides user-selectable QoS adaptation and QoS filtering.

While receivers select filter styles to match their capability to consume media at the receiver

(from the set of temporal filters), senders select filter styles to shape flows in response to

the availability of network resources such as bandwidth and delay (from the set of shaping

filters). Network oriented filters (i.e. selection filters) can be chosen by either senders or

receivers.

In addition, senders and receivers can both select periodic performance notifications

including available bandwidth, measured delay, jitter and losses for on-going flows. The

signal fields in the scaling policy allow the user to specify the interval over which a QoS

parameter is to be monitored and the user informed. Multiple signals can be selected

depending on application needs.

6.3. Dynamic QoS Management of Scalable Video Flow

6.3.1 Architectural Components

Dynamic QoS management spans the QoS-A (see figure 6.3) QoS maintenance and

flow management planes. In the QoS maintenance plane, the most important aspect of DQM

is QoS adaptation in the end-systems. Based on the receiver supplied QoS scaling policy,

QoS adaptors take remedial action to scale flows, inform the user of a QoS indication and

degradation, fine tune resources and initiate complete end-to-end QoS renegotiation based

on a new flowSpec [Campbell,94].

In the flow management plane, DQM consists of two sub-components: QoS group

management maintains and advertises QoS groups created by senders for the benefit of

potential receivers; filter management [Yeadon,94] instantiates and reconfigures filters in a

flow at optimal points in the media path at flow establishment time, when new receivers

join QoS groups or when a new flowSpec is given on a QoS renegotiation.

 -132-

recently

physical layer

transport layer

user planecontrol plane

QoS maintenance plane

flow management plane

distributed sytems platform

network layer

data link layer

protocol plane

orchestration layer

Figure 6.3: Quality of Service Architecture (QoS-A)

In implementation, each of these architectural modules has well defined interfaces and

methods defined in CORBA IDL. CORBA [OMG,93] runs on the end-systems and in the

ATM switches, providing a seamless object oriented environment throughout the

communication system base (see [Aurrecoechea,94] for full details).

6.3.1.1 Illustrative Scenario

DQM can be viewed as operating in three distinct domains:

i) sender-oriented DQM, where senders select source filters and adaptation modes,

and establish flow specifications. The sender-side transport protocol provides

periodic bandwidth and delay assessments to the source filters (i.e. DRS or SBR

filters) which regulate the source flow. Senders create QoS groups which announce

the QoS of the flow to receivers via QoS group management;

ii) receiver-oriented DQM, where receivers join QoS groups and select the portion

of the signal which matches their QoS capability. Receiver selected network based

filters propagate through the network and perform source and signal selection. In

addition, receiver-based QoS filters (i.e. sync-filter and orch-filter) are instantiated

by default unless otherwise directed. These filters are used to smooth and

synchronise multiple media. The receiver-side transport protocol provides

 -133-

bandwidth management and produces adaptation signals according to the QoS

scaling policy;

iii) network-oriented DQM, which provides an adaptive network service (see

section 6.5) to receivers and senders. Network level QoS filters (i.e. sub-signal,

hierarch and hybrid-filters) are instantiated based on user selection, and propagated

in the network under the control of filter management.

receiver device

a

network-oriented DQM

f f

a
a

sync-filter

end-system

f
receiver

sender

mpeg-2 flow
3 sub-signals

2 sub-signals

1 sub-signals

adaptive service

A

B

C

D

w
fs

receiver-oriented DQMsender-oriented DQM

QoS adaptor

media port

signalling and
flow monitor

port

sub-signal
QoS filtering

dynamic rate

Qos filter
shaping

null

core-switch

a receiverreceiver

source device

f

Figure 6.4: Dynamic QoS management (DQM) of Scalable Multicast Flows

In figure 6.4 a sender at end-system A creates a flow by instantiating a QoS group

which announces the characteristics of the flow (viz. layer, frame size, subjective quality)

and its adaptation mode. Receivers at end-systems B, C and D join the QoS group. In the

example scenario shown the receivers each “tune” into different parts of the multi-layer

signal: C takes BL, the main profile (which constitutes a bandwidth of 0.32 Mbps for VHS

perceptual QoS), B takes BL and E1 (which constitutes an aggregate bandwidth of 1.15

Mbps for super VHS perceptual QoS), and D takes the complete signal BL+E1+E2 (which

constitutes an aggregate bandwidth of 3 Mbps for laser disc equivalent QoS). In this

example the complete signal is multiplexed onto a single flow, therefore, sub-signal

selection filters are propagated by filter management. Receivers, senders, or any third party

or filter management can select, instantiate and modify source, network and receiver-based

QoS filters.

 -134-

6.3.2 Sender-Oriented DQM

Figure 6.5 shows the functions of the sender-side transport protocol supporting

dynamic QoS management, and the interface to a dynamic rate shaping filter. Currently,

senders can select from two types of shaping filter at the source: dynamic rate shaping

(DRS) and source bite rate (SBR) QoS filters. Both of these QoS filters manipulate the

signal to meet the available bandwidth by keeping the signal meaningful at the receiver. The

sender-side transport mechanisms includes a QoS adaptor, flow monitor and media

scheduler. Bandwidth updates are synchronously received by the flow monitor mechanism

from the network as part of the adaptive service (described in section 6.5). The QoS

adaptor is responsible for synchronously informing the source filter of the current

bandwidth availability (Bflow) and measured delay (Dflow), and calculating new schedules

and deadlines for transport service data units [Coulson,95]. Media progresses from the

source filter to the TSAP, and is scheduled by the media scheduler to the network at the

NSAP based on the calculated deadlines.

tsap

 scaling policy flow assesment

networkflow encoder

QoS adaptor

flow state

flow monitor

scheduler

w
fs

period

deadline schedule time

bandwidth
management

QoS assessment

QoS indication

sender

mediadynamic
rate shaping

filter

schedule times

bandwidth
availability

bandwidth
indication

nsap

QoS-A transport protocolsignalling tsap

Bflow, Dflow

Figure 6.5: Sender-side transport QoS mechanisms

The QoS adaptor is also responsible for informing the sending application of the on-

going QoS based on options selected in the QoS scaling policy. Informing the application

of the current state of the resources associated with a specific flow is key in implementing

adaptive applications in end-systems. In this case the application manages the flow by

receiving updates and interacting with the QoS adaptor to adjust the flow, e.g. change

 -135-

adaptation mode from continuous to discrete, request more bandwidth for BL, E1 and E2,

or change the characteristics of the source filter, etc.

6.3.2.1 The Dynamic Rate Shaping (DRS) Filter

Rate shaping is defined as an operation which, given an input video bitstream and a set

of rate constraints, produces a video bitstream that complies with these constraints. For this

purpose, both bitstreams are assumed to meet the same syntax specification. In addition it is

assumed that a motion compensated block-based transform coding scheme is used. This

includes both MPEG-1 and MPEG-2, as well as H.261 and so-called “motion” JPEG.

Although a number of techniques have been developed for the rate shaping of live

sources [Kanakia,93] these cannot be used for the transmission of pre-compressed material

(e.g. in VoD systems). The dynamic rate shaping filter is interposed between the encoder

and the network and ensures that the encoder's output can be perfectly matched to the

network's quality of service characteristics. The filter does not require interaction with the

encoder and hence is fully applicable to both live and stored video applications.

 Because the encoder and the network are decoupled, universal interoperability can be

achieved both between codecs and networks, and also among codecs with different

specifications. An attractive aspect is the existence of low-complexity algorithms which

allow software-based implementation in high-end computers. In order for rate shaping to be

viable it has to be implementable with reasonable ease while yielding acceptable visual

quality. With respect to complexity, the straightforward approach of decoding the video

bitstream and recoding it at the target rate would be obviously unacceptable; the delay

incurred would also be an important deterrent. Hence only algorithms of complexity less

than that of a cascaded decoder and encoder are of practical interest. These algorithms

operate directly in the compressed domain of the video signal, manipulating the bitstream so

that rate reduction can be effected. In terms of quality, it should be noted that recoding does

not necessarily yield optimal conversion; in fact, since an optimal encoder (in an operational

rate-distortion sense) is impractical due to its complexity, recoding can only serve as an

indicator of an acceptable quality range. In fact, regular recoding can be quite lacking in

terms of quality, with dynamic rate shaping providing significantly superior results.

 -136-

f

dynamic rate

Qos filter
shaping

signalling and
flow monitor

port

media port

pre-coded MPEG flow
BL

E1

E2
B(t), D(t)

y(t) shaped flow
^
ŷ(t)

WFS QoS constraints
Bflow(t), Dflow(t)

^^
B(t), D(t)

BL

E1

E2

Figure 6.6: Dynamic rate shaping scheme

The rate shaping operation is depicted in figure 6.6. Of particular interest is the source

of the rate constraints Bflow(t). In the simplest of cases, Bflow(t) may be just a constant and

known a priori (e.g. the bandwidth of a circuit-switched connection). It is also possible that

Bflow(t) has a well known statistical characterisation (e.g. a policing function). In this

approach Bflow(t) is generated by the adaptive network service.

The objective of a rate shaping algorithm is to minimise the conversion distortion, i.e.:

min () ()

() ()B t BT t
y t y t

<
− ^

The attainable rate variation (B̂ B) is in practice limited, and depends primarily on the

number of B pictures of the bitstream; no assumption is made on the rate properties of the

input bitstream, which can indeed be arbitrary. There are two fundamental ways to reduce

the rate:

i) by modifying the quantised transform coefficients by employing coarser

quantisation, and

ii) by eliminating transform coefficients.

In general, both schemes could be used to perform rate shaping; requantisation,

however, leads to recoding-like algorithms which are not amenable to fast implementation

and do not perform as well as selective-transmission ones. A selective transmission

approach gives rise to a family of different algorithms, that perform optimally under

different constraints; for full details see [Eleftheriadis,95b].

 -137-

6.3.3 Receiver-Oriented DQM

QoS adaptors, which are resident in the transport protocol at both senders and

receivers, arbitrate between the receiver specified QoS and the monitored QoS of the on-

going flow. In essence the transport protocol “controls” the progress of the media while the

receiver “monitors and adapts” to the flow based on the flow specification and the scaling

policy. When the transport protocol is in monitoring mode [Campbell,94] the flow monitor

uses an absolute timing method to determine frame receptions times based on

timestamps/sample-stamps [Jeffay,92], [Jacobson,93], [Shenker,93]. The flow monitor,

as shown in figure 6.7, updates the flow state to include these measured reception times

statistics. Based on these flow statistics, the sync-filter (see section 6.3.3.3) derives new

playout times used by the media scheduler to adjust the playout point of the flows to the

decoding delivery device.

playout pointflow monitor

flow assesment

network flow decoder

QoS adapator

flow state playout stats

sync-filter

scheduler

w
fs

period

deadline schedule time

bandwidth
management

delay-jitter
management

late-frame
management

QoS assessment

QoS indication

receiver

media

nsap tsap

QoS-A transport protocolsignalling tsap

scaling policy

Figure 6.7: Receiver-side transport QoS mechanisms

QoS mechanisms that intrinsically support such adaptive approaches were first

recognised in the late 70's by Cohen [Cohen,77] as part of research in carrying voice over

packet-switched networks. More recently, adaptive QoS mechanisms have been introduced

at part of the Internet suite of application-level multimedia tools (e.g., vat [Jacobson,93],

ivs [Turletti,93], and vic [McCanne,94]). Vat which is used for voice conferencing,

recreates the timing characteristics of voice flows by having the sender timestamp on-going

voice samples. The receiver then uses these timestamps as a basis to reconstruct initial

flow, removing any network induced jitter prior to playout. These multimedia tools are

widely used in the Internet today and have proved moderately successful - given the nature

 -138-

of best effort delivery systems, i.e., no resource reservation is made. In the near future,

however, an integrated services Internet [Braden,94] will offer support for flow reservation

(e.g., RSVP [Zhang,95]) and new QoS commitments (e.g., predictive QoS [Shenker,95])

which are more suitable for continuous media delivery.

Receiver-oriented adaptation can be broken down into a number of receiver-side

transport functions, i.e. bandwidth management, late frame management and delay jitter

management, which are described in the following sub-sections (please refer to figure 6.7).

This chapter argues that these adaptive QoS mechanisms are inherently part of the transport

protocol and not, as in the case of vat, ivs and vic, part of the application domain itself.

6.3.3.1 Bandwidth Management

Bandwidth management receives bandwidth indications in the control message portion

of the TSDU (or in separate control messages) and adapts the receiver appropriately. The

adaptive service, built on the notion of weighted fair share resource allocation, (see section

6.4.1) periodically informs the receiver that more bandwidth is available or announces that

the flow is being throttled back. Bandwidth management only covers the enhancement

signals of multi-resolution flows. The base layer is not included since resources are

guaranteed to the base layer. The announcement of available bandwidth on a flow allows

the receiver to take either a full or partial enhancement layer. The choice depends on

whether the flow is in continuous or discrete adaptation mode.

6.3.3.2 Late Frame Management

Late frame management monitors late arrivals in relation to the loss metric and the

current playout times and takes appropriate action to trade off timeliness and loss. Packets

that arrive after their expected playout points are discarded by the media scheduler and the

late-packet metrics in the playout statistics are updated. The media scheduler is based on a

split-level scheduler architecture [Coulson,95] which provides hard deadline guarantees to

base layer flows via admission control, and best effort deadlines to enhancements layers.

Some remedial action may be taken by the QoS adaptor should the loss metric exceed the

loss parameter in the flow specification. If the QoS adaptor determines that too many packet

losses have occurred over an era, it pushes out the playout time to counteract the late state

of packets from the network. Similarly, if loss remains well within the prescribed ranges

then the QoS adaptor will automatically and incrementally “pull in” the playout time until

 -139-

loss is detected.

6.3.3.3 Delay Jitter Management

Our transport protocol utilises sync-filters for delay-jitter management by calculating the

playout times of flows based on the user supplied jitter parameter in the flow specification1.

Sync filters calculate the mean and variation in the end-to-end delay based on reception

times measured by the flow monitor. Sync filters take the absolute, mean and variation in

delay into account when calculating the playout estimate. A smoothing factor based on a

linear recursive filtering mechanism characterised by a smoothing constant is used to

dampen the movement of the playout adjustment. Intuitively, the playout time needs to be

set “far enough” beyond the delay estimate so that only a small fraction of the arriving

packets are lost due to late packets. The QoS adaptor trades off late packets versus

timeliness based on the delay and loss parameters in the flow specification. The objective of

delay jitter management is to pull in the playout offset, while the objective of late-packet

management is not to exceed the loss characterised in the service contract. The QoS

adaptation manager moderates between timeliness and loss. Based on these metrics the

adaptation policy can adjust the damping factor, and acceptable ranges over which the

playout point can operate.

playback time

t1 t2 t3

generation time
buffering

arrival time#
fr

am
es

time

Figure 6.8: Sync-filter: timeliness and packet loss regulation

Figure 6.8 [Zhang,94] shows packets arriving at the receiving end-system. Each packet

includes a timestamp used in calculating the flow statistics for delay-jitter management.

Selection of the playout point is important: an aggressive playout time which favours

1 Temporal filters can also operate on multiple related audio and video flows to provide low-level orchestration
management (in conjunction with the orch-filter).

 -140-

timeliness (such as t1) will results in a large number of late-packets. In contrast, a

conservative playout point (such as t3) will be less responsive and timely but will result in

no identifiable packet loss. In the DQM scheme late packets are the same as lost packets,

and therefore the loss parameter in the flow specification moderates. An optimum playout

schedule is represented by t2 in the diagram; here, continuous media delivery benefits from

timely delivery with the exception of some packet loss - which may be deemed acceptable to

the receiver in media perception terms.

6.4 Adaptive Network Service

The adaptive network service provides “hard” guarantees to the base layer (BL) of a

multi-layer flow and “weighted fair share” (WFS) guarantees to each of the enhancement

layers (E1 and E2). To achieve this, the base layer undergoes a full end-to-end admission

control test [Coulson,95]. On the other hand, enhancement layers are admitted without any

such test but must compete for residual bandwidth among all other adaptive flows.

Enhancement layers are rate controlled based on explicit feed back about the current state of

the on-going flow and the availability of residual bandwidth.

6.4.1 Weighted Fair Share Resource Partitioning

Both end-system and network communication resources are partitioned between the

deterministic and adaptive service commitment classes. This is achieved by creating and

maintaining “firewall” capacity regions for each class. Resources reserved for each class,

but not currently in use can be “borrowed” by the best effort service class on condition of

pre-emption [Coulson,95]. The adaptive service capacity region (called the available

capacity region and denoted by Bavail) is further sub-divided into two regions: i) guaranteed

capacity region (Bguar), which is used to guarantee all base rate layer flow requirements;

and ii) residual capacity region (Bresid), which is used to accommodate all enhancement

rates where competing flows share the residual bandwidth.

Three goals motivate the proposed adaptive service design. The first goal is to admit as

many base layer (BL) sub-signals as possible. As more base layers are admitted the

guaranteed capacity region Bguar grows to meet the hard guarantees for all base signals. In

contrast, the residual capacity region Bresid shrinks as enhancement layers compete for

diminishing residual bandwidth resources. The following invariants must be maintained at

 -141-

each end system and switch:

Bavail = Bguar +Bresid , and BL(i)i=1

N
∑ ≤ Bavail

Our second goal is to share [Steenstrup,94], [Tokuda,92] the residual capacity Bresid

among competing enhancement sub-signals based on a flow specific weighting factor, W,

which allocates residual bandwidth in proportion to the range of bandwidth requested that

in turn is related to the range of perceptual QoS acceptable to the user. In DQM, residual

resources are allocated based on the range of bandwidth requirements specified by the users

(i.e. BL.. BL+E1+E2 is the range of bandwidth required, e.g. from 0.32 Mbps to 3 Mbps

for the hybrid scalable MPEG-2 flow in Table 1). As a result, as resources become

available each flow experiences the same “percentage increase” in the perceptible QoS; this

is described asweighted fair share (WFS). W is calculated for each flow as the ratio of a

flow's perceptual QoS range to the sum of all perceptual QoS ranges.

W (i) = (BLi + E1i + E2i) / (BLj + E1 jj=1

N
∑ + E2 j)

All residual resources Bresid are allocated in proportion to the W metric. The proportion

of residual bandwidth is calculated using this factor and allocated to a flow to be

Bwfs(i)=W(i).Bresid and the proportion of the available bandwidth allocated to be Bflow(i)=

Bwfs(i)+ BL(i).

Our third and final goal is to adapt flows both discretely and continuously, based on the

adaptation mode. In the discrete mode no residual bandwidth is allocated by the WFS

mechanism unless a complete enhancement can be accommodated (i.e., Bwfs(i) = E1(i) |

E1(i)+E2(i), e.g. 0.83 Mbps or 2.68 Mbps from Table 1). In continuous mode any

increment of residual bandwidth Bwfs(i) can be utilised (i.e. 0 < Bwfs(i) ≤ E1(i) + E2(i),

e.g. from 0 to 2.68 Mbps from Table 1).

6.4.2 Rate Control Scheme

I build on the rate-based scheme described in [Campbell,94] where the QoS-A transport

protocol at the receiver measures the bandwidth, delay, jitter and loss over an interval called

an “era”. An era is simply defined as the reciprocal of the frame rate in the flow

specification (e.g. for a frame rate of 24 frames per second as shown in Table 1 the interval

era is approximately 42 ms). The receiver-side transport protocol periodically informs the

sender-side about the currently available bandwidth, and the measured delay, loss and jitter.

 -142-

This information is used by the source or virtual source1 to calculate the rate to use over the

next interval. The reported rate is temporally correlated with the on-going flow. An

important result in [Kanakia,93] shows that variable rate encoders can track QoS variations

as long as feedback is available within four frame times or less. This feedback is used by

the dynamic rate shaping filter and network based filters to control the data generation rate

of the video or the selection of the signal respectively. In the case of dynamic rate shaping,

the rate is adjusted while keeping the perceptual quality of the video flow meaningful to the

user.

Based on the concept of eras, control messages are forwarded from the receiver-side

transport protocol to either virtual source or the source-side transport protocol using reverse

path forwarding. A core-switch [Ballardie,93] where flows are filtered is always

considered to be a virtual source for one or more receivers; for full details see

[Aurrecoechea,94]. The WFS mechanism updates the advertised rate as the control

messages traverse the switches on the reserve path to the source or virtual source.

Therefore any switch can adjust the flow's advertised rate before the source or virtual

source receives the rate based control message. The source-side transport protocol hands

the measured delay and aggregate bandwidth off (Bflow) to the dynamic rate shaping filter.

DQM maintains flow state at each end-system and switch that a flow traverses. Flow

state is updated by the WFS algorithm and the rate-based flow control mechanism and

comprises:

i) capacity (viz. Bavail, Bguar, Bresid);

ii) policy (viz. filterStyle, adaptMode);

iii) flowSpec (viz. BL, E1, E2) ;

iv)WFS share (viz., Bflow, Bwfs, W).

The end-systems hold an expanded share tuple for measured delay, loss and jitter

metrics. An admission control test is conducted at each end-system and switch on route to

the core for the base layer signal. This test simply determines whether there is sufficient

bandwidth available to guarantee the base layer BL given the current network load:

BL(j)j=1

N
∑ ≤ Bavail

1 We use the term virtual source to represent a network switch that modifies the source flow via filtering.

 -143-

If the admission control test is successful, WFS determines the additional percentage of

the residual bandwidth made available (Bwfs) to meet any enhancement requirements in the

flowSpec:

Bwfs(i) = Wfact (i).(Bavail − BL(j)j=1

N
∑)

The WFS rate computation mechanism causes new Bwfs rates to be computed for all

adaptive enhancement signals that traverse the output link of a switch; switches are typically

non-blocking which means the critical resources are the output links, however, the scheme

can be generalised to other switch architectures [Coulson,95].

4.6.3 Network Filtering

Currently the scheme supports two types of selection filters in the network. These are

low complexity and computationally simple filters for selecting sub-signals. Selection filters

do not transform the structure of the internal stream, i.e. they have no knowledge of the

format of the encoded flow above differentiating between BL, E1 and E2 sub-signals. The

two basic types of section filter used are:

i) sub-signal filters: these manipulate base and enhancement layers of multi-layer

video multiplexed on a single flow. The definition of sub-signals is kept general

here; a flow may be comprised of an anchor and scalable extensions or the I and P

pictures of MPEG-2's simple profile, or the individual hybrid scalable profile. Sub-

signal filters are installed in switches when a receiver joins an on-going flow;

ii) hierarchical filters: these manipulate base and enhancement layers which are

transmitted and received on independent flows in a non multiplexed fashion. In

functional terms sub-signal and hierarchical filters can be considered to be

equivalent in some cases. In sub-signal filtering one flow characterises the complete

signal and in hierarchical-filtering a set of flows characterise the complete signal.

In addition, hybrid filters combine the characteristics of sub-signal and hierarchical

filtering techniques to meet the needs of complex sub-signal selection. For example

hierarchical filters allow the BL, E1 and E2 to be carried over distinct flows, and the user

can accordingly tune into each sub-signal as required. As an example, the base and

enhancement layers of the hybrid scalable MPEG-2 flow are each in turn made up of I, P

and B pictures at each layer i.e. BL (I,P,B), E1 (I,P,B) and E2 (I,P,B). Using hybrid

 -144-

filters, the receiver can join the BL QoS group for the main profile and the E1 QoS group

for the spatial enhancement and then select sub-signals within each profile as required (e.g.

the I and P pictures of the BL).

6.5 Summary

Resolving heterogeneous QoS demands in networked multimedia systems is a particularly

acute problem that has been addressed within the framework of the QoS-A by extending the

dynamic QoS management provision to meet the needs of scalable continuous media. As part

of that work a scheme for the dynamic management of multi-layer flows in heterogeneous

multimedia and multicast networking environments has been described. Dynamic QoS

management manipulates and adapts multi-layer coded flows at the end-systems and in the

network using a set of scaling objects. The approach is based on three basic concepts: the

scalable composition of MPEG standards that can provide discrete adaptation, dynamic rate

shaping algorithms for compressed digital video that provide continuous adaptation, and the

weighted fair share service for adaptive flows.

 -145-

Chapter 7

Implementation Details

The focus of the implementation work presented in this Chapter is communication

support for adaptive MPEG-1 video flows operating over ATM networks. The

implementation details given refer both to the end-system and network domains. In the end-

system METS communication support is embedded in the Linux operating system

[Linux,93] and interfaces with the Lancaster Research ATM Networking Environment.

The idealised environment (i.e., Chorus with an ATM interconnect) was not available

during the experimental phase of this work. The Linux environment with ATM interconnect

is considered to be flexible enough to realise a number of the important aspects of resource

management presented in this Chapter 5 - on the idealised operating system support for

QoS-A. Linux is distributed free of charge and supports Xwindows system (X11R6) and

standard networking support including TCP/IP.

In the network, communication support is embedded in the ATMos [French,93]

operating system resident in Lancaster Research ATM switches. To evaluate the

implementation a networked video system (NVS) [Yeadon,95], based on the Berkeley

software MPEG video player [Rowe,91], has been developed. In the next Chapter the

performance impact of the architecture is experimentally is demonstrated using the NVS

video system running on PCs and RAID-3 based storage servers interconnected by ATM

switches.

This Chapter is structured as follows. Section 7.1 presents the QoS-A experimental

environment. The key end-system and network implementation modules are introduced,

and the author's contribution to the implementation work is given. Following this, section

7.2, presents a QoS configurable based socket API. Then, section 7.3 describes the

implementation of METS transport system. Finally, this Chapter concludes with a summary

of the implementation status, evaluation of the implementation follows on in Chapter 8 and

conclusion drawn in Chapter 9.

 -146-

7.1 Experimental Environment

The objective of the METS transport system, as illustrated in figure 7.1, is to make QoS

visible at the transport API. This is accomplished by preserving application level guarantees

throughout the end- systems and the network on an end-to-end basis. Enabling applications

directly to access ATM level QoS is fundamental in meeting end-to-end QoS guarantees.

ATM offers high bandwidth per connection QoS guarantees at the physical layer; making it

suitable technology for multimedia networking. In many cases, however, the QoS benefits

of ATM are hidden from the application and transport layers by an interworking layer (e.g.,

IPv4) rendering per connection QoS configurability and control impossible [Keshav,94].

Furthermore, many ATM networks do not, as yet, provide QoS configurability on a per

connection basis. Rather, they allow the establishment of switched virtual circuits with best

effort QoS making per connection control and management impossible. The objective of the

implementation work presented here is the provision of QoS configurability, control and

management on an end-to-end basis.

 linux operating system

AAL5

ATM

METSig TQM METS

sockets (AF_METS)

NVS application

switch engine

ATM

MSNL

connection services

mcastd

AAL5

METSig

 ATMos micro-kernel

user space
kernel space

atm port

END-SYSTEM ORL 4x4 ATM SWITCH

atm portatm portatm port

Figure 7.1: QoS-A Testbed Environment

7.1.1 End-System

The end-system implementation modules include:

 -147-

i) a QoS configurable Berkeley socket based API,

ii) a METS transport system,

iii) a ATM networking interface controller. and

iv) a networked video system (NVS).

The author's contribution to end-system implementation includes:

i) the modification to the kernel socket code to support the QoS configurable API,

ii) the implementation of METS transport systems,

iii) the enhancement of the ATM networking interface controller software [Lunn,95], and

iv) the modifications of the NVS client server networking interface [Yeadon,95] to

take full advantage of the METS QoS configurable socket interface.

The QoS configurable API is based on a new protocol family called AF_METS. By

preserving compatibility with the current Berkeley socket API such as AF_INET existing

applications can run unchanged. In addition, the METS protocol stack operates aside an IP

environment [Lunn,95] based on standard IP over ATM encapsulation [RFC 1483,93]. In

this role, however, per flow QoS is not visible above the IP layer. The API is discussed in

full detail in section 7.2

The METS transport system implementation is comprised of a set of communication,

control and management modules to support application level QoS requirements. Based on

the principles of separation between control, maintenance and management the METS

transport system includes of the following four modules:

i) a flow manager (FM) module, which is responsible for the flow management,

functions of flow establishment, QoS signalling, QoS adaptation and tear down;

ii) a signalling (METSig) module, which includes group management, connection

management and signalling support for flow establishment and dynamic QoS

management;

iii) a QoS manager (TQM) module, which is responsible for the QoS maintenance

of on-going flows; and

iv) a METS protocol (METSP) module, which provides an MPEG encapsulation for

 -148-

audio and video flows and a set of transport level resource management QoS

mechanisms for flow scheduling, flow monitoring, flow control, flow shaping and

jitter correction (i.e., sync filtering).

The transport system is detailed in section 7.3

7.1.1.1 Interfacing to ATM

The networking infrastructure used to implementation the METS transport system is

based on the Lancaster Research ATM Networking Environment. This delivers ATM flows

to a mix of PCs, storage servers, and multimedia devices designed at Lancaster [Lunn,94].

The Lancaster Research ATM Networking Environment is interconnected to a Campus-

wide ATM network based on Fore Systems (i.e., ASX-100 and ASX-200 ATM switches)

and ATM Ltd (i.e., Virata ATM switches) technology and to the rest of the UK via the

SuperJANET 34 Mbps Joint Academic Network (SuperJANET). QoS-A implementation

and evaluation (see Chapter 8) are based solely on the local ATM networking.

ATM

device layer

ISA_ATM device driver

 Figure 7.2: ATM Layer

 The lower layers of the QoS-A communication architecture are based on an

implementation of AAL5 adaptation layer over ATM. The purpose of the AAL5 layer is to

provide a simple and efficient encapsulation for communications between end-points. An

end-point is a transport service access point in this model. The AAL5 provides a link level

service between end-points and acts as an interface between the service requirements of

METS and the ATM layers. The AAL5 layer is divided into two sub-layers: the

segmentation and reassembly sub-layer (SAR) and the convergence sub-layer (CS). At the

transmitting end-point, METS packets are simply encapsulated into AAL5 Service Data

Units (SDUs) and then the SAR performs segmentation of AAL5 SDUs into ATM cells. At

the receiving end-point the inverse operation is performed.

As illustrated in figure 7.2, the ATM layer is comprised of three sub-layers in the Linux

 -149-

implementation:

i) the ISA ATM device driver layer, which is responsible for the initialisation and

control of the Olivetti Research Laboratory (ORL) ATM Network Interface

Controller (NIC) and the transmission and reception of ATM cells;

ii) the device layer, which is provided by the Linux operating system and decouples

protocols from devices keeping the layering of protocols generic and flexible; and

iii) the ATM protocol layer; which performs a minimum set of ATM functions.

 Network Interface Controller (NIC)

The ORL NIC, which is designed to interface to 100 Mbps ATM, shares its port design

with the 4x4 ORL ATM switch. However, instead of interfacing with a DMA engine and

ARM processor, the NIC interfaces with the standard PC ISA bus architecture.

As illustrated in figure 7.3, the ISA bus interfaces to a Xilinx controller and the transmit

and receive FIFO buffers. The FPGA provides the primary control for interfacing with the

PC and transferring data between the TAXI chips and the FIFOs. The NIC has two 16 bit

registers for control and provision of status information. The control register enables and

disables interrupts for transmission, reception and connection status. The status register

indicates various device states such as cells received, space available in the transmission

queue and interrupt flags.

The NIC also contains hardware support for ATM header checksum (HEC) processing.

When ATM cells are transferred to the NIC device 4 bytes of the ATM header are passed

followed by the 48 data byte payload. The NIC calculates the HEC and places it into the

header. On reception of ATM cells the HEC is checked and flags in the control register

indicate the status of the ATM header information.

 -150-

taxi
tx

tx fifo

taxi
rx rx fifo

hec
calc

control
register

status
register

xilinx controller

address bus

data bus

isa bus

hec
check

Figure 7.3: ISA ORL ATM NIC

 7.1.1. MPEG Application Level Demonstrator

The QoS-A application level demonstrator is part of the Lancaster Filtering System

(LFS) [Yeadon,95] developed to experiment with filtering audio and video flows in the

Internet. The focus of the LFS work is the investigation of appropriate filtering mechanisms

to meet specific QoS needs of individual clients. To date, the LFS work has focused on the

manipulation of MPEG-1 and motion-JPEG video flows both in the compressed and semi-

compressed domains. The LFS video MPEG decoder is based on the Berkeley software

Continuous Media Player [Rowe,92]. The suite of LFS filtering mechanisms comprises

codec, frame-dropping and re-quantization filters.

For the purpose of this research the LFS has been ported to the native ATM networking

environment and is used in the capacity of an application level demonstrator. In this role the

LFS systems is primarily used as a source and player of MPEG video clips as illustrated in

figure 7.4.

The NVS file daemon listens on a well known port for a new MPEG video-on-demand

request from clients. When a request is received the LFS system invokes an MPEG-1 video

agent (i.e., video-on-demand server) which packetises and transmits MPEG-1 video using

the METS transport system. Each MPEG-1 picture (viz. I, P, B pictures) is packetised into

individual METS packets. These assist with the adaptive service described in sections

7.3.14 (cf. QoS adaptor) and 7.3.3.1 (DQM). As illustrated in figure 7.4, the video server

and clients have been modified to utilise control sockets (conSoc) for application level

signalling, media sockets (medSoc) for the transfer of continuous media streams and a flow

management sockets (manSoc) for the management of on-going flows.

The NVS system employs the AF_METS socket family (to be described in detail in

 -151-

section 7.2) rather than the AF_INET Internet family. MPEG-1 sequence header data and

group of pictures (GOP) data are also packetised independently and uniquely identified.

METS packets are carried over the ATM network as encapsulated AAL5 packet. The

mapping of METS to AAL5 packets is one-to-one; that is, there is no segmentation between

METS and AAL5 layers. Depending on the configuration, the LFS may send sequence

headers and GOP header packets in-band on a medSoc or out-of-band a conSoc.

File
Daemon

MPEG 1
Video
Agent

Client

Client

dwp

njy

core-switch

atc chuff

conSoc

medSoc

signal and control

mpeg video BL+E1+E2

manSoc
mpeg video BL

Figure 7.4: NVS Application Level Demonstrator.

Figure 7.4 shows two clients (located at the njy and dwp end-systems) and a server

(located at atc end-system) interact. In the first instance, the client at atc interacts with the

file daemon to request dissemination of client selected MPEG-1 video. Following this, the

server interacts with the METS system to create a QoS group in the first instance, and then

advertises the traffic characteristics and QoS policy associated with the on-demand video.

The server subsequently joins the created multicast session and finally disseminates the

requested video using the designated multicast address. Clients also interact with group

management to determine the nature of the source video (e.g., the structure, coding and

QoS attributed to each component of a video signal). From this interaction they choose

which video components to consume. Once clients have chosen their preferences they also

issue joinFlow commands on the designated multicast address (which is made up of a port

and a MSNL address). At this point the clients are ready to consume their selected video

 -152-

components.

7.1.2 Network

The software structure of each ATM switch is comprised of the following:

i) an ATM device driver module, which is responsible for the reception and

transmission of cells;

ii) a switch engine module, which forwards cells directly or pass them to the higher

layers for further processing;

iii) a AAL5 module, which provides AAL5 layer functions and which forwards

AAL 5 protocol data units (PDU) to the signalling layer or directly to the connection

service layer;

iv) a signalling layer, which provides MSNL and METS signalling supports for

connection management of switch resident applications processes;

v) a connection service layer, which implements ATMos connection management

handling connection setup, data delivery and tear down; these functions are

equivalent to the Berkeley socket layer API; and

 vi) an "application layer", which represents the ATMos application level process

environment (e.g., it includes the METS multicast daemon for CBT signalling).

The author's contribution to this network implementation includes:

i) the modification to the switch engine module to support the adaptive network

service described in Chapter 6;

ii) the implementation of METS signalling functions described in Chapter 4 and 6,

and

iii) the implementation of a application layer multicast daemon for CBT signalling as

described in Chapter 4 and 6.

The network implementation utilises ORL NICs and 4x4 ATM switches as the basic

interconnect for PC, RAID-3 storage servers and multimedia peripheral devices. Each ORL

device (e.g., NICs, switches, etc.) is comprised of standard component parts: the hardware

consists of an ARM processor, up to 32 MBytes of memory and a 100 Mbps ATM TAXI

 -153-

interface. These modules are used to implement both ORL ATM switches (i.e., 4x4 and

8x8 port switches) and end-point modules such as the RAID-3 storage servers. All ORL

modules are controlled by the ATMos micro-kernel specifically designed to support ATM

switch and multimedia peripheral operations. ATMos provides a mechanism for scheduling

processes and controlling low level hardware and was designed by Leslie French and Ian

Wilson of ORL Ltd [French,94] . The ATMos environment includes provision for inter-

operation with other systems using protocols such as TCP/IP, XTP and a distributed

platform based on CORBA [OMG,93].

The ATMos development environment has been ported to Lancaster's Linux machines

allowing the development of switch software on Linux PCs [Lunn,95]. New switch

software is built on the Linux PCs and booted onto the ATM switches using the ORL boot

protocol [French,94].

7.1.2.1 Switch Software Structure

The MSNL module implements the ORL network layer - implementing level 3 of the

ISO 7 layer model - derived from the Multi-Service Network Layer (MSNL) of the Multi-

Service Network Architecture developed at Cambridge Computer Laboratory by McAuley.

The protocol is connection-oriented and is built on a set of meta-signalling commands and

is primarily used within the ATMos ATM network at ORL.

The METS system builds on this work by using a number of the meta-signalling

commands and hooks provided by ATMos for the implementation of signalling. METSig is

fundamentally a connection-oriented protocol supporting multicast communications with

QoS guarantees as described in Chapter 6.

As described above clients and servers obtain multicast addresses which identify

sessions and then issue joinFlow commands to join a particular flow. This results in the

creation of a switched virtual circuit between the clients and server and multicast daemon

(mcastd) located at one of the switches in the network. Clients 'rendezvous' with a server at

the designated switch which is administered by a multicast daemon at the designated switch;

this is called the core-switch for the multicast session.

The communication layering illustrated in figure 7.1 is implemented by 4 ATMos

processes:

 -154-

ii) the ATM, switch engine and a AAL1 layers are implemented by a single ATMos

process;

iii) the METSig and MSNL signalling functions are implemented by two

independent processes;

iii) the connection services which is equivalent to end-system socket library

functionality; and

iv) the mcast daemon listens on a well known port (which is part of a multicast

group address) for METSig meta-signalling and dynamic QoS management

messages.

Implementation of the METS transport system required a minor modification to the

switch engine code, and the addition of METSig and mcast processes to the switch. All

other items above are standard ORL release (e.g., ATMos, connection services, MSNL)

which required no modification.

7.1.2.2 4x4 ATM Switch Hardware Structure

The ORL 4x4 port ATM switch contains 4 identical port controls, a DMA engine and an

ARM processor (Figure 7.5). The port controls implement a 100 Mbps TAXI interface with

FIFOs to queue 13 ATM cells on transmit and receive. These FIFOs interface with the

DMA engine which transfers cells from the incoming queue to the outgoing queue under

control of the ARM processor. The ARM examines the header of each ATM cell, performs

the header remapping and routing to a port or higher layer (e.g., METS signalling).

The philosophy behind the design of such a small switch has been influenced the work

of Hayter, McAuley and Leslie on Desk Area Networking [Hayter,91]. Rather than

exploding the workstation, as is the DAN approach, ORL chose to treat each peripheral

module (e.g., PC, ATM Camera, storage server, ATM video, ATM microphone, etc.) as

an ATM device connected to a desk area switch which is external to the workstation;

essentially using a network as the peripheral interconnect. The ORL multimedia model

considers that most flows emanating from a module typically flow to multimedia devices

other than the PC or workstation

1The switch implements a standard AAL5 for signalling and data transfer with application level processes
resident at a switch. Therefore, connections can be terminated at the switch - and as is traditional, passed
through the switch.

 -155-

rx fifo

tx fifo

taxi
rx

taxi
tx

rx fifo

tx fifo

taxi
rx

taxi
tx

rx fifo

tx fifo

taxi
rx

taxi
tx

rx fifo

tx fifo

taxi
rx

taxi
tx

dma engine

arm
processor

Figure 7.5: 4 x4 Port ORL ATM Switch

7.1.3 Experimental Configuration

The METS testbed consists of 4 Linux based PC and two ATMos based RAID-3

storage servers. Each PC and storage server is equipped with an ORL ATM NIC for

interconnection to the ATM network. As illustrated in figure 7.6 the testbed included the

following nodes: atc and dwp end-systems, which are both 90 MHz Pentium machines,

and mr-little and njy which are both 66 MHz 486 machines. The RAID-3 storage servers

(magpie and scaup end-systems as shown in figure 7.6) utilise the ARM 610 RISC

processor and are comprised of 5xSCSI interface controllers and disk drives .

atc

campus-atm
(ASX200s)

dwp

njy

mr-little

magpie

scaup

chuff rooksparrow

194.80.36.212 194.80.36.193

194.80.36.212 194.80.36.201

194.80.36.192 194.80.36.210

194.80.36.213194.80.36.200

194.80.36.212

Figure 7.6: METS Testbed

Each PC and storage server is connected to one of three ORL 4x4 ATM switches:

 -156-

chuff, sparrow and rook in figure 7.6.

7.2 Application Programmers Interface

The METS API consists of a set of Berkeley socket calls in addition to some new

extension. The original socket code was tailored to meet the needs of the METS API first

described in Chapter 4 and subsequently extended in Chapter 6. Extensions to the existing

socket API benefited the needs of the QoS-A for the control, maintenance and management

of QoS.

7.2.1 Overview

The METS API consists of a set of Berkeley socket calls in addition to some new

primitives for group management. Note that where possible the author has used the

standard socket library calls.

The METS API is comprised of the following set of primitives:

i) group management primitives, which allow the user to open a group, get group

information and gracefully close a group;

ii) socket primitives, which use standard Berkeley socket interfaces to allow

applications to create flow management, control and media sockets;

iii) connection management primitives, which allow the application to join and leave

flows;

iv) media transfer primitives, which consists of the standard Berkeley socket

interfaces for sending and receiving data; and

v) flow management primitives, which allow applications to change QoS policy and

flow specification of flow;

The METS system provides three styles of sockets (illustrated in figure 7.8) as part of

the AF_METS protocol family to the application layer.

These include:

i) a media socket (MedSoc), which is used for the transfer of continuous media, is

QoS configurable and maintainable based on a user supplied flow and QoS policy

specifications, respectively. Media sockets are characterised as being simplex and

 -157-

non-assured in nature;

ii) a control socket (ConSoc), which is used for the transfer of application level

control information. Control sockets are full duplex and assured (i.e., provide a

reliable delivery service); and

iii) a flow management socket (ManSoc), which is used for the management of

media flows. Flow management sockets are unique in that they provide applications

an interface to QoS maintenance.

All devices on the ATM network use MSNL addressing rather than E.164 or NSAP as

prescribed in UNI 4.0 [ATMF,92a]. The MSNL addressing information is carried in 8-

octet a 4-octet MSNL address and a 4-octet port. Both MSNL addresses are usually

represented 4 decimal numbers, separated by dots, like IP address (e.g., as illustrated in

figure 7.6 the switch named 'chuff' has an MSNL address 194.80.36.193). Certain

numbers represent well known ports to METS signalling. For example, all the mcast

daemons listen on port 0.0.0.60 on all end-systems and switch devices. In the METS

system multicast addresses are based on MSNL unicast addresses of the core-switch and a

port address. The designated core-switch is part of the core based tree (CBT) routing

protocol used during flow establishment. The benefit of such an approach is that unicast

and multicast addresses are the essentially the same [Ballardie,93] in CBT addressing.

AAL5

ATM

METSig TQM METSP

sockets (AF_METS)

NVS

END-SYSTEM

API

multimedia
enhanced
transport
system

network

multimedia
application

 control plane

 flow management and QoS maintenance planes
user plane

 ConSoc: application-level control socket
 ManSoc: flow management socket

MedSoc: media flow (transmission ot reception)
Linux socket lib

API

QoS-A
planes

Figure 7.8: Mapping to METS

In the following section each set of API primitives (described above) are presented

 -158-

indicating any differences that may exist between the client and server APIs.

7.2.2 Group Management Primitives

Items i) through v) outlined above in section 7.2.1 broadly characterise the order in

which multicast switched virtual circuits are established. In the first instance, a server

creates a QoS group by issuing an openGroup command on the manSoc specifying its flow

specification and QoS policy - this is described as the server's QoS profile. Multicast group

addresses must be known to all clients a priori. Furthermore, for the purpose of

experimentation a multicast daemon at the core recorded the QoS profile and await getInfo

requests from clients. This inevitably creates a bottle neck in the signalling system as the

number of group members scale up. To resolve this problem the server's profile details and

the 'state' of the group would need to be distributed and some form of a hierarchical

management of state would be required. These scaling issues are for future work.

During the After a client has determined the server's QoS profile and selected the

component part of the flow to consume they are then free to establish a connection to a

multicast switched virtual circuit. In addition to requesting information about the server's

profile, clients and servers may also retrieve detailed statistics about membership to a

particular group.

Only servers which instantiate QoS groups have the privilege to close QoS groups.

Before the session can be finally closed all currently joined members are issued a leave

indication (see section 7.2.4). The group management primitives are described in figure

7.7.

Group Management

Primitive

Parameters

Open Group Req

Open Group Ack

Open Group Nak

Multicast Address, QoS Profile (QoS Policy, Flow Spec)

None

None

GetGroupInfo Req

GetGroupInfo Ack

GetGroupInfo Nak

Multicast Address, Type (members | profile | all)

Type Data (members | profile | all)

None

 -159-

Open Group Req

Open Group Ack

Open Group Nak

Multicast Address

Numbers

None

Figure 7.7: Group Management Primitives

7.2.3 Socket Primitives

 The METS API uses the standard Berkeley sockets calls to:

i) create flow management (SOCK_RAW) sockets (manSoc), media

(SOCK_DGRAM) sockets (medSoc) and control (SOCK_STREAM) sockets

(conSoc) ;

ii) bind a port and address to a socket;

iii) send and receive control, flow management and media to and from a socket;

iv) close a socket;

v) get host by name details; and

v) select to wait on a socket or timer event.

Figure 7.8 illustrates the three styles of socket, controlling mechanisms and mapping to

the METS transport system. Once a server has successfully established a switched

connection it moves into the media transfer state and is free to commence the media transfer

phase (i.e., free to produce or consume media). The current implementation allows the

server to send media to the designated core switch in the absence of clients. This approach

fully decouples the server and clients which is an important principle of scalability. Clients

join the multicast session and receive media.

7.2.4 Connection Management Primitives

 The connection management primitives allow servers and clients to join and leave

multicast groups once a multicast group has been established using the group management

primitives. Both the servers and clients state their flow specifications and QoS policy

requirements in the joinFlow command. The joinFlow command distinguishes between

clients and servers in order for the correct polarity of a connection to be established. Clients

and servers can leave the session at any point by issuing a leaveFlow command on their

manSoc. The current number of members joined to the connection is returned in the join

 -160-

and leave acknowledgement. The connection management primitives are described in figure

7.9.

Connection Management

Primitives

Parameters

joinFlow Req

joinFlow Ack

joinFlow Nak

Type (Server | Client), Multicast Address, QoS Policy, Flow Spec

Members

Reason

leaveFlow Req

leaveFlow Ack

leaveFlow Nak

Multicast Address

Member

Reason

Figure 7.9: Connection Management Primitives

7.2.5 Flow Management Primitives

The flow management primitives allow servers and clients to interact to register a flow,

change the QoS of a flow and receive QoS signals associated with a particular flow.

Whenever clients and servers create media sockets they register them (i.e., medSocs) using

the register primitive. This allows flow management to interact with the application over the

associated manSoc providing monitoring and maintenance information about the on-going

flow.

At any point during a session, group members may change the QoS negotiated during

the connection establishment phase. The changeQoS options include modification of the

QoS policy and flow specification clauses. Similar in nature to the Berkeley setsockopt,

changeQoS allows the application to affect the performance, control and management

requirements of the medSoc. The flow management primitives are described in figure 7.10.

Flow Management

Primitives

Parameters

registerSoc ManSoc, MedSoc

 -161-

changeQoS Req

changeQoS Ack

changeQoS Nak

ManSoc,

Options (QoSPolicy | FlowSpec | Maint | Monitor |

 Signal | Adapt | Filter | Event),

structure (QoSPolicy | FlowSpec | Maint | Monitor |

 Signal | Adapt | Filter | Event)

sizeof (QoSPolicy | FlowSpec | Maint | Monitor |

 Signal | Adapt | Filter | Event)

Status

signalQoS type (Signal | Event)

option (qosMetric | qosEvent)

Figure 7.10: Flow Management Primitives

The changeQoS options comprise:

 i) QoSPolicy option, for specification of a new QoS policy;

ii) flowSpec option, for renegotiation of a current flow specification; and

iii) maint, monitor and signal refer to the QoS maintenace options:

- in maint mode the transport QoS manager actively maintains the flow,

- in monitor mode it maintains the flow but also forwards periodic QoS

signal ; messages to the application over the manSoc;

- in signal mode it does not maintain the flow but forwards periodic QoS

signal messages;

iv) adapt option, to change the adaptation mode (viz. continuous or discrete); and

v) filter option, to select new filters (viz. sync at the receiver or picture dropping

filter in the network).

While a change in QoS initiated by a client only affects the local clients QoS a change by

the server may impact all active clients in the current session. If the monitor, signal or event

options are selected then the application expects to receive signalQoS. The monitor and

signal options allow the application to specify an interval over which the transport flow

monitor measures specific QoS metrics. At the end of the user specified interval flow

 -162-

management issues a qosSignal to application (via the ManSoc) providing the performance

details of the QoS metric monitored over the interval. QoS signals initiated by the selection

of the monitor or signal options are synchronous in nature. In contrast QoS signals which

are the result of event selection are asynchronous. The event option allows applications to

attach alarms (or QoS alerts [OSI,95a]) to the occurrence of particular event thresholds. In

this role flow management continuously monitors the selected QoS metrics against the

specified threshold values. Should the threshold be exceeded then flow management

informs the application of this event over the manSoc.

7.3 METS Transport System

This section describes the detailed the implementation of the METS transport system.

This includes support for flow scheduling, flow shaping and jitter correction. The impact of

QoS control, QoS maintenance and flow management on the end-system and ATM

switches are addressed in detail. An important contribution of this thesis is the realisation of

a set of QoS mechanisms designed to meet the transport needs of adaptive video operating

over ATM networks. Implicit in the design of these mechanisms is their ability to

distinguish between different QoS needs of flows in the end-system and as they traverse the

network.

mpeg payloadH

mets payloadH

aal5 payload T

.

P

H: transport headers
T: AAL5 trailer
P : AAL5 padding

application layer

transport layer

adaptation layer

network layer

Figure 7.11: Encapsulation and Layering

Figure 7.11 illustrates the encapsulation used by the transport system. The NVS system

packetises MPEG-1 video and then the transport system encapsulates each packet into a

 -163-

single METS service data unit. Note that the MPEG picture boundaries are maintained by

each METS and AAL5 service data unit. Each METS packet is directly encapsulated into a

single AAL5 service data unit by appending the trailer and adding padding bytes for

fragmentation into ATM cells. Encapsulation is kept to a minimum and as such is efficient.

The maximum size AAL5 service data unit adopted for experimention is 32 KBytes which

is suitable to hold the largest I frame used during the experimental phase discussed in

Chapter 8.

The transport system as illustrated in figure 7.12 is comprised of four implementation

modules which map closely to the QoS-A planes. The flow management plane is

implemented as a flow manager (FM) and a resource reservation module. The resource

reservation module subsumes the QoS mapping and admission control testing functions of

the QoS-A flow management plane. The resource reservation module interacts with the

CPU, memory and network resource management modules for the allocation of

communication resources. The connection manager handles aspects of network resource

management. The flow manager interacts with clients and servers over the manSoc interface

using a set of kernel level socket functions as illustrated in figure 7.12. The control plane is

realised as a set of meta-signalling, group management, connection management and

dynamic QoS management (DQM) signalling functions.

DQM

METSig

flow
manager

connection
manager monitor protocol

sync

filter

flow State
flow management state

TQM MESTP

flow managment
plane

control
plane

user
plane

media

protocol
control

meta
signalling

network UNI

joinFlow(); changeQoS(); signalQoS(); recv();

flow managementsignalling media transferNVS application

T3

METS scheduler

flow

FM
group

manager

meta-signalling

signalling

QoS mantainence
plane

resource
reservation

transport
QoS

manager
T4

flow
shaper

send();

T5

openGroup();

METS API

monitot

Figure 7.12: METS Transport System Components

 The transport system provides a number of protocol and QoS mechanisms for end-to-

end traffic control of flows. These include METS flow scheduling for transmission and

reception of media, flow shaping on transmission of media and flow monitoring and jitter

 -164-

correction (sync-filtering) on the reception of media. METS also provides support for

dynamic QoS management of multi-layer code flows.

METS

Modules

Signalling QoS Control QoS Maintenance Flow Management

Management

Entity

connection manager

group manager

 protocol transport QoS manager flow manager

QoS

Mechanisms

admission control

resource reservation

DQM signalling

flow shaper

flow scheduler

sync filter

QoS monitor

QoS adaptor

protocol engine

maintenance

flow monitor

event monitor

adaptation

QoS mapping

admission control

resource reserva

Figure 7.13: End-System METS Modules

 The end-system QoS control, QoS maintenance and flow management METS modules

are now described in turn. The management entity and associated QoS mechanisms for each

of these modules in discussed in detail. Following this, section 7.3.4, examines the

implementation of the adaptive network service interworking with end-system QoS adpaters

and network media schedulers to support dynamic QoS management of multi layered coded

flows.

7.3.1 QoS Control Module

 7.3.1.1 Flow Scheduling and Shaping

The approach taken to delivering per flow bandwidth and jitter guarantees at the

application layer is based on a two stage scheduling framework as illustrated in figure 7.14.

The first stage of the framework employs a transport level flow scheduler that schedules

application level frames [Clark,90] on a frame per second (fps) basis. The second stage of

 -165-

the scheduling framework is responsible for pacing or regulation of ATM cells to the user-

network-interface. Flow scheduling and shaping work in unison to provide scheduling and

rate control in the METS system. Because QoS requirements are visible to both the

scheduler and shaper quality of service guarantees can be provided on an individual flow

basis. The flow scheduler and flow shaper are examined in the following sections.

 Flow Scheduler

 The flow scheduler is implemented as part of the flowLib user space library and applies

equally to the transmission and reception of media to and from the network. The flow

scheduler uses the standard Linux clock timer to dispatch application level frames to the

METS transport protocol. Application level frames are processed by the protocol and then

paced onto the next flow shaper stage according to the flow specification. As shown in

figure 7.14, the scheduler provides variable bit rate service by isochronous scheduling

variable sized packets to the transport system. The flow scheduler uses the standard Linux

clock timer to dispatch application level frames to the METS transport protocol. Application

level frames are processed by the protocol and then paced onto the network according to the

flow specification. As shown in figure 7.14, the scheduler provides variable bit rate service

by isochronously scheduling variable sized packets to the transport system.

The flow scheduler polices the rate at which applications deliver and receive frames to

and from the METS layer, respectively. The flow scheduler does not, however, police the

size of packets exchanged at the transport service access point (i.e., medSoc). This is a

function of the lower level flow shaping mechanism on transmit. The flow scheduler

enables the application to transmit and receive one application level frame every 1/fpsi

interval, where i represents the flow identifications. Any deviation from this isochronous

rate (i.e., faster or slower) is managed by the scheduling mechanism. While the workahead

mode (described in Chapter 5) is inhibited, the scheduler includes mechanisms which

attempt to overcome any slippage in the agreed rate that may occur at the transmitter. At the

receiver, the flow scheduler relies on the sync filter (described in section 7.3.1.2) to

provide the schedule deadlines. In this role the sync filter adjusts the deadline of delivered

frames but not the rate.

The Linux scheduler can not offer the same support for QoS commitment as the

idealised operating system (i.e., delivered by the enhanced Chorus scheduler described in

Chapter 5). Linux provides a best effort scheduling mechanism which cannot consistently

deliver hard real-time guarantees to applications if resource utilisation remains unbounded.

 -166-

It can, however, offer soft guarantees on a more consistent basis; this is again dependent on

load on the system. By introducing admission testing for communication flow, resource

utilisation can be bounded in the case of the transmission and reception of media. However,

the flow scheduler still relies on the Unix scheduler to dispatch media from the application

to the transport system. One product of this environment is slippage or drift can occur at the

flow scheduling level. This occurs when a deadline is missed by some margin. To counter

this the flow scheduler is designed to take slippage into consideration during the calculation

of frame deadlines [Simpson,95].

BL E2 E2 E1 E2 E2

per-svc queueing in ATM device driverflow
shaper

scheduler

FPS

user space

kernel space

synchronous packet delivery to METS

1/FPS 1/FPS 1/FPS 1/FPS 1/FPS

1/FPS
10 msec

1 msec

cell shaping to network interface

GOP scheduled (I B B P B B)

va
ria

bl
e

pa
ck

et
 s

iz
e

Figure 7.14: Two Stage Scheduling Framework

A drift compensation function is built into the flow schedules which takes into account

any missed deadlines. If a deadline has been missed then the flow scheduler immediately

allows the application to transmit or receive media. The duration of the next scheduling

opportunity is then calculated and takes any drift in the isochronous rate of the transmitter

into account. Taking drift into account implies that the interval between the last point of

scheduling and the next deadline is less than 1/fpsi. In some server cases complete

scheduling opportunities can be missed by an interval greater than 1/fpsi. In this case the

flow scheduler keeps a tally of lost opportunities and credits the application during the

following scheduling opportunity where the backlog is dealt with.

The flow scheduler keeps track of any missed deadlines and informs flow management

should the number of missed deadlines exceed a pre-defined missed deadline threshold. As

described later flow management upcalls applications (via a loaded QoS signal on the

manSoc) to inform them of the loaded state.

 -167-

QoS-A applications are designed only to forward base layer frames in a loaded state.

when congestion has cleared flow management informs the application via a QoS event

signal to resume its original rate. The flow scheduler does not discriminate between BL, E1

and E2 frames (i.e., it does not understand the semantics of the adaptive service or layered

flows). It relies on the application to source quench flows in the loaded state. Additionally,

the protocol perform any policing required should the application be deemed not to co-

operate with the flow control directive.

Flow Shaper

The flow shaper is implemented as part of the kernel level ISA ATM device driver.

Flow shaping only applies to the regulation of media as it is injected into the network. The

flow shaper code is invoked every 1 ms using a dedicated hardware timer. The flow shaper

provides open loop flow control based on a token bucket scheme that paces cells to the

network interface. It constitutes the low level flow regulation component of the scheduling

framework. The token bucket scheme is a variant of the leaky bucket algorithm

[Turner,86]. As illustrated in figure 7.15, flows accumulate credits which represent the

number of ATM cells that can be transmitted to the network over the next interval.

The flow shaper maintains per flow state:

i) the token budget (b), which represents the capacity or depth of the token bucket

measure;

ii) the token credit (r), which represents the remaining credits (where 0 <r <b) left in

the token bucket at any point over the token interval;

iii) the token refresh rate (p), which represents the interval at which the token

bucket's is refilled; and

iv) the token timeout (t), which represents the ticks remaining until the token refresh

rate expires and token credits are refreshed.

The token bucket scheme operates in a rather simple fashion. When the token timeout

expires the token credit is set equal to the token budget. One credit represents one cell

transmission opportunity. When the flow shaper executes it visits all the per flow queues

that are in transfer mode (see the state machine description in section 7.3.1.5 for details). If

the flow has cells queued ready for transmission and credits available then the flow shaper

transmits one cell and decrements the token credit state variable. The flow shaper then visits

 -168-

each per flow queue in a round robin manner. At the end of each round (i.e., a round is

complete when all queues have been visited) it repeats the cycle. This achieves the desire

effect of interleaving of cells from different switched virtual circuits onto the network.

token
update

flow
shaper

si

flow i

si si si

1 msec

flow j flow k flow l

1/fps(i,j,kl) round robin
cell resheduling

to network:
cell interleaving

Figure 7.15: Flow Shaping in the ATM Device Driver

There are two possible outcomes at the end of a token refresh interval: either all the cells

have been drained or the cells remain in the queue. If cells remain in the queue then all the

credits have been used during the interval. If no cells remained queued then all queued cells

have been dispatched to the network during the interval with credits (0<=r < b) potentially

remaining.

At the end of a refresh cycle the remaining credit state variables are updated to the value

configured by (b) the token bucket budget. Any credits remaining at the end of the refresh

interval are lost, (i.e., the token bucket scheme does not accumulate credits over

consecutive intervals). The admission control test at flow establishment ensures that there is

sufficient resource to schedule application level frames and regulate cells to the network.

Furthermore, all cells associated with one METS packet are given the same transmission

deadline.

 -169-

7.3.1.2 Sync Filter

The METS protocol does not assume that the network will provide a strict bound on

delay performance guarantees. Rather, the protocol continuously monitors the end-to-end

delay and calculates the playout time of media. As METS packets, which are fragmented

into cell, traverse ATM switches distortion of the original signal (i.e., traffic shape) occurs.

This is due to the variable delays experienced by each packet traversing the network.

Furthermore, the end-systems potentially distort the signal’s timing through interrupt,

reassembly and protocol processing. The objective of the sync-filter is to restore the timing

of the original signal before the video is delivered to the playout device.

Variable delays in the network consist of the queueing delay at the ATM switches. In

the 4x4 switch each port controller has a 13 cell FIFO buffer on input and output; a round

robin service discipline schedules cells between input and output ports. The media access

delay in the end-system and the propagation in the network are fixed delays. Additional

delays in the end-systems include packetisation and segmentation and reassembly.

 End-to-End Delay Estimation

It is a straightforward process to recover the original video timing (at the receiver) for

communication systems that provide a hard bound on delay. The process is as follows.

Each packet carries an emission time (T) which represents the time at which each packet

was generated and transmitted to the network. After traversing the network the packet

arrives at the destination transport after a delay (d); that is, at time T+d as illustrated in

figure 7.15. If the receiver knows the maximum delay (D) bound a priori then it is

sufficient to buffer the packet between t+d and T+D and then deliver it via the flow

scheduler to the playout application at the precise playout time (T+D). This simple

algorithm compensates for delay distortion induced in the signal as it transverses the

network. This form of jitter correction results in the smooth playout of the original signal.

Many networks do not, however, know what the maximum delay is a priori as required

by the previously mentioned playout algorithm. In such cases the receiver can estimate the

this delay. According to the algorithm described in [Huitema,95] [Ramjee,94]. This

estimate can then be used to determine the playout time of packets as they are received by

the transport protocol. Statistical analysis of the per packet delay (i.e., the difference

between the emission time carried in the packet and the reception time recorded by the flow

monitor) is used to estimate the maximum delay. The standard deviation (s) and average

 -170-

delay (d) can be estimated based on the per packet delays. An estimate of the maximum

end-to-end delay takes the average delay and standard deviation into account: D = d + r.s,

where r is a filter coefficient depending on the form of the curve and the number of failures

that one is ready to accept [Huitema,95].

Each failure mentioned above corresponds to a transmission delay larger than the

estimated maximum. Packets that arrive after the D are considered to be too late to help

reconstruct the signal and, in this case, flow management is informed of a late packet event

and the packet is dropped. A popular value for r is 2, which corresponds to an accepted

loss of about 1% if one assumes a Gaussian distribution of the delays [Huitema,95]. From

an intuitive point of view the 2.s term is used to set the playout time to be "far enough"

beyond the delay estimate so that only a fraction of the arriving packets should be lost due

to late arrival [Ramjee,94]. For a full discussion of these estimates and filter coefficient see

[Jacobson,88].

The METS testbed utilises the NTP protocol to achieve global timing. The Network

Time Protocol development spearheaded by Mills [Mills,92] provides clock

synchronisation to within a few milliseconds or less, even across large Internets. NTP is

straightforward to install on networks with IP and Linux running. Achieving ms

synchronisation is important because the difference in clock times between the network

systems will be insignificant.

The sync filter continuously estimates the average delay and standard deviation. It is

based on a 'low pass filtering algorithm' used in TCP for the estimation of the

acknowledgement delay time [Jacobson,88]. The sync-filter playout algorithm operates as

follows. When a METS packet arrives the transmission delay (t) is determined as the

difference between the received time and the emission time stamp in the METS packet

header. Anew average delay (d') and a new standard deviation (s') are computed. A new

estimation of the maximum delay is calculated:

d' = d + a.(t-d)

s' = s + b.(|t-d| -s)

D = d'+r.s'

The constants a and b are smoothing coefficients, with values always less than one.

Typical vales are 1/8 and 1/16 respectively which make the calculation of d' and s'

 -171-

particularly efficient. The value |t-d| is the "absolute value" of the difference between the

estimated delay and the prediction. As in the case of TCP [Jacobson,88], what is computed

is an estimate of the standard deviation.

The playout algorithm results in a continuously evolving estimate of the maximum

delay. It is not desirable, though, to continuously alter the actual playout time on a frame by

frame basis. Rather, the playout time is continuously calculated but only evolves actual

playout at the beginning of each GOP. The objective is to keep these adjustments

imperceptible to the human visual system. For example, the vat audio tool [Jacobson,93]

takes advantage of the natural break in speech (which is made up of a continuous series of

talkspurts) to evolve the playout estimate. In this case silent periods between talkspurts are

used to advance the playout point. The start of a GOP also is a natural point in a video

stream to reassess the playout estimate and advance the playout point.

If the flow management determines that too many losses occur it calculates a new

playout time; and while no losses are detected the same playout point is adhered to. If no

losses occur over a number of monitoring periods the playout time is recalculated. In way

role the sync-filter "pulls in" the playout estimate making the communications more timely.

Using this algorithm, the playout point is only evolved when necessary.

 Playout Algorithm

From the previous discussion it is clear that the choice of the playout time is important.

A playout algorithm that calculates delivery times which are too early would be undesirable

with potentially many packets arriving too late to be of any use. In contrast, if a

conservative playout time is adopted then many of the packets will arrive well in advance of

their playout points. This also has undesirable effects. First, more communications

buffering is required to hold the packets until their time of delivery. Second, by adding a

delay to the received packet latency in the flow is artificially created which is unsuitable for

interactive communications. As discussed above the playout time must continuously trade

off loss through late arrivals with timeliness of delivery. The playout time distribution is

independent from measured delay distributions experienced during the session.

Figure 7.16 describes a common set of synchronisation scenarios experienced during

experimentation on the Lancaster Research ATM Networking Environment. METS packets

are generated and transmitted across the network and played out at the receiver. The

emission time stamp in each packet represents the deadline the packet was transmitted to the

 -172-

network at. The flow scheduler operates in an environment where slippage occurs in the

transmission time. This is not reflected in the emission time stamp which is the deadline at

which the packet should have been scheduled. Many times, however, slippage occurs

resulting in delayed transmission of packets to the network. Figure 7.16 represents the ideal

transmission time as Ti and the actual transmission as Tslipi ; the emission time is always Ti.

The arrival time of packet i at the receiver is defined as Ai the laxity time (D-ai) (the duration

for which a packet is buffered before its playout deadline is current) is defined as L, and the

playout point is defined as Pi.

P1 =T1+D

di

Bi

S2

T1 T2 T3 T4

S3

P1 P2 P4L3

client

server

playout
device

A1 A2 A3 A4

time

F2

Figure 7.16: Playout Time Model

The initial playout calculation is P1 = T1 + D, subsequent playout packets of a GOP are

recovered as Pj = Pi + (Tj-Ti). The new estimate of D includes a confidence factor of 2s

(where s is the standard deviation) which, as mentioned previously, compensates for error

in the estimate. The subsequent calculation of the playout time is determined at the

beginning of the next GOP and remains constant for the duration of the GOP. The playout

algorithm variables are represented in figure 7.17.

The idea is to gradually evolve the playout interval over successive GOP intervals. By

only updating the playout time in this manner the playout times evolve in a conservative

manner. While the sync filter continuously calculates the maximum delay over the GOP

interval it can only have an impact on the subsequent GOP interval. While the playout is

continuously calculated it is updated only at the beginning of each GOP.

7.3.1.3 QoS Monitor

 -173-

The QoS control module provides a "raw" measure for delay, jitter, loss and bandwidth

statistics as input to the transport QoS manager's flow monitor mechanism. This is called

QoS measurement metrics. These QoS measurement metrics are maintained on a per flow

basis as part of the flow-state table illustrated in figure 7.18. This flow state is periodically

polled by the flow monitoring algorithm to develop a detailed picture of a flow's measured

performance. QoS measurement metrics consist of absolute and estimated measurements of

QoS parameters.

Playout Variable Description

Ti transmission deadline at which the packet is generated based and the

duration between samples/ METS packets (T2-T1) which is 1/fps

Si slippage time which is the actual time when the sample is transmitted to the

network; the slip duration is |S2-T1|;

di measured end-to-end delay of packet i;

di' continuously estimated average delay;

si' continuously estimated average standard deviation;

Pi calculated playout time for packet i;

Bi amount of time which packet i needs to be buffered at the receiver (Pi-Ai);

Fi frame is frozen on the screen because of a late frames;

Li lateness, is the measure by which the frame is late;

Ai monitored arrival time of the packet, inserted in the control block for ease

of implementation

Figure 7.17: Playout Variables

All QoS metrics are maintained on a per METS packet and a per flow basis. Different

METSP QoS mechanisms are responsible for calculating each QoS metric as illustrated in

figure 7.18. The protocol determines the loss over an interval and records its occurrence as

part of the loss flow state. The sync-filter keeps a record of the per packet delay variation

(jitter), current end-to-end delay and average delay. The QoS adaptor simply calculates the

 -174-

bandwidth as METS packets are received over each interval. These measured metrics are

polled by the flow monitor every T3 interval as described in section 7.3.2. T3 is set to 10

ms in the current implementation.

METSP
sync-filter

protocol

QoS adaptor

jitter

delay

loss

bandwidth

QoS mechanism measured QoS metricQoS module

Figure 7.18: Per flow Measured QoS Metrics

7.3.1.4 QoS Adaptor

The QoS adaptor described in Chapter 6 has flow management and QoS control as its

components. The flow management component is responsible for informing the application

when higher resolutions (i.e., enhancement layers) are made available to clients. The QoS

control component is responsible for maintaining sub-flows at the protocol level. This is

achieved as follows. When a flow is established the base layer undergoes end-to-end

admission testing and resource reservation. Requests for further enhancement of sub-flows

depend on transitory resource availability. The QoS adaptor probes the network

continuously for resources to provide higher level resolutions (i.e., better QoS).

Periodically resource reservation (RES) messages are sent to the core switch to request

additional bandwidth for the enhancement of sub-flows; that is, the RES messages include

bandwidth allocation for E1 and E2 if requested in the flow specifications.

As discussed in Chapter 6, reservation messages are updated by each switch en route to

the core, virtual source or virtual receiver. A virtual source is a node in the network which

modifies the flow characteristics in some manner. For example, if a picture dropping filter

[Yeadon,95] is located at the rook ATM switch (as illustrated in 7.6) then a client

consuming media at dwp from a source at atc would consider rook a virtual source.

Similarly, atc would consider rook as a virtual receiver. Whenever a core, virtual source or

virtual receiver receives a RES message it responds by sending an ADAPT message to the

 -175-

originating QoS adaptor. The resulting ADAPT messages include available bandwidth over

the next interval (i.e., era). The QoS adaptor is responsible for the generation and handling

of RES and ADAPT messages, respectively. It probes the network periodically with a

request and receives a response. The dissemination tree is composed of clients, servers and

virtual sources probing the link for bandwidth in this manner.

As a general rule, servers always request guaranteed resources between the source and

the core switch for the base and enhancement layers. This is due to the fact that any

fluctuation in the server QoS can potentially affect all clients. The server achieves this

guarantee by equating the bandwidth requirement for the base and enhancement layer equal

to BL in the flow specification (e.g., BL=BL+E1+E2).

7.3.1.5 Protocol Engine

The METSP protocol engine is a finite state machine (FSM) driven transport system as

shown in figure 7.19. In this section an overview of the operations of the protocol engine is

provided. However, a rigorous description of the protocol in terms of transition tables or

algorithmic specification is not presented. The METS protocol FSM is comprised of four

sub-FSMs: group management, connection management, adaptation control and flow

control. The adaptation and flow control modes support the QoS semantics of adaptive

flows (i.e., base and enhancement layers). The adaptation and flow control FSM reacts to

fluctuations in end-system and network resource saturation. In this way the end-systems

adapt and networks exert flow control based on the semantics of layered flows (e.g.,

BL+E1).

i) the group control FSM, which models server initiated group set up and close down and

is comprised of the following states:

• closed state, which represents a null group state; that is, a server

has yet to issue an open group command on a multicast group;

• group setup state, which reflects that an openGroup command has

been issued by a server but no response has been received from the

mcastd operating at the designated core-switch;

• group open state, which represents the state entered when a server

has successfully opened a multicast group, resulting in the core

switch multicast daemon responding to the openGroup command;

 -176-

• wait close state, this state is entered when a closeGroup has been

issued on a multicast group address. In this case the server must

wait until leave indications have been issued to all clients before

returning to the closed state.

T2/openGroup req

T1/
join req

BL

E2E1

adapt(E1)

adapt(BL)

adapt(BL)

adapt(E2)

adapt(E2)

adapt(E1)

BL
 normal backed up

BL

E1

adapt(E1)

adapt(BL)

backup

clearing

clearingcleared
backup

media transfer

ready

flow_setup leave ack

join req

join ack

closed
wait

close

group

set up

openGroup req
closed

closeGroup openGroup ack

group open

R1 exceeded

R2 exceeded

Figure 7.19: METS Protocol Engine

The protocol engine is comprised of four independent finite state machines:

ii) the media transfer FSM, which is only entered after the group has been successfully

established. At this stage the server has advertised its QoS profile and clients have

requested group information to guide their flow selection QoS requirements. In this FMS

members can issue joins and leaves on the group and the server can also trigger a leave

indication being sent in any state. The media transfer FSM is made up of the following

 -177-

states:

• the ready state, which represents the state in which members can

issue join requests on an existing multicast group;

• the flow setup state, which indicates that a join has been issued on

the group but join acknowledgement is outstanding. The set up

algorithm operates as follows: If after T1 timeout the

acknowledgement is outstanding another joinFlow request is issued

to the group. Furthermore, if after R1 retries no acknowledgement

has been received the FSM returns to ready state and the user is

informed of the failure;

• the media transfer state, which indicates that an acknowledgement

has been received and the channel is ready to transmit or receive

media. Media transfer FSM encapsulates a flow control sub-FSM

which is executed within this state.

iii) the flow FSM, which supports the QoS semantics of the adaptive service, reflects the

current state of each flow in terms of the sub-flow applications that have been elected

(BL, E1 and E2) and when sub-flow communication sub-systems can support given the

current available network resources; the adapt messages illustrated in figure 7.19 indicate

network resource availability on a per flow basis. The flow control FSM is comprised of

the following states:

• the BL state, while in this state clients and servers are capable of

receiving or transmitting base layer sub-flows, respectively. If flows

have been configured to transmit or receive enhancement layers the

flow control state may transition to E1 or E2 states based on the user

selection and network resource availability;

• the E1 state, while in this state clients and servers are capable of

receiving or transmitting BL and E1 sub-flows, respectively;

• the E2 state, while in this state clients and servers are capable of

receiving or transmitting BL, E1 and E2 sub-flows, respectively

iv) the adaptation control FSM takes into account resource overload conditions

experienced in the end-system. Overload conditions arise when the flow scheduler detects

that deadlines are consistently missed. Two overload conditions are identified: congested

 -178-

and clearing. The semantics of these states are as follows:

• the normal state, which implies that no resource saturation has been

detected and operates in steady state supporting all sub-flows (BL,

E1 and E2);

• the overload state, which indicates that flow management has

detected that frames are missing their deadlines. In this state only BL

components are processed by the METS protocol; all other sub-

flows are dropped;

• the clearing state, which is entered when flow management

determines that deadlines are provisionally back of track. Only BL

and E1 sub-flows are processed in this state. This represents a

relaxation of the overload condition. After a further period when no

deadline thresholds are exceeded the adaptation state reverts back to

normal state.

7.3.2 QoS Maintenance Module

The flow monitor mechanism operates on three different levels. First, it periodically

monitors the measured metrics (which are described as synchronous QoS monitoring) and

sends QoS assessment messages to the flow manager for further processing. Second, it

continuously monitors measured metrics for the occurrence of a particular user specified

event (which is termed asynchronous event monitoring) and sends QoS alerts to the flow

manager if the event occurs. Finally, it operates as a combination of the former options.

7.3.2.1 Synchronous QoS Monitoring

By default all flows and all QoS parameters are monitored. Flow monitoring updates a

per flow QoS record every T3 seconds. At the end of the user specified interval T4 the flow

monitor passes a pointer to the flow's current QoS record to the flow manager.

The flow monitor relies on the sync-filter, QoS adaptor and protocol to provide the raw

measured data that is used to create a QoS record. The protocol maintains a per flow loss

metric over the current interval and over for the complete duration of the session. This loss

information is in terms of absolute number of METS frames lost. The flow monitor polls

this data and provides a max burst loss and percentage loss to the flow manager. The max

burst loss represents the maximum loss free of a video sequence. In the case of the flow

 -179-

monitor, loss is measured as the percentage METS packet lost and max consecutive packets

lost. The QoS adapter simply calculates the bandwidth as the number of METS packets

received over last interval. The flow monitor uses this metric to determine the maximum

bandwidth, average bandwidth and minimum bandwidth.

7.3.2.2 Asynchronous Event Monitoring

The QoS adaptation clause in the service contract allows the user to request notification

if one or more of the QoS parameters degrades below a specified value. An asynchronous

event QoS signal is delivered to the application's manSoc should this event occur. The QoS

signal allows the applications to take remedial action - for example, scaling to the new

baseline QoS. Event monitoring is conducted from within the synchronous monitoring

mechanism. If the event state is active then the flow monitor compares the designated QoS

parameter value against the current value. Event monitoring uses the maximum delay,

minimum bandwidth, maximum jitter and percentage loss as comparison metrics. The flow

monitor checks every T3 seconds to determine whether an event has occurred.

 7.3.3 Flow Management Module

The flow management plane is realised as two modules that co-operate with the

signalling and QoS maintenance planes for the establishment and management of flows.

These modules include a resource management module which subsumes QoS mapping and

admission control, and which is responsible for the negotiation and adaptation of end-to-

end resources; and a flow manager module which interacts with the application over the

manSoc and which is the central management entity in the end-system. In a generalised

QoS-A model flow management spans all layers in the end-systems. In the current

implementation, however, it is limited to the operating system, transport and network

layers. The resource reservation module interacts with the connection manager in the

control (signalling) plane for the allocation, admission testing of network resources, during

QoS adaptation and selection of filtering mode and adaptation modes.

The flow manager plays a role in the synchronous and asynchronous monitoring of

QoS parameters as illustrated in figure 7.20. In the synchronous mode the flow manager

informs the application of the progress of one or more QoS parameters at the end of a user

configurable interval. At the end of the T3 interval the flow manager is informed of the

measured details via a QoS signal message from the transport QoS manager. The flow

manager forwards the measured values of the selected QoS parameters at the end of the user

 -180-

specified interval.

If the flow manager receives an event QoS signal indicating a QoS violation in the

contracted QoS then its action is based on the QoS adaptation event action list. This

includes the adaptation of the service, signal the application of the degradation or no

actions. In the maintenance mode the application delegates the responsibility of the actions

to the flow manager.

The flow manager processes changeQoS messages received on flow management

sockets and from the network. Furthermore, it processes any signalQoS messages related

to higher resolutions being added or removed. In both cases the flow manager informs the

application of the event by issuing the appropriate QoS event signal on the manSoc. This

informs the application that the appropriate event has occurred. The resource availability

indicates which sub-flows are currently being supported - this is BL for the base layer, E1

for the base layer and first enhancement and E2 indicating that all sub-flows are supported.

NVS application

flow manager

event monitor

monitor
interval

state-driven
application

changeQoS()

signalQoS(monitor)

signalQoS(event)

synchronous

asynchronous

Transport QoS
Manager (TQM)

synchronous monitor

flow management state
flow monitor

 flow state

T3

T3 T3 T3 T3 T3 T3 T3

Figure 7.20: Flow Manager and Transport QoS manager

As part of overload processing in the end-system, the flow scheduler informs the flow

manager of continually missed deadlines on a dedicated scheduler-to-FM manSoc. In this

role, the flow manager updates the flow control FSM state and informs the application of

any state changes. The flow scheduler interacts with the flow manager when it has

determined that deadlines are again being met. This is a two stage clearing processes as

described in section 7.3.1.5. The clearing mode is entered, then again after another

uncongested interval normal transfer mode is entered.

 -181-

7.3.4 Dynamic QoS Management

The adaptive network service is realised by per switch QoS adaptors and media

schedulers. Currently these components only address a sub set of network level DQM

scheme described in Chapter 6. End-system and network QoS adaptors dynamically

determine the residual capacity available to support enhancement layers (i.e., higher

resolutions) and the portion of the bandwidth made available to specific applications (i.e.,

clients and servers). The network level QoS adaptors achieve this via the RES/ADPAT

signalling protocol as previously discussed. Each network QoS adaptor maintains per flow

bandwidth state; that is, the base layer and higher resolution bandwidth requirements.

The QoS adaptor mechanism updates the advertised rate as the RES messages traverse

the switch on the reserve path to the core, virtual source or virtual receiver. Therefore any

switch can adjust the flow's advertised rate (E1 or E2) before the virtual source receives the

RES message. The destination switch responds to the RES message with the ADAPT

message which includes the available bit rate in cell/s: this represents E1 or E2 in the current

implementation of discrete QoS adaptation (discussed in Chapter 6). If the originator is a

server then it uses the advertised bandwidth for rate control of media over the next interval.

In contrast, if originator is a client it uses the advertised rate as an indication of the delivered

resolution over the next interval. When a virtual source receives a RES message it responds

with an ADAPT message to the originator and then updates the flow state appropriately

(viz. BL, E1, E2 state). The QoS adaptor and media scheduler implements the flow finite

state machine (FSM) described in section 7.3.1.5.

 Media Scheduler

 Based on the flow state the media scheduler schedules either no resolutions (BL only),

the lower resolution (E1) or the higher resolution (E2). The term E1 and E2 in this capacity

subsume lower resolutions; that is, E1 represents BL+E1 and E2 represents BL+E1+E2.

The media adaptor distinguishes each resolution at the input port of a 4x4 switch based

on a commitment field found in the AAL5 packet payload. The first word of each AAL5

packet is reserved for the commitment type. This is either BL, E1 or E2. In this capacity E1

and E2 do not subsume the lower resolutions. For example an E1 AAL5 payload only

includes lower resolution media.

The commitment based scheduling algorithm is as follows: the QoS adaptor delineate an

 -182-

AAL5 packet, inspects the commitment field in the AAL5 payload and schedules cells based

on this and the current flow state. The QoS adaptor used the ATM-layer-user-to-user

(AUU) bit in the ATM header of each cell to delineate AAL5 packet. An ATM-layer-user-

to-user bit of 1 followed by a 0 represents the first cell of an AAL5 packet1. The first 16

bits of the AAL5 payload represents the commitment type.

While this algorithm is a violation of layering it provides the only way to identify

different packets in the same AAL5 stream. This is because there is no logical multiplexing

with AAL5. In this example layering is violated but it was found that strict layering was not

be the most effective modularity for implementation in the switch. It is important to note

that the QoS adaptor mechanism does not have to buffer AAL5 packets to determine the

commitment of the packet before forwarding. The overhead for the scheme is minimal. All

that is required is to continuously monitor the AUU bit of cells traversing a switch. In

addition a single check is required for the first cell of a new AAL5 packet. The result is that

cells are streamed through the switch with no additional delay than the unmodified switch

code; see Chapter 7 for details.

Once the media scheduler determines the commitment type it interacts with the QoS

adaptor to evaluate the current flow state of one or more outgoing port. METS flows

generally consist of a multicast relay; that is, cells received on one of the four input ports

will likely be multicast on more that one output port. The media scheduler and QoS adaptor

are embedded in the switch engine shown in figure 7.1. The media scheduler is only invoke

when a cell arrives on an input port and the virtual connection is in 'media transfer modes'

(see section 7.3.1.5). The media scheduler interacts with the QoS adaptor to first determine

the commitment of the current AAL5 packet. This may already be known (i.e., a the cell

with the commitment field may have already been processed). In this case the flow state

holds the current AAL5 packet commitment state. This state remains current until the last

cell of the AAL5 packet arrives at the input port. The media scheduler then relays all cells

based on the flow state and the current configuration of the switch table. The index to the

switch table is the virtual connection identifier (VCI) carried in the received cell. The entry

in the switch table holds the output ports and associated VCI to relay the cell on. There is a

maximum of three entries for a 4x4 switch (i.e., a cell is relayed out all ports with the

exception of the one it arrived on) in the switch table. In addition to the port and VCI

1The first cell transmitted on a virtual connection with the AUU bit set to 0 represents the first cell of the first
AAL5 packet.

 -183-

information the current flow state of each output VCI is maintained in the flow table. Based

on the output VCI's flow state the media scheduler either relays the cell or drops it.

For example, a multicast virtual connection may exist between a server located at the atc

end-system and two clients at mr-little and dwp (see figure 7.6). The source node atc

transmits full Canyon.mpg resolution, dwp selects the E1 resolution and mr-little the E2

resolution. If a E1 cell arrives at the chuff switch and the adaptive network service can meet

the clients QoS demands1 then the media scheduler forwards the cell to both dwp and mr-

little. On the other hand, should an E2 cell arrives on the same connection the media

scheduler forwards it onto mr-little only. To further advance the scenario: some time later,

both RES messages fail to secure sufficient bandwidth resources for higher resolutions

other than BL. In addition the server requested that all sub-flows be guaranteed as

described in Chapter 6. This means that the flow state of both clients at the chuff switch is

in BL state. In the example whenever E1 or E2 cells arrive at the switch they are dropped;

only BL cells are relayed by the media scheduler in this instance.

7.4 Summary

This Chapter has described the implementation of the QoS-A transport system

previously introduced in Chapter 4. The objective of the METS transport system is to make

QoS visible at the transport API. This is accomplished by preserving application level

guarantees throughout the end-systems and the network on an end-to-end basis. The focus

of the implementation work presented in this Chapter was the dynamic QoS management

(DQM) of adaptive MPEG-1 video flows over ATM networks.

Before concentrating on the design of the API, METS transport systems and ATM

network support, the Chapter presented details concerning the experimental infrastructure.

Following this the Chapter reported on the development of an QoS configurable API which

consists of a set standard socket calls based on a new protocol family called AF_METS.

The METS API is comprised group management, multicast connection management, media

transfer and flow management primitives. Three styles of AF_METS sockets (viz. media

socket, control socket, flow management socket) were identified allowing the application to

1 The QoS adaptors at dwp and mr-little send RES messages indicating E1 and E2, respectively. Subsequently
the QoS adaptors receive ADAPT messages verifying that E1 and E2 the bandwidth requirements can be
supported.

 -184-

request, control and manage end-to-end QoS.

The METS implementation corresponded to the end-system and network domains. In

the end-system the communication support was embedded in the Linux operating system.

As discussed in the Chapter standard Linux does not suitable QoS control and management

for continuous media communications. The Linux scheduler can only offers best effort

scheduling mechanisms which can not consistently deliver real-time guarantees to

applications when resource utilisation grows unbounded. By introducing admission testing

for video communications, resource utilisation can be bounded in the case of the

transmission and reception of media.

This Chapter has described how METS transport system was added to Linux to remedy

its deficiencies in delivering QoS guarantees. This included the implementation of flow

scheduling in user space, and flow shaping and jitter correction QoS mechanisms in the

kernel. An important contribution of this thesis was the realisation of a set of QoS

mechanisms designed to meet the transport needs of adaptive video operating over ATM

networks. Implicit in the design of these mechanisms was their ability to distinguish

between different QoS needs of flows in the end-system and network.

 -185-

Chapter 8

Evaluation

This chapter offers an evaluation of the research described in the preceding chapters.

The evaluation is divided into two sections. Section 8.1 presents a qualitative architectural

comparison of the QoS-A in relation to the QoS architectures presented in the literature.

Common themes and open issues which emerged during the comparison section are

discussed. In section 8.2, a quantitative performance evaluation of the METS transport

systems implementation, as detailed in Chapter 7, is presented. This includes an analysis of

the delivered end-to-end QoS (viz. bandwidth, delay, jitter and loss) and METS adaptive

network service.

8.1 Architectural Comparison

In this section a qualitative comparison of the QoS-A and QoS architectures reviewed in

Chapter 3 presented. The QoS modules outlined in Chapter 2 are used as the basis for the

comparison shown in Figure 8.1.

The legend for the comparison is as follows:

 - “not addressed”

E/N “addressed in detail in the end-system/network”

(E)/(N) “mentioned only in the end-system/network”

R “QoS renegotiation addressed in detail”

(R) “QoS renegotiation mentioned only”

S “QoS scaling addressed in detail”

D “QoS degradation addressed in detail”

(D) “QoS degradation mentioned only”

Sig “QoS signalling in detail”

The term “E2E coordination” referred to in figure 8.1 refers to the coordination of end-

 -186-

system and network resources for flows. This may be provided by a resource reservation

protocol (e.g., RSVP [Zhang,93], ST2 [Topolcic,90] or UNI 4.0 [ATMF,95a]).

QoS

Architecture

QoS

Provision

QoS

Control

QoS

Management

QoS

Mechanisms

QoS

mapping

Adm.

control/

resource

res.

E2E

coordin

-ation

Flow

schedul

-ing

Flow

shaping

Flow

control

QoS

filtering

flow

synchron

-isation

QoS

monitor

-ing

QoS

mainten

-ance

QoS-A E N E N (E) N E (N) E (N) (E) N E N E E Sig D E N R S

XRM

[Lazar,95]

E N E N (E) N (E) N - N - - N -

ISO

[ISO,94]

(E) (N) E N E N - - N E N - E N E N

HieTS

[Volg,95]

(E) (N)

E N E N E (N) (E) (N) N - E N E N

TINA

[TINA,95]

(E) (N) N - - - - (N) (N) -

IETF

[Shenker,95]

E N N E N N E E - - E N E N R

Tenet

[Ferrari,95]

E N N N N N (E) N - E D E R S

MASI

[Bess,94]

E (N) E (N) E E - - - E E E

OMEGA

[Nahrstedt,94]

E (N) E (N) E (N) E (N) E E - - E E R

WashU

[Gopal,93]

E E E E E - - - - E R

Native

[Keshav,94]

E E (N) E N E E - - - - E R

 -187-

Simple

[Damaskos,94]

E N E N E N - E N (N) - - E E R

WollU

[Judge,95]

(E) - (E) (N) - - - - - E (E) (R)

Grams

[Hui,95]

- E - E E - - - E E R

QuAL

[Florissi,94]

E N - E (N) - - - - - E E N R

UMont

[Vogel,94]

E N E N E N - - - - - - E R

IMAC

[Nicolaou,94]

E N E N - - - - E E E R

ANSA

[Guangxing,94]

E N E N E N - - - - E E E R

Qadapt

[Tran,95]

(E) (N) (E) (N) E N N - - - - E E N R

EuroB

[Pronios,93]

(E) (N) - (E) (N) - - - - - E N E N

NEC

[Bansal,95]

(E) (N) (E) (N) (E) (N) - - (E) - - E N E N

XTPX

[Miloucheva,93]

E N - E (N) - - E - E E -

vnet

[Chrysanthis95]

E (E) N E N N (E) - - - - -

Figure 8.1: Comparison of QoS Architectures

All of the QoS architectures identified in figure 8.1 extend the end-to-end argument

from the network to include the end-system. These QoS architectures, however, differ in

several ways which may be the result of the different communities from which they

developed. For example, the XRM and TINA QoS Framework have emerged from the

Telecommunication community, the Heidelberg QoS Model and QoS-A from the Computer

Communications community, and the ISO QoS Framework and IETF Integrated Services

Model from the Standards community. Therefore, it would be inappropriate to declare one

 -188-

approach ‘better’ than another. QoS architectures emanating from the same community also

have been seen to differ. For example, XRM is ‘network centric’ and focuses teletraffic

theory while, in contrast, the TINA QoS Framework lies in the application of distributed

systems technology to resolve the end-to-end QoS problem but does not quantitatively

address end-to-end resource management issues.

While commonalties exit between the QoS architectures described in Chapter 3, a

comprehensive comparison of all architectures is beyond the scope of this chapter. Rather,

a summary of the common themes, main differences and open issues which emerged

during the comparison is provided.

8.1.1 QoS Specification

All QoS architectures reviewed consider QoS specification (e.g., contracts, flow

specifications, and service and traffic classes, etc.) as fundamental to capturing user level

QoS requirements. Some architectures consider QoS specification at different logical layers

or planes in the end-system and network - as is the case of the QoS-A. In this case QoS

mapping is used to translate QoS specifications between logical layers/planes.

 Although there is a consensus for the need for a flow specification to capture

quantitative performance requirements, there exist two schools of thought on what it should

be. The XRM and ATM [ATMF,95a] solutions are based on a flow specification that is

comprised of one or two QoS parameters that identify traffic class and average bandwidth.

On the other hand, the QoS-A, Tenet and OMEGA architectures adopt a multi-valued flow

spec (cf. RFC1633, ST-II, RSVP, HieTS). While both of these proposals appear to be

similar philosophically they are rather different technically. The COMET group [Lazar,94]

argues that by limiting flows to a set of well defined services (in the end-system) and traffic

classes (in the network) complexity within the end-system and network will be manageable.

In contrast, QoS-A, Tenet and OMEGA architectures consider such an approach

unnecessarily limiting. These groups argue that by defining a set of discrete QoS classes,

applications may be unduly constrained to conform to a QoS class which may not meet its

desired QoS requirements.

In summary, the first school of thought believes that all flows fall into a small set of

general service and traffic classes with well defined delay, burstiness and loss

characteristics. The other school suggests that flows are application specific and that traffic

classes will change continually when new applications are identified. Ferarri [Ferrari,95]

 -189-

argues that the latter approach has the ability to emulate the former, for example, it is

effortless to provide a menu of traffic classes above the ST-II or the Tenet suite of

protocols, present it to the user and extend it where need be. It remains unclear, however,

whether networks can manage the complexity introduced when a continuum of choice is

made available to applications (as advocated by the second school of thought).

8.1.2 QoS Commitment

QoS commitment expresses the degree of certainty that the QoS levels specified in a

flow specification will be honoured. Each architecture offers a different set of services to

applications. Terminology used to describe level of service [ISO,95a] found in the literature

includes: service class, traffic class, QoS commitment, application class, QoS class, etc.

For example, the Washington University QoS Framework supports three application

classes to which it maps all applications level flows.

These include:

i) an isochronous class, which is suitable for continuous media flows;

ii) a burst class, which is suitable for bulk data transfer; and

ii) a low delay class, which is suitable for applications that require a small response

time such as an RPC request.

The Washington QoS Framework assumes that all applications fall into one of these

three general classes. In contrast, the QoS-A supports three levels of service (viz. best

effort, adaptive, guaranteed) called collectively QoS commitment.

The architectures provide services based on both hard (i.e., guaranteed service) and soft

(i.e., best effort) QoS guarantees. Additional services presented in the literature include the

predicted service (IETF), statistical service (Tenet, XRM and Heidelberg) and the available

bit rate service (ATM Forum). It is too early to determine the extent to which these services

will sufficiently address present and future application base. It is encouraging, however,

provisional multimedia services may be provided using soft bounds provided by a best

effort delivery system. This is illustrated best by the MBONE suite of multimedia tools

(e.g., vic [MaCanne,94] and vat [Jacobson,93]) which are adaptive in nature (i.e., network

conscious applications [Diot,95]) that have proved successful over the past several years.

 -190-

8.1.3 Soft versus Hard State

Most QoS architectures consider both static QoS management (in terms of QoS

mapping, admission control and resource reservation) and dynamic QoS management (in

terms of monitoring, scaling and maintenance). With the exception of the IETF work,

which uses RSVP maintained state, all architectures consider connection oriented or ‘hard

state’ solutions to network level QoS provision; that is, they couple path establishment and

resource reservation phases. Work in the IETF on an Integrated Services Architecture,

using RSVP and IPv6 flows, has shown experimentally that network level QoS guarantees

may be obtained using a ‘soft state’ approach; that is, no explicit connection is established

but flows traverse intermediate routers on paths that are temporarily established (i.e.,

network state is timed out and periodically refreshed). In this instance path establishment

and resource reservation are decoupled. It is argued that a soft state approach provides

better scalability and robustness, and eradicates the round-trip call setup time found in

connection oriented approaches [ATMF,95a] [Banerjea,91].

In [Turner,95], Turner suggests a hybrid approach called ATM-soft which benefits

from the use of soft state in a native ATM environment. It is too early to determine which

approach is suitable for future QoS architectures given the need to support both high-end

(e.g., telesurgery and time critical applications) and low-end (e.g., video conferencing and

audio tools) multimedia applications.

8.1.4 End-System and Network Commonalties

Commonalties exist between QoS control and management mechanisms found in the

end-system and network (e.g., admission control, resource management, scheduling

mechanisms). The extent to which network level QoS mechanisms are applicable in the

end-systems, or vice versa, is undetermined.

The COMET group argues that end-system and network devices may be similarly

modelled and that the sole difference is the overall goal that end-system or network devices

are set to achieve. The XRM models the end-system as a virtual switch [Lazar,94] and a set

of configurable multimedia devices based on a desk area network (DAN) architecture. The

XRM approach strongly endorses the notion of commonality between the network and end-

system components.

Furthermore, it is evident that commonalties exist between scheduling strategies found

in switches/routers and end-system operating systems (e.g., fair share techniques may be

 -191-

found in the end-system and network switches/routers). While this seems encouraging, a

counter argument exists stating that end-systems have fundamentally different scheduling

goals compared with routers and switches. End-systems schedule a wide variety of both

isochronous (e.g., continuous media flows) and asynchronous (e.g., RPCs) work while

switches and routers are primarily involved with switching/routing of cells/packets,

respectively. The end-system application execution time (i.e., quantum [Couslon,95] of

work in figure 5.4) can vary widely (e.g., decompressing a video flow can be more

computationally intensive than displaying it to a screen). In contrast, switch and router

schedulers are generally moving packets/cells from queues to ports or vice versa and are

optimised for such a task. Therefore techniques resident in switches (such as HRR

[Keshav,93]) may be inappropriate in host operating systems.

8.1.5 QoS Mapping

QoS mapping development is still in the early stages. The work to date has focuses

primarily on deriving appropriate QoS parameters [Gopalakrishna,94] for memory, CPU

processing (e.g., threads requirements) and network connections in a rather static,

architecture-specific manner. It is not clear to what extent QoS mapping must cater for

higher layer (e.g., distributed systems platform) requirements where services other than

flows are apparent. Currently there is no comprehensive study of QoS mapping presented

in the literature.

8.1.6 Heterogeneous QoS Demands

The majority of QoS architectures reviewed in Chapter 3 are either sender or receiver

oriented; the exception to this is the OMEGA architecture which supports both options. The

Tenet, Heidelberg and QoS-A architectures support heterogeneous QoS demands from

individual receivers in multicast groups. Supporting such flexibility is important because

heterogeneity exists in applications, communications systems and media formats.

Heterogeneity places fundamental limits on the capability of end-systems to generate

and consume continuous media. Resolving heterogeneous QoS demands requires the use of

advanced techniques such as QoS filtering in the network and end-systems and QoS

adaptation at the network edges. The success of such approaches is still unclear. Most

experimental work on QoS filtering and scaling to date has been carried out in the local area

only. A disadvantage of this approach is the additional state that would be required at

 -192-

switches/routers to establish and maintain filters. Whether such filtering techniques will

adapt to the wide area and gain general support remains to be seen.

8.1.7 Comparison

Many similarities exist in the QoS architectures reviewed in Chapter 3. There are, for

example, several functional similarities between the XRM and QoS-A architectures. In

general terms the QoS-A signalling, control and management planes may be mapped to the

XRM framework. The QoS-A control and user planes are equivalent to the C-plane and U-

plane of the XRM, respectively. During implementation the QoS-A user plane is populated

with a multimedia enhanced transport system and AAL5 stack. The XRM user plane

consists only of AAL5 in the first instance. This leads to the description of QoS-A as being

‘user-plane centric’ compared to the XRM. This view is reinforced when the XRM’s M-

Plane is mapped to the QoS-A. The M-Plane includes cell scheduling, flow control and call

admission control. Scheduling and flow control are functions of the QoS-A user plane and

admission control is a function of the QoS-A flow management plane.

The XRM N-Plane, which represents network and system management, does not easily

map to the QoS-A . The reason is that the QoS-A does not consider network management

within the scope of its research. QoS-A management is instead primarily focused on

monitoring and maintenance of flows in real-time. The QoS mechanisms that realise these

functions reside in the QoS maintenance plane of the QoS-A. Another architectural

difference is that XRM explicitly models end-system and network “state” as a telebase (D-

Plane). The telebase collectively represents all information, data and abstractions in the

systems. There is no such functional equivalent in the QoS-A. Rather, system state is

distributed to the various QoS-A mechanisms which maintain it. For example, flow

managed by the flow state are managed by the flow manager and protocol respectively.

In summary, QoS-A is considered to be end-system centric whereas XRM network-

centric. Both architectures include QoS mapping, admission control and resource

reservation, are connection-oriented and provide end-to-end QoS support.

8.2 Performance Evaluation

The performance evaluation is comprises of five test suites for:

i) bandwidth analysis, which evaluates the flow scheduling, flow

shaping and ATM infrastructure to respond to varying bandwidth

 -193-

demands;

ii) delay analysis, which evaluates the ability of QoS mechanism is

response to fluctuating load.

iii) loss analysis, which evaluates the protocol loss detection

functions;

iv) sync-filtering analysis, which evaluates the delay estimation and

playout algorithms at the receiver;

v) adaptation analysis, which evaluates the QoS adaptor mechanisms

at the end-systems and network and the network adaptive service.

All performance measurements are taken from the QoS-A testbed (illustrated in figure

8.2) with video flows sourced at the atc end-system and played out at mr-little and dwp

end-systems. The designated core ATM switch used during the multicast sessions is the

chuff ATM switch. All measurements presented in this section are captured and logged at

atc and dwp end-systems. The distance between the server and client is 3 hops (i.e., flows

emanating from atc are played out at dwp traversing the chuff, sparrow and rook ATM

switches, respectively).

atc

campus-atm
(ASX200s)

dwp

njy

mr-little

magpie

scaup

chuff rooksparrow

194.80.36.212 194.80.36.193

194.80.36.212 194.80.36.201

194.80.36.192 194.80.36.210

194.80.36.213194.80.36.200

194.80.36.212

Figure 8.2 METS Experimental Setup

All measurements are taken on a experimental testbed illustrated in figure 8.2. In all

cases the server and clients maintain timing logs of METS packet departure and arrivals

times, respectively. The Network Time Protocol [Mills,95] provide global timing between

all end-systems involved in the experimentation and logging process. The client log

includes arrival times, absolute delay and jitter of received packets and loss of METS

packets at the transport level. Since the objective of this study is also to examine the

performance implications on the application layer, the performance of the NVS decode and

display processes at dwp end-system is recorded.

 -194-

Without the proper admission control and resource reservation functions the incremental

addition of flows at the receiver produces overload conditions and rapid degradation and

distortion of the played out video picture quality.

8.2.1 Test Video Clips

The video clips used during experimentation are pre-coded off-line and decoded in real

time using the NVS software system. Three types of MPEG-1 test video are used in each

test configuration. The selected video represents different degrees of action, scene changes,

pans and zooms that manifest a variety of different traffic conditions in the network and

end-system.

The test clips include the following public domain MPEG-1 video:

i) the Phil.mpg video, which represents highly bursty traffic with a frame resolution

of 176x168 pixels, 220 frames of IBBPBBPBBPBB GOP configuration with the

average I, P, B frames size of 77, 60 and 15 cells, respectively;

ii) the Canyon.mpg video, which represents bursty traffic with a frame resolution of

144x112 pixels, 1758 frames of IBBPBB GOP configuration with the average I, P,

B frame size of 49, 39 and 9 cells, respectively; and

iii) the Flight.mpg video, which represents moderately bursty traffic that tails off

with a frame resolution of 160x120 pixels, 114 frames of I GOP configuration with

the average I frame size of 57 cells.

The lower resolution (e.g., moderate bandwidth with maximum frame resolution of

176x168 pixels) was chosen over high quality resolution (e.g., broadcast quality of

512x480 pixels) video clips because of the limitation of the end-systems to handle multiple

high resolution video. The intention of the test scenarios is incrementally to increase the

frame rates and number of active flows to be able to determine the performance of the

system as new flows are added or removed.

The three MPEG video clips selected contain both active motion and lower motion

video. The Phil.mpg video clip represents rapid scene changes combined with lower

motion 'talking head' shots. Canyon.mpg contains a mixture of highly active and lower

active motion as illustrated in figure 8.5. The final video Flight.mpg selected for

experimentation is only moderately bursty and represents low motion video as shown in

figure 8.13.

 -195-

8.2.2 Bandwidth Analysis

The object of the first test of this suite is to determine the maximum throughput from

application space to the network. Within the framework of this test the maximum

transmission rates of the METS communication systems are measured. In this test the

Canyon video clip is transmitted as rapidly as possible without consideration for achieving

constant frame rate or packetising of one MPEG-1 picture per METS packet. Additionally,

the traffic shaper and ATM device driver receive interrupt are disabled. Media traverses the

METS transport system, AAL5 and ATM network interface controller (NIC) without

considering whether the receiver can accommodate the reception of cells transmitted at the

maximum rate ('goodput') - this is the objective of the second test of the suite in section

8.2.3.

Maximum Transmission Test

The results of the bandwidth test suite are presented in figure 8.3. The upper curve

shows the maximum throughput achieved when the METS packet size is varied

incrementally between 1 byte and 32 KBytes. The average rate for each configured

transport packet size is measured by the ISA-ATM device driver before the cells are

transmitted to the network. The throughput clearly increases as the packet size increment

increases. The maximum transmission rate of 32 K cells/sec (13.6 Mbps) is disappointing

considering that the line rate of the NIC is over 235 K cells/sec (i.e., 100 Mbps TAXI).

The resulting reception rate achieved is under 14% of the line capacity.

The bottleneck during the transmission is a combination of the limitations imposed by

an ISA architecture throughput across the system bus and the lack of hardware assist for

some of the more computationally intensive communication functions.

Currently the segmentation and reassembly of AAL5 SDUs are functions of the ISA

ATM device driver in software. One obvious enhancement would be to pass the

responsibility of AAL SDU processing directly to the NIC, off-loading the CPU and

enhancing the communication performance. One of the goals of the QoS-A project,

however, is to investigate the issues associated with traffic shaping of cells into the

network. As a result it is necessary to have the segmentation and transmission functions

controlled by the CPU.

It is interesting to note that many of the ATM NICs presently available provide shaping,

 -196-

AAL5 and ATM processing on the NIC with the aid of hardware assist. The Fore Systems

200E ATM NICs feature a dedicated segmentation and reassembly processor and a platform

specific ASIC optimised for the I/O of the host computer. It is fundamental, however, to

have the flow shaping mechanism under the control of the METS protocol. While all AAL

and ATM processing functions are implemented in software on the CPU the AAL5

checksum is not calculated and the ATM HEC is calculated 'on the fly' and inserted into the

ATM header by the NIC card.

'Goodput' Analysis

The second test in the suite measures the 'goodput' achieved between a server and a

client using open loop flow control. Goodput is the maximum transmission rate at which

cells can be injected into the network and consumed by the receiver with no detectable loss

resulting. To achieve the optimum goodput cells must be 'paced' into the network at a rate

agreed to between the transmitter and the receiver. It is evident that this rate can not exceed

the capacity of the ATM device driver or the capability of the METS communications

system to deliver packets to the API. The objective of this test is to determine this threshold

bandwidth. For this second test the traffic shaper is enabled for open loop flow control.

One of the objectives of the shaper is to limit any back-to-back transmission of cells to the

network. This is important in this implementation since the ATM device can only buffer 13

cells before dropping additional cells. By applying open loop rate control using traffic

shaping a maximum bandwidth of 17.5 K cells/sec (7.4 Mbps) is made possible.

While these results are disappointing with regard to the line card rate and the capacity of

the network to operate near 100 Mbps, this is a direct result of the NIC design limitations to

handle larger bandwidths. These limitations include an ATM device with limited buffering

and a CPU with additional overhead for handling ATM interrupts and buffer management.

In the worst case, there is an interrupt at the receiver for each ATM cell delivered by the

NIC. The ISA ATM device driver, however, reduces this overhead by checking whether

any cells have arrived at the end of each receive interrupt cycle. One obvious proposal for

improvement of the receiver side bandwidth capability performance is to buffer complete

AAL5 packets on the NIC and interrupt the CPU only when a full packet is available. This

implies that the ORL NIC would require a more sophisticated buffer management

capability. It should also be noted, however, that the design objective of the ORL NIC is to

provide a simple ATM interface to the network. Another limitation [Lunn,95] is the

 -197-

buffering scheme of the ATM device driver itself. When a new ATM cell arrives at the

receiver the ATM device driver allocates a buffer and copies the payload to it. The

performance results of the buffering scheme indicate the need for design re-evaluation. For

example, doubling the amount of FIFO buffering would have beneficial effects on

performance.

 As presented in figure 8.3, the receiver can accommodate a maximum transmission rate

of up to 8 K cells/sec after which it starts to drop cells. In the case of this current

implementation the loss of one cell causes an entire AAL5 packet to be lost. This highlights

the sensitivity of the METS system to single cell loss conditions. The loss of a single cell in

this manner could have a major effect on the delivered bandwidth, especially if packets are

large. It has been proposed [Pegler,95] that by adding dummy cells at the receiver

whenever cell loss is detected then it would be possible to improve the results shown in

figure 8.3.

8.2.3 Loss Analysis

The objective of the loss analysis experiment discussed in this section is to determine

the impact on the client's ability to consume media as the number of video flows received

increases. Figure 8.4 illustrates the percentage of lost frames (i.e., MPEG pictures) as a

function of the number of full (i.e., BL+E1+E2 configuration) transmitted Canyon.mpg

video clips operating at 12 fps.

Flow Shaping

The upper curve depicts the loss occurring from unregulated sources while the lower

curve depicts the loss resulting from flows which are shaped by the METS protocol. The

number of received video flows varies from 1 to 8 streams. Both curves show that as the

number of MPEG streams increase the loss experienced by the receiver also increases. The

maximum percentage loss measured at the receiver varies between 33% and 60% for

regulated and unregulated traffic, respectively.

As illustrated in figure 8.4, in the case of unregulated traffic the performance of the

system degrades rapidly when 3 flows are received simultaneously. As this figure shows,

this represents a loss of greater than 10% - which is perceptible to the end-user. Regulated

traffic on the other hand out-performs the former and only exhibits 10% loss when the

number of flows approaches 6. For best effort systems which do not offer guarantees to the

 -198-

base layer this level of loss may be significant to the user. For example, the video playout

remains distorted if I pictures are continuously lost .

To address this situation the METS protocol informs the flow management whenever

the loss reaches pre-configured thresholds. This in turn triggers a rate reduction request

from the client that is included in the next RESV message sent to the server. If clients select

the adaptive service then consistent loss causes a reduction in the quality of video to lower

resolutions. A drawback of the current implementation is that while guarantees may be

made to the base layer by the METS communications system no such guarantee may be

given to specific flows as they are handled by the ATM NIC device. As a result the

overflow of the receiver device buffers may cause base layer cells to be dropped. This

results in a weakening of the QoS commitment to the adaptive network service. To address

this the METS system employs admission control testing as part of the resource reservation

process and traffic shaping at the server which constrains the operation of flows to be

within the level of the agreed contract. These mechanisms help to limit the cell loss to

within acceptable bounds (i.e., less than 10%). This limits the ability of the admission

control algorithm to accept the equivalent of 3 Canyon flows at 12 fps without any loss

detected at the receiver. This is an equivalent bandwidth of 10 K cells/sec for an average

packet size of between 2048 and 512 bytes as illustrated in figure 8.3.
Loss and Timing Distortion

The next test in the suite examines the result of loss and timing distortion seen during

transmission of video over the testbed. Figure 8.5 presents three flows transmitted from the

source node (i.e., atc) to the receiver and figure 8.6 illustrates the distortion detected at the

receiver. The three curves represent a base layer (BL) flow of I frames only, an

enhancement flow (E1) of I and P frames and a further enhancement flow (E2) of I, P and

B frames. The source clip is again the Canyon video. Video transmitted at 24 fps results in

approximately 10% loss at the receiver. Close inspection of the three flows reveals that the

signal by the transport protocol is very close to the original signal measured at the source.

Because there is no additional load on the switches, little queueing delay is experienced by

the flows as they traverse the three switches en route. The way in which the transport

protocol corrects the timing distortion in the delivered signal through sync-filtering is

presented in section 7.3.1.2 and evaluated in 8.2.5. A number of other factors affect the

performance of delivered frames to the playout device in a Linux/Unix based system. For

example, at the receiver, loss is compounded by the performance of the decode and display

 -199-

functions of the NVS system.

8.2.4 Delay Analysis

This test suite presented in this section examines the delay distribution experienced by

METS1 packets as they traverse the network and end-system as a function of the number of

flow consumed at the receiver. Figure 8.7 illustrates the end-to-end delay distribution of the

Canyon video clip between atc and dwp end-systems.

Each METS packet is time-stamped at the server and client. The distribution measured

delays for each of the 1758 frames is recorded and shown in figure 8.7. The test setup is a

lightly loaded network with one flow running at 24 fps. The average delay measured by the

transport protocol at the receiver utilising an absolute timing method is 4 ms. The minimum

and maximum delay recorded is 2 ms and 19 ms respectively with a standard deviation of 2

ms.

The second test uses the same setup as the first experimental test with 6 flows being

consumed at the receiver. The results measured at dwp measurably show an increase in

end-to-end delay experienced by packets traversing the network. Figure 8.8 presents the

distribution of delays when the sixth flow is added. The average delay measured by the

transport protocol at the receiver using an absolute timing method is 7 ms. The maximum

and minimum delays recorded are 40 ms and 2 ms, respectively, with a standard deviation

of 2 ms. These results represent a two fold increase in measured delay over the case when

one flow is consumed.

The third test measures the delay statistics experienced when the transmitted flows

varied between one and eight. Figure 8.9 represents the end-to-end distribution recorded at

the client. As can be seen in figure 8.9, there is little difference in the average delay

measured as the number of flows increase. The average delay difference between the delay

experienced by one flow and eight flows is 6 ms. Variation in the maximum delay

experienced is, however, significantly large at 42 ms.

The final test of this delay suite investigates the effect of increasing the number of flows

on the NVS decode and display functions. These functions are essentially part of the

Berkeley Continuous Media Player [Rowe,92]. Figure 8.10 presents the distribution of

delays measured for decode and display processing as the number of flows received varies

1Note that METS packet are packetised into AAL5 packets directly. Therefore all performance characteristics
associated with METS packets are equivalent to AAL5 performance.

 -200-

between 1 and 7. The upper curve depicts the average frame decode time for the Canyon

video operating at 12 fps. As the number of flows increase the decode time increases

rapidly from 18 ms for 1 flow to over 100 ms for 8 flows. The loss experienced by the

receiver when 8 flows are simultaneously consumed nears 40%. This loss, while

unacceptable, is not surprising since the video decode process is a software function

executed on the host CPU. Like all other CPU-bound processes the decode and display

processes must contend for limited CPU cycles as the number of flows and level of

communication computation increase with the number of consumed flows.

The lower curve on figure 8.9 illustrates the video display processing for the same

conditions as described above. The time taken to complete the display cycle is negligible for

up to 3 flows at the receiver. Above 3 flows the time to get the frames onto the display

increases to 30 ms per frame when eight flows are being consumed.

As anticipated, the decompress function is the most computationally intensive of the

receive thread functions which includes communications, decompress and display. The

figures above show that the response time of these functions varies considerably according

to the load at the end-system. As the communications overhead increase the amount of CPU

time remaining for decoding and display video diminishes. This inevitably leads to higher

delays for the communications, decode and display functions - and eventual loss of

packets. For example, at 12 fps a new frame is delivered to the receiver every 83 ms.

Therefore, the communications decode and display processing must completed within this

interval to avoid loss. As presented in figure 8.10, this point is reached when receiving 4

Canyon flows at 12 fps. After this point, picture loss increases rapidly.
8.2.5 Sync Filtering Analysis

This test suite investigates the ability of the sync filtering mechanism to adaptively

adjust the playout delay experienced by flows at the receiver to meet end-to-end delay and

jitter requirements. Chapter 7 described the implementation of a sync-filter mechanism for

calculating the playout point of METS packets received from the network. Because of

variable delays experienced by each METS packet during transmission (as shown in figure

8.9), it is important that the receiver attempts to recover the original video signal before

playout. The sync-filter attempts to restore the original timing characteristics of the flows.

Figures 8.11 and 8.12 present the operation of the receiving end-system taking part in a

networked video session. The source packetises a Canyon video stream and attempts to

transmit it at an isochronous rate of 24 fps. Ideally this should result in the transmission

 -201-

and reception of a METS packet every 42 msec. Because packets incur random delays at the

source and while traversing the network they are rarely delivered precisely at 42 msec

intervals. Rather, packets arrive with the type of distortion shown in figure 8.11. As

described in Chapter 7 the sync filter attempts to restore the timing of the signal by

smoothing out distortions introduced by estimating the maximum end-to-end delay as part

of the playout algorithm. Figures 8.11 and 8.12 show the playout strategy for reception of

frames as a function of arrival time. The upper curves on both figures illustrate the

measured arrival times for consecutive packets. It should be noted that METS packets are

always received in order of arrival. The lower curves represent the playout time curve as

calculated by the algorithm described in Chapter 7. The values of the smoothing coefficients

a and b as defined in the playout algorithm were chosen to be 1/8 and 1/16, respectively.

The results of this final test are quite promising. Figure 8.11 shows the transmission of

the Canyon video over a short interval of the complete playout trace; this interval is

consistent with the complete trace. The calculated playout time shadows the arrival rate very

closely with no loss of packets due to underestimation of the maximum end-to-end delay.

This is expected when one considers the relatively smooth delivery of packets (i.e., no sign

of large jitter is manifest in the trace). The trace also shows the point at which the transport

QoS manager adjusts the current playout estimate. This is accomplished at the beginning of

each new GOP as discussed in Chapter 7.

In contrast to the relatively smooth behaviour of the scenario described above, figure

8.12 illustrates a situation where large deviations in the end-to-end delay are noticeable. In

this case the measured statistics represent the Canyon video playout while 4 other

background Canyon flows are simultaneously handled by the same receiver. All

measurements are taken by the transport protocols flow monitor mechanism. Figure 8.12

shows that packet loss occurs between 43000 and 43500 ms due to underestimation of the

maximum end-to-end delay. Unexpectedly large jitter such as this is difficult to predict. One

solution, though, is to increase the confidence factor of 2s (where s is the standard

deviation of the maximum delay described in section 7.3.1.2) which, as mentioned

previously, compensates for error in the estimate by extending the playout time.

Overestimation of this kind, however, leads to larger buffer requirements at the receiver

and, significantly, loss of timeliness when considering the overall performance of the entire

trace.

In figure 8.12, the playout curve tracks the arrival time curve to the first point of loss -

 -202-

the region between 42500 and 43000 ms. The first point of inflection represents a sudden

increase in the end-to-end delay and subsequent loss of a number of METS packets. The

second point of inflection (between 43000 and 43500 ms) also represents a large increase in

measured delay, subsequent loss of packets and then the simultaneous arrival of a group of

packets at the receiver.

Note that the playout algorithm adjusts to fluctuations detected in the measured

maximum delay but these adjustments are rather conservatively in nature. This is the

optimal policy in the long term since, as is seen, shortly the estimate is back on track. The

choice of filter coefficients dictates the rate of change of the estimated delay regarding the

fluctuations in the arrival times of packets. Filtering coefficients influence the

responsiveness of the playout algorithm to track changes in the arrival patterns. For

example, larger coefficients would cause the playout to mirror fluctuations in the arrival

time distribution. This is not, however, always the best policy. Optimally, the playout time

should to evolve in response to trends in the arrival time patterns and not occasional spikes

as illustrated in figure 8.12. During experimentation, the coefficient values used by the sync

filter were determined to be the most appropriate for local area ATM networking. For a full

discussion on filter coefficients see [Jacobson,88] and [Ramjee,94]

8.2.6 Adaptive Network Service Analysis

The final test suite of this thesis relates to the performance of the adaptive network

service and QoS adaptation mechanisms. The adaptive network service described in

Chapter 6 provides “hard” guarantees to the base layer (BL) of a multi-layer flow and soft

guarantees to each of the enhancement layers (E1 and E2). To achieve full end-to-end

admission testing is carried out on the base layer. On the other hand, enhancement layers

are admitted without any such test but must compete for residual bandwidth among all other

adaptive flows. Enhancement layers are rate controlled based on explicit feedback (i.e.,

RESV messages) regarding the current state of the ongoing flows and the availability of

residual bandwidth.

Figure 8.13 illustrates the benefits of the adaptive network service. In this test the

receiver (i.e., the dwp end-point) selects three flows for playout in the first instance. These

comprise:

 i) the Canyon.mpg video flow (selecting the BL, E1 and E2 components) at 24 fps;

 -203-

ii) the Phil.mpg video flow (selecting the BL only) at 5 fps; and

iii) the Flight.mpg video flow (selecting BL) only at 5 fps.

These video flows, layered components and frame rates are chosen to best demonstrate

the benefits of intelligently adapting to the available bit rate. The goal is to demonstrate the

ease at which different resolutions of the Canyon video are automatically added and

removed to take advantage of the available resources. In this test the admission control

resource is restricted to supporting 600 K cells/sec in the end-systems.

 The scenario shows the Canyon and Flights video clips being consumed starting at

time zero. Both base layers are supported. The QoS adaptor in combination with the

adaptive network service determines that none of the Canyon flow's higher resolutions can

be accommodated, however, given the available resources. Twenty seconds into the

scenario trace the Flights video terminates freeing up resources. At this point the QoS

control judges that the highest resolution of the Canyon video (i.e., BL+E1+E2) may be

displayed as illustrated in figure 8.13.

This situation remains until the user chooses to display the Phil.mpg video 50 seconds

into the trace. Based on the semantics of the adaptive service resources are allocated to meet

the base layer QoS requirements for the new video. The QoS adaptor protocol sends a RES

message toward the core requesting resources to meet the highest resolution (E2) of the

Canyon.mpg video. In this instance there are insufficient resources available to meet the

QoS requirements of the highest resolution. However, the resulting RES message indicates

these resources are adequate to support the lower resolution (E1) of the Canyon.mpg flow.

As illustrated in figure 8.13, 50 seconds into the trace the Phil.mpg video comes on-line

and the resolution of the Canyon video drops.

While discrete fluctuations between different video resolutions is noticeable to the end

user the reported results are still very promising. However, it should be noted that

continuous adaptation using the dynamic rate shaping filter as described in Chapter 6 would

resolve such fluctuations. In this role dynamic QoS management continuously adapts the

resolution of the delivered video to the available bit rate.

8.2.7 Discussion

The performance characteristics of the METS transport system were quantitatively

analysed in part two of this section. The performance evaluation was comprised of five

 -204-

experimental test suites: bandwidth analysis, delay analysis, loss analysis, sync-filtering

and adaptive service. All performance measurements were taken using the QoS-A testbed

and three types of experimental MPEG-1 video (which broadly represent different degrees

of action, scene changes, pans and zooms). These video clips allowed the system to be

tested under conditions that produced a wide variety of traffic conditions and loads in the

network and end-systems.

While discrete adaptation was noticeable the resulting perceptible changes were not

pronounced. The results of the adaptive service test appear to be very promising but it must

be determined whether such a scheme translates to the wider area.

Many of the test results highlight the limitations of the network interface card and ISA

bus architecture as opposed to deficiencies in the METS transport system or switching

capability1. In particular the maximum transmission rate of 32 K cells/sec is disappointing

considering that the line rate is over 235 K cells/sec. Similarly, the maximum reception

rates with cell loss were found to be K cells/sec and without loss 17.5 K cell/sec. Again

these results prove disappointing and only compare favourably to standard Ethernet

performance.

METS frame loss was found to be very susceptible to single cell loss conditions.

Admission testing, resource reservation and open loop traffic shaping out performed

unregulated flows by a wide margin. The end-system could consume 4 Canyon flows at 12

fps with an overall loss of 10% of the METS frames when the flows were regulated. This

rose to 33% loss for 8 flows consumed. Corresponding performance for the unregulated

case was measured to be 15% and 60% for 4 and 8 flows consumed, respectively; this

proving traffic shaping is a valuable means of constraining loss at the receiver.

The delay analysis highlighted that while there was minor variation in the average end-

to-end delay as more flows were consumed there was considerable variation in the

maximum end-to-end delay. The average delay difference experienced between one flow

and 8 flows was found to be 6 ms. In contrast, the maximum delay difference measured

was 42 ms. Since the synchronisation function works by estimating the maximum delay the

latter results are significant. The delay evaluation test also investigated the performance of

the decode and display processes as a function of increasing load in the end-system. As the

number of flows displayed at the end-system increased so did the time to decode and

1 The ORL 4x4 switch which is based on an ARM processor has a measured aggregate switching capability of
200 K cells/sec.

 -205-

display frames. The decode duration for single frames ranged from 4 to 58 ms. This time

duration represents the execution time of the decode function and includes operating system

overhead of context switching, the contention by other decode and display processes for

CPU cycles and ATM and METS communication processing. As the load increased each of

these processes contended for more CPU. Similarly, the time taken to display a frame to the

screen increased rapidly as the load increased: from 18 msec for 1 flow to over 100 ms for

7 flows. These results are coupled to the particular video clip chosen at 12 fps. However,

the results indicate that in order to operate with acceptable QoS (i.e., loss less than 10%

and acceptable decode and display times) the end-system can only consume 4 Canyon

flows at full resolution.

Both the sync filtering and adaptive service testing demonstrated the benefit of these

QoS mechanisms in providing jitter correction and maximising the utilisation of the

available bandwidth. The sync-filter tracked the arrival time distribution by estimating the

maximum delay and calculating the playout time of successive GOP sequences. This

proved to be highly successful at both the low load and high load. While the choice of

filtering coefficients produced dampened responsiveness to spikes in the arrival time

distribution it was deemed suitable given the long term jitter trends trace. The adaptive

network service test suite highlighted the benefit of adjusting the resolutions of flows to

meet specific needs of different clients at the same receiver.

8.3 Summary

 This Chapter has evaluated the work previously described the body of the thesis. First,

a qualitative comparison of the QoS-A to other existing QoS architectures presented in the

literature was provided. Each QoS architecture was reviewed for the QoS provision, control

and management components presented in Chapter 3. While there was a broad consensus

on a number of QoS issues many important questions remain unresolved (e.g., the choice

of QoS specification, suitability of QoS commitments to cover the application base, the

choice of hard state or soft state solutions). These issues will be resolved as more

implementations become available in the future.

With the exception of ATM cell HEC computation, all switch, ATM layer, adaptation

layer, METS transport system and NVS function processing is 'soft'; that is, flows are

completely under software control. All networked devices (e.g., ATM switch) have the

advantage of being are fully programmable. The METS approach is completely software

 -206-

based. This software intensive approach provides a highly configurable and flexible

systems environment. Such an approach is particularly appropriate for end-to-end research

allowing complete software control of the end-to-end resource management process.

While a software intensive approach allows flexibility in the development of

communications protocols it nevertheless burdens the host CPU with additional

communication (e.g., segmentation and reassembly of AAL SDUs), codec and signalling

overhead. In summary a software intensive approach results favourable flexibility but

disappointing performance (cf. bandwidth, loss test results)

The wider implications of both this qualitative and quantitative work will be presented

and discussed in the next Chapter.

 -207-

Chapter 9

Conclusion

In this Chapter the conclusions of the thesis are presented. This Chapter begins with an

overview of the argument of the thesis. Following this, the contribution of the thesis is

presented. Finally, the thesis concludes by providing some indicators for future work in the

area of end-to-end QoS research.

9.1 Summary of Thesis

Chapter 1 reported on the evolving notion of QoS in research and standards and

concluded by identifying a number of limitations in the state of the art. This thesis argued

that for applications relying on the transfer of multimedia information, in particular

continuous media, it is important that quality of service is configurable, predictable and

maintainable on an end-to-end basis - that is, system-wide, including the distributed system

platform, operating system, transport system and the underlying network. Meeting quality

of service guarantees in distributed multimedia systems generally requires the provision of a

number of QoS mechanisms such as resource reservation, flow scheduling and flow

shaping. In recognition of this, the thesis has argued for the need for an integrated QoS

architecture which spans both end-systems and networks and takes QoS control,

maintenance and management for continuous media flows as its primary goal.

Chapter 2 indicated the importance of QoS control, maintenance and management in

distributed systems, and showed how these functions can be used as building blocks for a

generalised QoS framework. Fundamental terminology, principles and concepts used for

developing and discussing QoS architectures was introduced. The important notions of

flows and QoS specification were presented as key concepts in capturing, requesting and

negotiating end-to-end QoS for continuous media communications.

Chapter 3 presented a comprehensive survey of the current state of the art in QoS

research reported in the literature. Recent work directed at integrating and extending layer-

specific research into broader QoS architectures was addressed. These architectures

promoted the idea of integrated QoS, spanning the end-systems and the network and

 -208-

identified the support for end-to-end QoS as an important new goal. A review of layer-

specific QoS research indicated that much of the work reported to date has concentrated on

applying QoS concepts described in Chapter 2 to either the network or the end-system in

isolation. On the other hand, emerging QoS architectures attempt to coherently apply QoS

concepts across all architectural layers, resulting in a framework for the specification and

implementation of end-to-end QoS. It was noted that while the area of QoS research in

multimedia networking is now mature, work in QoS architectures research remains in very

early stages of development.

Chapter 4 presented an outline of the author's contribution to end-to-end QoS research,

an integrated QoS architecture for continuous media communications (QoS-A). A major

contribution of this thesis was the realisation of the QoS-A at the transport layer. A new

transport service and protocol collectively called the Multimedia Enhanced Transport

System (METS) was proposed. The METS transport system comprised of signalling

(METSig) and protocol (METSP) modules which mapped to the control and user plane of

the QoS-A, respectively. To meet transport level QoS requirements, METSP incorporated

buffer sharing, flow regulation, flow scheduling and basic flow monitoring QoS modules.

Each module was configured based on the flow specification and QoS commitment

described in a user specified service contract. METSig was made up of group management,

multicast connection management and dynamic QoS management signalling components.

The QoS maintenance plane comprised a transport QoS manager for the fine grained QoS

management of on-going flows. Applications interacted with a flow management protocol

over a dedicated interface for the establishment and dynamic QoS management of multicast

flows.

Chapter 5 described operating system support for a QoS-A which guaranteed QoS

levels of both communications and processing with varying degrees of QoS commitment as

specified by user level service contract. The approach taken was based on an enhanced

Chorus micro-kernel operating system environment. The discussion focused on resource

management aspects of the design and in particular CPU scheduling, network resource

management and memory management issues. The proposed operating system architecture

minimised kernel level context switches and exploited early demultiplexing so that incoming

media was always treated according to the QoS associated with API level connection. It

also eliminated data copying on both send and receive (except for unavoidable copies

to/from the ATM network interface controller card)

 -209-

Chapter 6 addressed the problem of resolving heterogeneous QoS demands by extending

the dynamic QoS management (DQM) provision of the QoS-A model to meet the needs of

scalable continuous media. A scheme for the dynamic QoS management of multi-layer

encoded flows in heterogeneous multimedia and multicast networking environments was

detailed. Dynamic QoS management manipulated and adapted multi-layer coded flows at the

end-systems and in the network using a set of scaling objects. The approach taken was

based on three basic concepts: the scalable composition of MPEG standards that can

provide discrete adaptation, dynamic rate shaping (DRS) algorithms for compressed digital

video that provide continuous adaptation, and the weighted fair share (WFS) service for

adaptive flows.

Chapter 7 described the implementation of the QoS-A transport system. The objective

of the METS transport system was to make QoS visible at the transport API. This is

accomplished by preserving application level guarantees throughout the end-systems and

the network. The design of a QoS configurable API, METS transport protocol and ATM

network signalling support was reported. The METS API included group management,

multicast connection management, media transfer and flow management primitives. Three

styles of AF_METS sockets (viz. media socket, control socket, flow management socket)

were identified allowing the application to request, control and manage end-to-end QoS. A

number of QoS mechanisms were added to the Linux environment to remedy its deficiency

in support if continuous media; these included flow scheduling, flow shaping and jitter

correction QoS mechanisms described above. An important contribution of the

implementation work was the realisation of a set of QoS mechanisms designed to meet the

transport needs of adaptive MPEG-1 video flows operating over ATM networks. Implicit in

the design of these mechanisms was their ability to distinguish between different QoS needs

of multi-layer coded flows in the end-system and network.

 Finally, Chapter 8 evaluated the thesis and attempted to place the work in the context of

QoS architecture research reported in the literature. A qualitative comparison of the QoS-A

to other existing QoS architectures was presented. While there was broad consensus on a

number of QoS issues many other important issues remain unresolved. For example, the

choice of QoS specification and QoS commitments varied widely in the literature. It was

noted that these issues may be resolved in the near future as the field matures. Chapter 8

also offered a quantitative analyse of the METS transport protocol performance. The

performance evaluation comprised of five experimental test suites: bandwidth analysis,

 -210-

delay analysis, loss analysis, sync-filtering and adaptive service. All performance

measurements were taken using the QoS-A ATM networking testbed and three types of

experimental MPEG-1 video (which broadly represent different degrees of action, scene

changes, pans and zooms). Many of the test results highlighted the limitations of the

network interface controller (NIC) card and ISA bus architecture as opposed to deficiencies

in the METS transport system or ATM switching system. Both the sync filtering and

adaptive service evaluation demonstrated the benefit of these QoS mechanisms in providing

jitter correction and maximising the utilisation of the available bandwidth, respectively. The

adaptive network service test suite highlighted the benefit of adjusting the resolutions of

flows to meet the specific needs of different clients with heterogeneous QoS requirements.

9.2 Thesis Contribution

9.2.1 Integrated QoS Architecture (QoS-A)

The thesis has recommended that multimedia system designers take an integrated QoS

approach to the development of new communication systems. Rather than considering QoS

in the end-system and network in isolation the author has proposed a new integrated QoS

model which incorporates QoS interfaces, control and management mechanisms across all

architectural layers. The QoS-A is based on fundamental QoS concepts and principles for

building QoS into multimedia communication system. It offers a framework to specify and

implement the required performance properties of multimedia applications over high-

performance networks. The QoS-A incorporates the notions of flow, service contract and flow

management with particular emphasis on the enhanced transport service interface and

dynamic QoS management. The notion of a flow and a service contract were introduced as

key concepts in capturing, requesting and negotiating end-to-end QoS. The thesis also

introduced the idea of flow management which provides for the monitoring and

maintenance of the contracted QoS.

9.2.2 QoS Configurable Transport System

 A major contribution of this thesis was the realisation of the QoS-A at the transport

layer and its assessment in the context of a generalised quality of service architecture. A

new transport service and protocol collectively called the Multimedia Enhanced Transport

System (METS) was proposed, designed and implemented. The METS transport systems

includes QoS control, maintenance and management mechanism to support multicast flows.

It was shown how QoS levels contracted at the transport level application programmers'

 -211-

interface (API) were assured in the context of the Lancaster ATM Research Networking

Environment.

9.2.3 Design of QoS Controlled Operating System Support

This thesis has presented the design of QoS controlled operating system extensions to

meet the needs of the QoS-A. The design was embedded in a micro-kernel/ PC environment

and supported by QoS-A driven, ATM based communications. Resource management

aspects of the design dealt with CPU scheduling, network resource management and

memory management issues. The proposed extensions to the Chorus micro-kernel offered

guaranteed QoS levels of both communications and processing with varying degrees of

QoS commitment. The micro-kernel used admission testing to determine whether or not

new flow activities could be accepted and included a QoS mapping module to translate user

level QoS parameters into representations usable by the scheduling, network and memory

management subsystems.

9.2.4 Dynamic QoS Management (DQM)

The thesis presented the design, and implementation aspects (see section 9.2.5) of

dynamic QoS management (DQM) which controls and managed multi-layer coded flows

operating in heterogeneous, multicast, multimedia networking environments. DQM

extended the QoS-A model presented in Chapter 4 by populating the QoS management

planes of the architecture with a framework for the control and management of multi-layer

coded flows operating over ATM networks.

Two key novel DQM techniques were proposed:

 i) an end-to-end rate shaping scheme which adapts the rate of MPEG-coded flows

to the available network resources while minimising the distortion observed at the

receiver; and

ii) an adaptive network service, which offers “hard” guarantees to the base layer of

multi-layer coded flows, and “fairness” guarantees to the enhancement layers based

on a bandwidth allocation technique called weighted fair sharing (WFS).

9.2.5 Operational QoS Platform

An implementation of the QoS-A transport layer has contributed towards a fully

comprehensive realisation of QoS architecture. The platform realised the functionality of

METS transport system described above and offered a validation of the suggested end-to-

 -212-

end approach for QoS management. Flow scheduling, flow shaping and sync filtering have

proven very effective in controlling individual flows in Linux/ native ATM based end-

systems. It also has been shown that the QoS platform can supports DQM concepts in a

very effective manner - tailoring applications level QoS to meet fluctuating resource

availability. While the experimental infrastructure was limited to the local area it remains to

be determined whether DQM can scale to the wide area and large numbers of receivers with

widely varying heterogeneous QoS demands. The METS API was realised as a new

protocol family presenting the application with three styles of service: control channel,

media channel and flow management interface. The separation of this functionality at the

API significantly enhanced the application's ability to specify QoS requirements, and

control and manage end-to-end QoS.

9.2.6 Evaluation of Platform

A thorough evaluation of the METS transport systems operating over local ATM has

been performed through the use of the NVS MPEG-1 application level demonstrator. This

has served to improve the level of knowledge on QoS architecture based transport system.

Providing flexibility at the transport API to state QoS policy, and QoS mechanism in end-

system and network to interpret this policy, has confirmed the validity of the QoS-A

approach. It has been demonstrated by the performance evaluation results that the transport

QoS mechanisms (viz. adaptive network service, flow scheduling, flow shaping, sync

filtering), which were designed to operate in an adaptive environment, responded well to

fluctuating network and end-system resource availability while allowing applications to

adapt to the delivered QoS in a control manner.

9.2.7 Contribution to QoS Standards

 Standards have an important role to play in promoting a unified view of QoS. The QoS

Project in the ISO has examined the requirements for QoS support in Open Systems

standards addressing QoS in a consistent way. This activity covers QoS very broadly and

has investigated user requirements for QoS, architectural issues and recently QoS

mechanism [ISO,92a]. Lancaster University has played an active role in the ISO QoS

project over the past few years, the author having provided early input on the QoS-A

[Campbell,92b] into this activity. The subject of integrated QoS also emerged as an

important activity in another ISO project on Enhanced Communication Functions and

Facilities (ECFF) for the lower layers of the OSI reference model. As a member of the

 -213-

ESPRIT-funded OSI 95 project the author participated in the ECFF activity. In addition, he

was instrumental in introducing what was considered to be the key multimedia

communication requirements [Campbell,92], into the ECFF guidelines document [ISO,

92b].

9.3 Future Work

There remain many specific areas of research in the field addressed by this thesis which

should be addressed by future work. The major areas requiring investigation are

enumerated in the following sub-sections.

9.3.1 Binding Architecture

The first topic to be addressed in the future research is a comprehensive specification

and implementation of the higher layers of the QoS-A. This research has concentrated on

the transport and ATM networking issues of the QoS-A implementation. The current

implementation does not extend to the distributed system platform (e.g., CORBA).

However a pre-requisite to provide QoS support in the distributed systems is suitable QoS

conscious transport and networking services and protocols. The author is currently

working towards this aim in the context of the work on a Binding Architecture [Lazar,94]

9.3.2 QoS Mapping

Apart from the static QoS translation of QoS parameters between the transport API and

local and remote resource managers (viz. CPU, memory, network) no further QoS

mapping was considered. The area of QoS mapping is still in its infancy with no

comprehensive solutions has been reported in the literature. To date, most QoS mapping

implementations are static in nature and application specific. This suggest that either the

requirements of a comprehensive QoS mapping systems are not well understood or that

QoS mapping has been considered to be a second order problem to date. Much research is

required in the area to provide a fully comprehensive mapping scheme.

 -214-

9.3.3 Internet QoS Architecture

 The work by the Integrated Services (int-serv) Group is perhaps the most significant,

challenging and ambitious realisation of a QoS architecture to date. The int-serv group have

defined a comprehensive QoS model [Shenker,94] which make multiple, dynamically

selectable qualities of service available to applications in an internetwork. Many issues need

be resolved to before IPv6 flows offer QoS configurable and predictable communications to

the end user. For example, the mapping of IPv6, int-serv QoS model and RSVP to the

ATM environment will determine whether the QoS benefits of per-flow ATM performance

are made visible to the end-systems. However, there are a number of similarities in the

approach of the ATM Forum and IETF in meeting QoS needs. Both groups approach end-

to-end research from different perspectives (vis-a-vis hard state and soft state approaches).

However they have complementary approaches to the specification of flows but rather

different approaches to the service classes they offer to the applications. Unifying these two

approaches is essential in making ATM QoS visible to the application in any future

integrated services internetwork.

9.4 Concluding Remarks

The notion of QoS has evolved rather rapidly over the past few years. In the early

1990s - when the work on this thesis commenced - the notion of quality of service in

communications architectures was a narrow one. Traditionally, the term 'quality of service'

referred to certain characteristics of network performance outside the influence of the user.

Recent years have seen great advances in QoS research, due mainly to the emergence of

multimedia networking and computing. Today, ATM networks not only have the capability

of transmitting information at high speed, but with suitable control and management

mechanisms they have the potential to offer end-to-end QoS configurable communications -

and significantly under the management of the end user.

A number of important new initiatives from the standards and research communities

have emerged recently. These initiatives broadly address limitations in the current QoS

provision in the light of new multimedia communication requirements. Three significant

pioneering contributions to the field of QoS research include the IETF's integrated service

model (mentioned above), ATM Forum's QoS service model and SC21's OSI QoS

framework. While each group is attempting to offer an 'end-to-end' solution, they do not

 -215-

have an agreed, collaborative approach. This in itself is a point of major concern.

The research reported in this thesis has been influenced by the debates within the ATM

Forum, IETF and ISO communities on QoS research. While the implementation of the

QoS-A was restricted to the transport and ATM network layers it is hoped that this work

can contribute toward the assessment of a generalised QoS architecture that ultimately will

help harmonise the activities of these various communities.

 -216-

References

[Abrossimov,89] Abrossimov, V., Rozier M. and Shapiro M., "Generic Virtual Memory

Management for Operating System Kernels", SOSP'89, Litchfield Park, Arizona,

December 1989.

[Accetta,86] Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., and M.

Young, “Mach: A New Kernel Foundation for UNIX Development”, Technical Report

Department of Computer Science, Carnegie Mellon University, August 1986.

[Anderson, 90] Anderson, M., Tzou, S.Y., Wahbe, R., Govidan, R. and Andrews, M.,

"Support for Continuous Media in the DASH System", Proc of the 10th International

Conference on Distributed Computing Systems, Paris, May 1990.

[Anderson,91] Anderson, D.P., Herrtwich, R.G. and C. Schaefer. “SRP: A Resource

Reservation Protocol for Guaranteed Performance Communication in the Internet”,

Internal Report, University of California at Berkeley, 1991.

[APM,91] APM Ltd , “ANSAware 3.0 Implementation Manual”, APM Ltd, Poseidon

House, Castle Park, Cambridge CB3 0RD, UK, 1991

[ATM Forum,95] ATM Forum, “ATM User-Network Interface Specification Version

4.0”, 1995.

[Aurrecoechea,95] Aurrecoechea, C., Campbell, A., and L. Hauw “A Survey of Quality

of Service Architecture”, Multimedia Systems Journal, November, 1995 (to be

published).

[Aurrecoechea,95] Aurrecoechea, C., Campbell, A., Hauw, L. and Hisaya Hadama, “A

Model for Multicast for the Binding Architecture”, Technical Report, Center for

Telecommunications Research, Columbia University, USA.

[Baguette,92] Baguette, Y. et al, "TPX Specification", OSI 95 Report, ULg-5/R/V1,

University of Leige, Belgium, October 92.

[Ball,94] Ball, F. and D. Hutchison, “Traffic control in an ATM LAN”, Proc. 2nd IFIP

Workshop on Performance Modelling and Evaluation of ATM Networks, Bradford,

UK, 4th-7th July 1994.

 -217-

[Ballardie,93] Ballardie, T., Francis, P. and Jon Crowcroft, “Core Based Tree (CBT) An

Architecture for Scalable Inter-Domain Multicast Routing”, Proc. ACM SIGCOMM ‘93,

San Francisco, USA.

[Bansal,95] Bansal, V., Siracusa, R.J, Hearn, J. P., Ramamurthy and D. Raychaudhuri,

“Adaptive QoS-based API for Networking”, Fifth International Workshop on Network

and Operating System Support for Digital Audio and Video, Durham, New Hampshire,

April, 1995.

[Benerjea,91] Benerjea, A. and B. Mah, “The Real-Time Channel Administration

Protocol”, Second International Workshop on Network and Operating System Support

for Digital Audio and Video”, Heidelberg, November 1991.

[Besse,94] Besse, L., Dairaine L., Fedaoui, L., Tawbi, W., and K. Thai, “Towards an

Architecture for Distributed Multimedia Application Support”, Proc. International

Conference on Multimedia Computing and Systems, Boston, May 1994.

[Black,93] Black, R., and S. Crosby, "Experience and Results from the Implementation

of an ATM Socket Family", ATM Document Collection 3 (The Blue Book, Cambridge

Computing Labs, 1993.

[Blair,93] Blair, G.S., Campbell, A., Coulson, G., Garcia, F., Hutchison, D., Scott,

A., and W.D. Shepherd, “A Network Interface Unit to Support Continuous Media”,

IEEE Journal of Selected Areas in Communications (JSAC) , February 1993.

[Boerjan,92] Boerjan, J., Campbell A., Coulson G., García F., Hutchison D., Leopold,

H. and N. Singer, "The OSI 95 Transport Service and the New Environment", ISO/IEC

JTC1/SC6/WG4 N824, International Standards Organisation, UK, December 1992, and

Internal Report No. MPG-92-38 Department of Computing, Lancaster University,

Lancaster LA1 4YR.

[Braden,94] Braden R., Clark, D., and S. Shenker, "Integrated Services in the Internet

Architecture: an Overview", Request for Comments, RFC-1633.

[Bricker,91] Bricker, A., Gien, M., Guillemont, M., Lipkis, J., Orr, D., and M. Rozier,

“Architectural Issues in Microkernel-based Operating Systems: the CHORUS

Experience”, Computer Communications, Vol 14, No 6, pp 347-357, July 1991.

[Bulterman,91] Bulterman D. C. and van Liere R., “Multimedia synchronisation and

UNIX”, Proc. Second International Workshop on Network and Operating System

Support for Digital Audio and Video, Heidelberg, Springer Verlag, 1991.

 -218-

[Campbell,92a] Campbell, A., G. Coulson and D. Hutchison, "A Suggested QOS

Architecture for Multimedia Communications", ISO/IEC JTC1/SC21/WG1 N1201,

International Standards Organisation, UK, November, 1992.

[Campbell ,92b] Campbell, A., Coulson G., García F., and D. Hutchison, "A

Continuous Media Transport and Orchestration Service", Proc. ACM SIGCOMM ‘92,

Baltimore, Maryland, USA.

[Campbell,93a] Campbell, A., Coulson, G., García, F., Hutchison, D., and H.

Leopold, “Integrated Quality of Service for Multimedia Communications”, Proc. IEEE

Infocom’93, Hotel Nikko, San Francisco, CA, March 1993.

[Campbell,93b] Campbell, A., Coulson G., and D., Hutchison, “A Multimedia

Enhanced Transport Service in a Quality of Service Architecture”, Proc. Fourth

International Workshop on Network and Operating System Support for Digital and

Audio and Video, Lancaster, UK, October 1993, and ISO/IEC JTC1/SC6/WG4 N832,

International Standards Organisation, UK, November, 1993.

[Campbell,94a] Campbell, A., Coulson, G. and Hutchison, D., “A Quality of Service

Architecture”, ACM Computer Communications Review, April 1994.

[Campbell,94b] Campbell, A., Coulson, G., and D. Hutchison, “Flow Management in a

Quality of Service Architecture”, 5th IFIP Conference on High Performance

Networking, Grenoble, France, June 1994.

[Campbell,95] Campbell, A., Coulson G. and D. Hutchison, “Supporting Adaptive

Flows in a Quality of Service Architecture”, Multimedia Systems Journal, November,

1995 (to be published).

[Chesson,88] Chesson, G., “XTP/PE Overview”, Proc. 13th Conference on Local

Computer Networks, Pladisson Plaza Hotel, Minneapolis, Minnesota, 1988.

[Chrysanthis,95] Chrysanthis, P., and D Mosse’, “Management and Delivery of

Multimedia Traffic”, Proc. Second International Workshop on community Networking

Integrated Multimedia Services to the Home, Princeton, NJ, June 1995.

[Cidon,92] Cidon, I., Gopal, I., Gopal P.M., Janniello and M. Kaplan, “The

plaNET/ORBIT High Speed Network”, Internal Report No. 18270 IBM T.J. Watson

Research Center, August, 1992.

[Clark,84] Clark, D., and D.L. Tennenhouse, "Architectural Consideration for a New

Generation of Protocols", Proc. ACM SIGCOMM ‘90, Philadelphia, 1984.

 -219-

[Clark,87] Clark, D.D., Lambert, M.L., and L. Zhang, “NETBLT: A High Throughput

Transport Protocol”, Computer Communications Review, Vol. 17, No. 5, 1987.

[Clark,90] Clark, D., and D.L. Tennenhouse, "Architectural Consideration for a New

Generation of Protocols", Proc. ACM SIGCOMM ‘90, Philadelphia, USA

[Clark,92] Clark, D.D., Shenker S., and L. Zhang, "Supporting Real-Time Applications

in an Integrated Services Packet Network: Architecture and Mechanism" Proc. ACM

SIGCOMM’92, pp. 14-26, Baltimore, USA, August, 1992.

[Cocchi,91] Cocchi, R., Estin, D, Shenker, S. and L. Zhang, "A Study of Priority

Pricing in Multiple Service Class Networks", Presented at ACM SIGCOMM ‘91, pp.

123-130,1991.

[Cohen,77] Cohen, D.,"Issues in Transit Packetized Voice Communication", Proc. Fifth

Data Communications Symposium, Snowbrid, USA.

[Coulson,92] Coulson G., Blair G. S., Davies N. and Williams N.” Extensions to

ANSA for Multimedia Computing”, Computer Networks and ISDN Systems, 25(11),

305–23, 1992.

[Coulson,93a] Coulson, G., Blair, G.S., Robin, P. and Shepherd, D., "Extending the

Chorus Micro-kernel to Support Continuous Media Applications", Proc. Fourth

International Workshop on Network and Operating System Support for Digital Audio

and Video, Lancaster University, Lancaster LA1 4YR, UK, October 93.

[Coulson,93b] Coulson, G., and G. Blair, “Micro-kernel Support for Continuous Media

in Distributed Systems”,Computer Networks and ISDN System.

[Coulson,94a] Coulson, G., and G.S. Blair. "Micro-kernel Support for Continuous

Media in Distributed Systems", Computer Networks and ISDN Systems 26 (1994), pp

1323-1341, Special Issue on Multimedia, 1994.

[Coulson,94b] Coulson, G., G.S. Blair, P. Robin, and D. Shepherd, "Supporting

Continuous Media Applications in a Micro-Kernel Environment." in Architecture and

Protocols for High-Speed Networks, Editor: Otto Spaniol, Kluwer Academic

Publishers, 1994.

[Coulson,95] Coulson, G., Campbell, A and P. Robin, “Design of a QoS Controlled

ATM Based Communication System in Chorus”, IEEE Journal of Selected Areas in

Communications (JSAC), Special Issue on ATM LANs: Implementation and

Experiences with Emerging Technology.

 -220-

[Crosby,93] Crosby, S., "MSNL Connection Management " ATM Document Collection

2, Technical Note pp. 12-1, 12-11, Systems Research Group, Computer Laboratory,

University of Cambridge, February 1993.

[Cruz,91] Cruz, R., “A Calculus for Network Delay: Part I: Network Elements in

Isolation”, IEEE Transactions on Info. Theory, Vol. 37. No. 1, Jan. 1991.

[Dabbous,95] Dabbous, W. and C. Diot, “High Performance Protocol Architectures”,

Technical Report, INRIA, Sophia Antipolis, France, 1995

[Damaskos,94] Damaskos, S. and A. Gavras, “A Simplified QoS Model for Multimedia

Protocols over ATM”, High Peformance Networking, S.Fdida ed., Elsevier Scince B.

V. (North-Holland), 1994.

[Danthine,92] Danthine, A., Baguette Y., Leduc G., and L. Leonard, "The OSI 95

Connection-Mode Transport Service - Enhanced QoS", Proc. 4th IFIP Conference on

High Performance Networking, University of Liege, Liege, Belgium, December 1992.

[Deering,94] Deering, S., “Simple Internet Protocol Plus (SIPP) Specification”, Work in

Progress, Internet Draft, <draft-ietf-sipp-spec-00.txt>, February 1994.

[Delgrossi,93] Delgrossi, L., Halstrinck, C., Henhmann, D.B, Herrtwich R.G, Krone,

J., Sandvoss, C., and C. Vogt, “Media Scaling for Audio-visual Communication with

the Heidelberg Transport System”, Proc ACM Multimedia'93 Anaheim, USA.

[Doeringer,90] Doeringer, W., D. Dykeman, M. Kaiserswerth, B. Meister, H. Rudin,

R. Williamson, “A Survey of Light-weight Transport Protocols for High-speed

Networks”, IEEE Transactions on Communications, November 1990.

[Eleftheriadis,95a] Eleftheriadis, A., and D. Anastassiou, “Meeting Arbitrary QoS

Constraints Using Dynamic Rate Shaping of Code Digital Video”, Fifth International

Workshop on Network and Operating System Support for Digital Audio and Video,

Durham, New Hampshire, USA.

[Eleftheriadis,95b] Eleftheriadis, A., “Dynamic Rate Shaping of Compressed Digital

Video”, Ph.D. Thesis, Columbia University, USA.

[Escobar,92] Escobar, J., Deutsch, D. and C. Partridge, “Flow Synchronisation

Protoco”, IEEE GLOBECOM’92, Orlando, Fl., December 1992.

[Fedaoui,94] Fedaoui, L., Seneviratne, A., and E. Horlait, “Implementation of a End-to-

End Quality of Service Management Scheme”, Cost 237 Workshop, Vienne, November

1994.

 -221-

[Feldmeier,93] Feldmeier, D.,“A Framework of Architectural Concepts for High Speed

Communication Systems”, Computer Communication Research Group, Bellcore,

Morristown, May 1993.

[Ferrari,90] Ferrari, D. and D. Verma, “A Scheme for Real-Time Channel Establishment

in Wide Area Networks”, IEEE J. Selected Areas in Comm., Vol 8 No 3, April 1990.

[Ferrari,92] Ferrari, D., Ramaekers J. , and G. Ventre, "Client-Network Interactions in

Quality of Service Communication Environments”, Proc. 4th IFIP Conference on High

Performance Networking, University of Liege, Liege, Belgium, December 1992.

[Ferrari,95] Ferrari, D., “The Tenet Experience and he Design of Protocols for Integrated

Services Internetworks”, Multimedia Systems Journal, November 1995.

[Florissi,94] Florissi, P. G. S., and Y. Yemini,”QuAL: Quality Assurance Language”,

ITS’94.

[Floyd,93] Floyd, S., “Link-Sharing and Resource Management Models for Packet

Networks”, Draft available via anonymous ftp from ftp.ee.lbl.gov: link.ps.Z, September

1993.

[French,94] French, L.J., Willson, I.D., and D.P. Gilmurry, "ATMOS II User Manual",

Olivetti Research Limited, 24a Trumptington Street, Cambridge, 1994.

[Fry,93] Fry, M., Seneviratne, A., and A Richards, “Framework for the Implementation

of the the Next Generation of Communication Protocols”, Forth International Workshop

on Network and Operating Systems Support for Digital Audio and Video, University of

Lancaster, November 1993.

[García,93] García, F., “A Continuous Media Transport and Orchestration Service”, PhD

Thesis, Department of Computing, Lancaster University, Lancaster LA1 4YR, UK,

June 1993.

[Golestani,90] Golestani, S.J., “A Stop and Go Queueing Framework for Congestion

Management”, Proc. ACM SIGCOMM’90, San Francisco, June 1990.

[Gopalakrishna,94 Gopalakrishna, G., and G. Parulkar, “Efficient Quality of Service in

Multimedia Computer Operating Systems”, Department of computer science,

Washington University, Report WUCS-TM-94-04, August 1994.

[Gopalakrishna,95] Gopalakrishna, G., and G. Parulkar, “A Real-time Upcall Facility

for Protocol Processing with QoS Guarantees”, (Poster) 15th ACM Symposium on

Operating Systems Principles, December. 1995.

 -222-

[Gopalakrishna,95] Gopalakrishna, G., and G. Parulkar, “Quality of Service Support

for Protocol Processing within the Endsystem”, Proc. High Speed Networks for

Multimedia Applications Workshop, Dagstuhl, July 1995

[Govindan,91] Govindan, R., and D.P. Anderson, “Scheduling and IPC Mechanisms

for Continuous Media”, Thirteenth ACM Symposium on Operating Systems Principles,

Asilomar Conference Center, Pacific Grove, California, USA, SIGOPS, Vol 25, pp 68-

80, 1991.

[Govindan,91] Govindan, R., and D.P. Anderson, “Scheduling and IPC Mechanisms

for Continuous Media”, Thirteenth ACM Symposium on Operating Systems Principles,

Asilomar Conference Center, Pacific Grove, California, USA, SIGOPS, Vol 25, pp 68-

80, 1991.

[Guangxing,94] Guangxing, “An Model of Real-Time QoS for ANSA” , Technical

Report APM.1151.00.04, APM Ltd, Cambrigde, UK, March 1994.

[Guerun,91] Guerun, R., Ahmadi, H., and M. Naghshineh,”Equivalent Capacity and its

Application to Bandwidth Allocation in High Speed Networks” , IEEE Journal on

Selected Areas in Communications, Vol. 9, No. 7, Sept. 1991.

[H.262,94] H.262, “Information Technology - Generic Coding of Moving Pictures and

Associated Audio”, Committee Draft, ISO/IEC 13818-2, International Standards

Organisation, UK, March 1994.

[Hayter,91] Hayter, M and D. McAuley, “The Desk Area Network”, ACM Operating

Systems Review, Vol 25, No 4, pp14-21, October 1991.

[Hehmann,91] Hehmann, D.B., Herrtwich, R.G., Schulz, W., Schuett, T. and R.

Steinmetz, “Implementing HeiTS: Architecture and Implementation Strategy of the

Heidelberg High Speed Transport System”, Proc. Second International Workshop on

Network and Operating System Support for Digital Audio and Video, IBM ENC,

Heidelberg, Germany, 1991.

[Hoffman,93] Hoffman, D., Speer, M. and G. Fernando, “Network Support for

Dynamically Scaled Multimedia Data Streams”, Fourth International Workshop on

Network and Operating System Support for Digital Audio and Video, Lancaster, UK.

[Hui,95] Hui, J., Zhang, J., and Jun Li, “Quality of Service in GRAMS for ATM Local

Area Networks”, IEEE Journal of Selected Areas in Communications (JSAC), Special

Issue on ATM LANs: Implementation and Experiences with Emerging Technology, May

1995.

 -223-

[Huitema,94] Huitema, C., "Routing in the Internet", Prentice Hall, ISBN 1-13-132192-

7, 1994.

[Hutchison,92] Hutchison, D. and Campbell, A. “Key Issues in Multimedia

Communications”, ISO/IEC JTC1/SC6/WG4 SD/14, International Standards

Organisation, UK, November, 1992, and Internal Report No. MPG-92-39 Department

of Computing, Lancaster University, Lancaster LA1 4YR.

[Hutchison,94] Hutchison, D., Coulson G., Campbell, A., and G. Blair , “Quality of

Service Management in Distributed Systems”, to appear: M. Sloman ed., Network and

Distributed Systems Management, Addison Wesley, chapter 11, 1994, and Internal

Report No. MPG-94-02 Department of Computing, Lancaster University, Lancaster

LA1 4YR.

[Hyman,90] Hyman, J., Lazar, A., and G. Pacifici, “Real-Time Scheduling with Quality

of Service Constraints”, IEEE Journal on Selected Areas in Communications, Vol. 9.

No. 7, April 1990.

[Hyman,92] Hyman, J., Lazar, A., and G. Pacifici, "Joint Scheduling and Admission

Control for ATS-based Switching Nodes", Proc. ACM SIGCOMM ‘92, Baltimore,

Maryland, USA, August 1992.

[IETF,95] Slides from IETF meeting 31, Integrated Service Working Group,

ftp://mercury.lcs.mit.edu/pub/intserv, 1995.

[ISO,92] ISO, "Draft Guidelines for Enhanced Communication Function and Facilities for

the Lower Layers", ISO/IEC JTC1/SC6/WG4 N7309 International Standards

Organisation, UK, May 1992.

[ISO,95a] ISO, "Quality of Service Framework", ISO/IEC JTC1/SC21/WG1 N9680,

International Standards Organisation, UK, 1995.

[ISO,95b] ISO, "QoS - Methods and Mechanism", ISO/IEC JTC1/SC21/WG1 N9310,

International Standards Organisation, UK, 1995.

[Jacobson,93] Jacobson, V, " Congestion Avoidance and Control", Proc ACM

SIGCOMM'88, Stanford, 1988.

[Jacobson,93] Jacobson, V., "VAT: Visual Audio Tool", vat manual pages,1993.

[Jain,95] Jain, R., “Congestion Control and Traffic Management in ATM Networks:

Advances and a Survey”, Computer Networks and ISDN Systems, 1995.

 -224-

[Jeffay,91] Jeffay, K., Stone, D. and F. Donelson Smith, “Kernel Support for Live

Digital Audio and Video”, Proc. Second International Workshop on Network and

Operating System Support for Digital Audio and Video, IBM ENC, Heidelberg,

Germany, Springer Verlag, 1991.

[Jeffay,92] Jeffay K., Stone, D.L., Talley, T. and F.D. Smith, “Adaptive, Best Effort

Delivery of Digital Audio and Video Across Packet-Switched Networks”, Proc. Third

International Workshop on Network and Operating System Support for Digital Audio

and Video, San Diego, USA.

[Jeffay,93] Jeffay, K., “The Real-Time Producer/Consumer Paradigm: A Paradigm for

Construction of Efficient, Predictable Real-Time Systems,” Proc. 1993 ACM/SIGAPP

Symposium on Applied Computing, Indianapolis, IN, February 1993.

[Jeffay,95] Jeffay, K and D. Bennet, “A Rate-Based Execution Abstraction For

Multimedia Computing,” Proc. Fifth International Workshop on Network and Operating

Systems Support for Digital Audio and Video,”, Durhan, NH, April 1995.

[Judge,95] Judge, J., and P. Beadle, “Supporting Quality of Service on Multimedia

Terminals Interconnected by a Low Speed ATM Network”, SPIE Vol. 2417, 1995.

[Jung,93] Jung, J., and D. Seret , “Translation of QoS Parameters into ATM Performance

Parameters in B-ISDN”, Proc. IEEE Infocom’93, Vol. 3, San Francisco, USA, 1993.

[Kanakia,93] Kanakia, H., Mishra, P., and A. Reibman, “An Adaptive Congestion

Control Scheme for Real Time Packet Video Transport”, Proc. ACM SIGCOMM ‘93,

San Francisco, USA, October 1993.

[Kelly,93] Kelly, F.P., "On Tariffs, Policing and Admission Control for Multiservice

Networks", Proc. Multiservice Networks ‘93, Cosener’s House, Abingdon, July 1993,

and Internal Report, Statistical Laboratory, University of Cambridge, England.

[Keshav,91] Keshav, S., “On the Efficient Implementation of Fair Queueing”,

Internetworking: Research and Experiences, Vol. 2, pp 157-173, 1991

[Keshav,91] Keshav, S., “On the Efficient Implementation of Fair Queueing”,

Internetworking: Research and Experiences, Vol. 2, pp 157-173, 1991.

[Keshav,92] Keshav, S., “Report on the Workshop on Quality of Service Issues in High

Speed Networks”, ACM Computer Communications Review, Vol 22, No 1, pp 6-15,

January, 1993.

 -225-

[Keshav,93] Keshav, S., “Report on the Workshop on Quality of Service Issues in High

Speed Networks”, ACM Computer Communications Review, Vol 22, No 1, pp 6-15,

January, 1993.

[Keshav,94] Keshav and Saran, “Semantics and Implementation of a Native-Mode ATM

Protocol Stack”, Bell Labs Technical Memorandum, http:// www.cs.att.com/

csrc/keshav/papers.html, 1994.

[Kurose,93] Kurose, J.F., “Open Issues and Challenges in Providing Quality of Service

Guarantees in High Speed Networks”, ACM Computer Communications Review, Vol

23, No 1, pp 6-15, January 1993.

[Lazar,90] Lazar A.A., Temple, A.T., and R. Gidron , “MAGNET II: A Metropolitan

Area Network based on Asynchronous Time Sharing”, IEEE Journal on Selected Areas

in Communications, Vol 8, No 6, pp 1582–94, 1990.

[Lazar,90] Lazar, A. A., Temple, A and Gidron, “An Architecture for Integrated

Networks that Guarantees Quality of Service”, International Journal of Digital and

Analog Communications Systems, Vol. 3, No. 2.

[Lazar,92] Lazar, A.A., “A Real-time Control, Management, and Information Transport

Architecture for Broadband Networks”, Proc. International Zurich Seminar on Digital

Communications, pp. 281-295, 1992.

[Lazar,94] Lazar, A. A., “Challenges in Multimedia Networking”, Proc. International Hi-

Tech Forum, Osaka, Japan, Februray 1994.

[Lazar,94] Lazar, A. A., Bhonsle S., Lim, K.S., “A Binding Architecture for Multimedia

Networks”, Proceedings of COST-237 Conference on Multimedia Transport and

Teleservices, Vienna, Austria.

[Leopold,92] Leopold, H., et al, "Distributed Multimedia Communications System

Requirements", OSI95/Deliverable ELIN-1/C/V3, Alcatel ELIN Research, A-1210

Vienna, Ruthnergasse 1-7, Austria, April 1992.

[Leslie,93] Leslie, I.M., McAuely, D., and S.J. Mullender, “Pegasus - Operating

Systems Support for Distributed Multimedia Systems,” Operating Systems Review,

Vol. 27, No. 1, 1993.

[Leydekkers,95] Leydekkers, V. Gay and L. Franken, “A Computational and

Engineering View on Open Distributed Real-time Multimedia exchange”, Fifth

International Workshop on Network and Operating System Support for Digital Audio

and Video, Durham, New Hampshire, 1995.

 -226-

[Linux,94] Welsh, M., and L. Kaufman, "Running Linux", O'Reilly Associates, ISBN

1-56592-100-3, 1994.

[Little,90] Little, T.D.C, and A. Ghafoor, “Synchronisation Properties and Storage

Models for Multimedia Objects”, IEEE Journal on Selected Areas on Communications,

Vol. 8, No. 3, pp. 229-238, April 1990.

[Liu,73] Liu, C.L. and Layland, J.W., “Scheduling Algorithms for Multiprogramming in

a Hard Real-time Environment”, Journal of the Association for Computing Machinery,

Vol. 20, No. 1, pp 46-61, February 1973.

[Lunn,93] Lunn, A. S., “A Mini cell Architecture for Multimedia Systems"”, PhD Thesis,

Department of Computing, Lancaster University, Lancaster LA1 4YR, UK, Sept 1995.

[Lunn,94] Lunn, A.S., Scott, A.C., Shepherd, W.D and N.J. Yeadon, “A Mini-cell

Architecture for Networked Multimedia Workstations”, to be presented: 1994

International Conference on Multimedia Computing, Boston, USA, and Internal Report

No. MPG-93-30 Department of Computing, Lancaster University, Lancaster LA1 4YR.

[McAuley,93] McAuley, D. R., “Operating System Support for the Desk Area Network,”

Proc. Forth International Workshop on Network and Operating Systems Support for

Digital Audio and Video,” Lancaster, England, November 1993.

[McCanne,94] McCanne, S., Jacobson, V., "VIC: Video Conference" U.C. Berkeley

and Lawrence Berkeley Laboratory. Software avai lable via

ftp://ftp.ee.lbl.gov/conferencing/vic

[Miloucheva,95] Miloucheva, I. “Quality of Service Research for Distributed Multimedia

Applications”, ACM Pacific Workshop on Distributed Multimedia Systems, 1995.

[Miloucheva,95] Miloucheva, I. and K. Rebensburg, “QoS-based Architecture using

XTP”, Forth IEEE International Conference on Future Trends of Distributed Systems,

Lisboa, Sept, 1993.

[Mullender,93] Mullender S., ed. (1993). Distributed Systems, 2nd end., Addison-

Wesley.

[Nahrstedt,93] Nahrstedt, K. and J. Smith, “Revision of QoS Guarantees at the

Application/Network Interface”, Technical Report, Distributed Systems Laboratory,

University of Pennsylvania, 1993.

[Nahrstedt,94] Nahrstedt K. and J. Smith, “A Service Kernel for Multimedia

Endstations”, Proc. IWACA’94: Multimedia: Adavnced Teleservices and High-Speed

Communication Architectures, Heidelberg 1994.

 -227-

[Nahrstedt,95a] Nahrstedt K. and J. Smith, “The QoS Broker”, IEEE Multimedia,

Spring 1995.

[Nahrstedt,95b] Nahrstedt, K., and R. Steinmetz, “Resource Management in Networked

Multimedia Systems”, K. Nahrstedt and R. Steinmetz, IEEE Computer Magazine, May

1995.

[Nahrstedt,95c] Nahrstedt K. and J. Smith, “Design, Implementation and Experiences of

the OMEGA End-Point Architecture”, Technical Report (MS-CIS-95-22), University of

Pennsylvania, May 1995, (submitted to JSAC).

[NATO, 88] Private communication with Chris Sluman, 95.

[Nicolaou,90] Nicolaou, C., “An Architecture for Real-Time Multimedia Communication

Systems”, IEEE Journal on Selected Areas in Communications, Vol. 8, No. 3, April

1990.

[Nicolaou,93] Nicolaou, C., “Integrating Multimedia into the ANSA Architecture”,

Tecnical Report TR.028.93, APM Ltd, Cambridge, UK. 1993.

[ODP] ODP, “Draft recommendations X.903: basic reference model of open distributed

processing”, ISO/IEC JTC1/SC21/WG7, International Standards Organisation, 1992.

[OMG,93] OMG, “The Common Object Request Broker: Architecture & Specification,

Rev 1.3., December 1993.

[Pacifici,95] Pacifici, G., and R. Stadler, “An Architecture for Performance Management

of Multimedia Networks”, Proc. IFIP/IEEE International Symposium on Integrated

Network Management, Santa Barbara, May 1995.

[Paek,95] Paek, S., Bocheck, P., and Chang S.-F.,“Scalable MPEG-2 Video Servers

with Heterogeneous QoS on Parallel Disk Arrays”, Fifth International Workshop on

Network and Operating System Support for Digital Audio and Video, Durham, New

Hampshire, USA.

[Parekh,92] Parekh, A. and R. G. Gallager, "A Generalised Processor Sharing Approach

to Flow Control in Integrated Service Networks - The Multiple Node Case", Proc. IEEE

INFOCOM’93, pp.521-530, San Francisco, USA, April 1993.

[Parekh,93] Parekh, A. and R. G. Gallager, "A Generalised Processor Sharing Approach

to Flow Control in Integrated Service Networks - The Multiple Node Case", Proc. IEEE

INFOCOM’93, pp.521-530, San Francisco, USA, April 1993.

 -228-

[Partridge,92] Partridge, C., "A Proposed Flow Specification; RFC-1363" Internet

Request for Comments, no. 1363, Network Information Center, SRI International,

Menlo Park, CA, September 1990.

[Pasquale,92] Pasquale, G., Polyzos, E., Anderson, E. and V. Kompella, “The

Multimedia Multicast Channel”, Proc. Third International Workshop on Network and

Operating System Support for Digital Audio and Video, San Diego, USA, 1992.

[Pasquale,93] Pasquale, G., Polyzos, E., Anderson, E., and V. Kompella, “Fitter

Propagation in Dissemination Trees: Trading Off Bandwidth and Processing in

Continuos Media Networks”, Proc. Forth International Workshop on Network and

Operating System Support for Digital Audio and Video, Lancaster, UK.

[Pegler,95] Pegler, D., Hutchison, D., Lougher, P. and D Shepherd, "A Scalable

Multimedia Storage Hierarchy", Technical Report, MPG-01-95, Lancaster University,

England.

[Pronios,95] Pronios, N., “EuroBridge: A QoS-Driven Architecture”, Technical Report,

Intracom S.A, Greece, 1995.

[Ramjee,94] Ramjee, R., Kurose, J.,Towsley, D., and H. Schulzrinne, “Adaptive

Playout Mechanisms for Packetised Audion Applications in the Wide-Area Network”,

Proc. IEEE Infocom’93, 1994.

[Rowe,92] Rowe, L., and Smith, “A Continuous Media Player”, Proc. Third

International Workshop on Network and Operating System Support for Digital Audio

and Video, SanDiego, 1992

[Saltzer,84] Saltzer, J., Reed, D., and D. Clark,"End-to-end Arguments in Systems

Design", ACM Trans. on Computer Systems, Vol. 2., No. 4.

[Schulzrinne,95] Schulzrinne, H. and S. Casner, “RTP: A Transport Protocol for Real-

Time Applications”, Work in Progress, Internet Draft, <draft-ietf-avt-rtp-05.ps>, 1995.

[Scott,92] Scott, A.C., Shepherd W.D. and A. Lunn, “The LANC - Bringing Local ATM

to the Workstation”, 4th IEE Telecommunications Conference, Manchester, UK, 1993,

August 1992.

[Shacham,92] Shacham, N, “Multipoint Communication by Hierarchically Encoded

Data”, Proc. IEEE INFOCOM'92, Florence, Italy, Vol.3, pp. 2107-2114.

[Shenker,93] Shenker, S., Clark, D., and L. Zhang, “A Scheduling Service Model and a

Scheduling Architecture for an Integrated Service Packet Network”, Working Draft

available via anonymous ftp from parcftp.xerox.com: /transient/service-model.ps.Z.

 -229-

[Shenker,95a] Shenker, S., and C. Partridge, “Nework Element Service Specification

Template”, Working Draft, draft-ietf-intserv-predictive-svc-00.txt, November 1995.

[Shenker,95b] Shenker, S., and C. Partridge, “Specification of Predictive Quality of

Service”, Working Draft, draft-ietf-intserv--svc-template.02.txt, November 1995.

[Sluman,91] Sluman, C., "Quality of Service in Distributed Systems", BSI/IST21/-

/1/5:33, British Standards Institution, UK, October 1991.

[Steenstrup,92] Steenstrup, M., “Fair Share for Resource Allocation”, pre-print.

[Tanenbaum,88] Tanenbaum, A.S., van Renesse, R., van Staveren, H. and S.J.

Mullender, “A Retrospective and Evaluation of the Amoeba Distributed Operating

System”, Technical Report, Vrije Universiteit, CWI, Amsterdam, 1988.

[Tennenhouse,90] Tennenhouse, D.L., "Layered Multiplexing Considered Harmful",

Protocols for High-Speed Networks, Elsevier Science Publishers (North-Holland).

[Tennenhouse],94 Tennenhouse, D. L., Adam J.F., Carver, D., Houh, H.H., Ismert

M., Linblad, C.J., Stasior, W., Wetherall, D., Bacher D., and T. Chang, “A Software

OrinetedApproach to the Design of Media Processing Environmnents,” Proc. IEEE

International Conference on Multimedia Computing and Systems, Boston, 1994.

[TINAC,95a] TINA-C, “The DPE Kernel”, Internal Technical Report,1995.

[TINAC,95b] TINA-C, “The QoS Framework”, Internal Technical Report,1995.

[Tokuda,92] Tokuda, H., Tobe, Y., Chou, S.T.C. and Moura, J.M.F., "Continuous

Media Communication with Dynamic QOS Control Using ARTS with an FDDI

Network", ACM Computer Communications Review, 1992.

[Tokuda,92] Tokuda, H., Tobe, Y., Chou, S.T.C. and Moura, J.M.F., "Continuous

Media Communication with Dynamic QOS Control Using ARTS with an FDDI

Network", Proc. ACM SIGCOMM ‘92, Baltimore, Maryland, USA, August 1992.

[Tokuda,93] Tokuda H. and T. Kitayama ,”Dynamic QOS Control Based on Real-Time

Treads” Proc. Fourth International Workshop on Network and Operating System

Support for Digital Audio and Video, Lancaster University, Lancaster LA1 4YR, UK,

1993.

[TOMQAT] TOMQAT, Deliverables, ftp://ftp.fokus.gmd.de/pub/race/tomqat

[Topolcic,90] Topolcic, C., “Experimental Internet Stream Protocol, Version 2 (ST-II)”,

Internet Request for Comments No. 1190 RFC-1190, October 1990.

[Tran]Tran, V., and T. Bradley Maples, “An Adaptive Model for Real-Time Management

of Quality of Service in the OSI Reference Model”, ICC’95, Seattle, 1995.

 -230-

[Turletti,93] Turletti, T, (1993), "A H.261 Software Codec for Video-conferencing over

the Internet", INRIA Technical Report 1834, France.

[Turner,95] Turner, J. “ATM-Soft: A Mini-Proposal for ATM Network Control Using

Soft State”, Technical Note, Washington University, 1995.

[Vogel,94] Vogel, A., G. v. Bochmann, R. Dssouli, J. Gecsei, A. Hafid and B.

Kerherve, “On QoS Negotiation in Distributed Multimedia Application”, Proc. Protocol

for High Speed Networks, April 1994.

[Vogel,94] Vogel, A.,Bochmann, G. v., Dssouli, R., Gecsei, J. and B. Kerherv,

“Distributed Multimedia Applications and Quality of Service - A Survey”, IEEE

Multimedia, 1994.

[Volg,95] Volg, C., Wolf, L., Herrtwich, R. and H. Wittig, “HeiRAT - Quality of

Service Management for Distributed Multimedia Systems”, Multimedia Systems Journal,

November 1995.

[Wolfinger,91] Wolfinger, B. and M. Moran, "A Continuous Media Data Transport

Service and Protocol for Real-time Communication in High Speed Networks." Second

International Workshop on Network and Operating System Support for Digital Audio

and Video, IBM ENC, Heidelberg, Germany, 1991.

[Wolfinger,91] Wolfinger, B., and M. Moran. "A Continuous Media Data Transport

Service and Protocol for Real-time Communication in High Speed Networks." Second

International Workshop on Network and Operating System Support for Digital Audio

and Video, IBM ENC, Heidelberg, Germany, 1991.

[Yeadon,93] Yeadon, N.J., “Supporting Quality of Service in Multimedia

Communications via the Use of Filters”, Internal Report No. MPG-94-10 Department of

Computing, Lancaster University, Lancaster LA1 4YR. March 1993.

[Yeadon,94] Yeadon, N., Garcia, F., Campbell, A and D. Hutchison, (1994), “QoS

Adaptation and Flow Filtering in ATM Networks”, 2nd International Workshop on

Advanced Teleservices and High Speed Communication Architectures, Heidelberg,

Germany.

[Yeadon,95] Yeadon, N., “Continuous Media Filter Operations in Heterogenious

Networks”, PhD Thesis, Department of Computing, Lancaster University, Lancaster

LA1 4YR, UK, 1995 (in preparation).

[Yeadon,95] Yeadon, N., “X filters”, PhD Thesis, Department of Computing, Lancaster

University, Lancaster LA1 4YR, UK, December 1995, (in preparation).

 -231-

[Zhang,91] Zhang, H., and S. Keshav, "Comparison of Rate-Based Service Disciplines"

Proc. ACM SIGCOMM ‘91, Zurich , August 1992.

[Zhang,93] Zhang, L., Deering, S., Estrin, D., Shenker, S and D. Zappala, “RSVP: A

New Resource ReSerVation Protocol”, IEEE Network, September 1993.

[Zhang,94] Zhang, L., Symposium on Multimedia Networking, Columbia University,

USA.

[Zhang,95] Zhang, L., et. al., “RSVP Functional Specification”, Working Draft, draft-

ietf-rsvp-spec-07.ps.

[Zinky,95] Zinky, J., Bakken, D., R. Schantz, “Overview of Quality of Service for

Distributed Objects” , Technical Report, BBN Systems and Technologies, Cambridge,

1995.

[Zitterbart,92] Zitterbart, M., Stiller, B., and A Tantawy,“A Model for Flexible High-

Performance Communication Subsystems”, IEEE JSAC, May 1992.

 -232-

0

10

20

30

40

50

0 4 16 32 128 512 2048 8192 32768

ba
nd

w
id

th
 (

K
 c

el
l/s

ec
)

AAL5 SDU size in bytes

Maximum bandwidth

max transmission
max reception with loss

Figure 8.3 Comparison of Maximum Transmission and Reception Rates

 -233-

0

20

40

60

80

100

0 2 4 6 8 10

pe
rc

en
ta

ge
 lo

ss
 o

f f
ra

m
es

number of flows received

Loss distribution for flows received

frame loss with shaping
frame loss without shaping

Figure 8.4 METS Frame Loss Distribution with and without Traffic Shaping

 -234-

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

ba
nd

w
id

th
 (

ce
ll/

se
c)

time (sec)

Bandwidth for canyon.mpg at 24 fps at transmitter

BL+E1+E2
BL+E1

BL

Figure 8.5 Bandwidth Trace for Canyon Video at Server

 -235-

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

ba
nd

w
id

th
 (

ce
ll/

se
c)

time (sec)

canyon.mpg at 24 fps at receiver

BL+E1+E2
BL+E1

BL

Figure 8.6: Bandwidth Trace for Canyon Video at Client

 -236-

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

nu
m

be
r

of
 A

A
L5

 S
D

U
s

end-to-end delay (ms)

End-to-end delay distribution - 1 flow

end-to-end delay - average 4ms, max 19ms, min 2ms, sd 2ms

Figure 8.7 Per-Packet End-to-end Delay Distribution for 1 Flow

 -237-

0

100

200

300

400

500

0 10 20 30 40 50

nu
m

be
r

of
 A

A
L5

 S
D

U
s

end-to-end delay (ms)

End-to-end delay distribution - 6 flows

end-to-end delay - average 7ms, max 40 ms, min 2ms, sd 2ms

Figure 8.8: Per-Packet End-to-end Delay Distribution for 6 Flows

 -238-

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

de
la

y
(m

s)

number of flows received

Transport end-to-end delay distribution for flows received

average end-to-end delay
max end-to-end delay

Figure 8.9 End-to-end Delay Distribution

 -239-

0

20

40

60

80

100

120

0 2 4 6 8 10

de
la

y
(m

s)

number of flows received

Decode and display delay distribution for flows received

average frame decode time
average frame display time

Figure 8.10: Decode and Display Delay Distribution

 -240-

0

5

10

15

20

0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 fr

am
es

 r
ec

ei
ve

d

time(ms)

GOP playout time calculation distribution - 1 flow at 24 fps

arrival time curve
playout time curve

gop playout point calculation

Table 8.11 Arrival and Playout Time Distribution

 -241-

1000

1010

1020

1030

1040

1050

1060

42000 42500 43000 43500 44000

nu
m

be
r

of
 fr

am
es

 r
ec

ei
ve

d

time(ms)

Partial arrival and playout time curves - 5 flow at 24 fps

arrival time curve
playout time curve

Figure 8.12 Arrival and Playout Time Distribution

 -242-

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

ba
nd

w
id

th
 (

ce
ll/

se
c)

time (sec)

DQM Adaptive Service - 3 flows at receiver

flight flow BL
canyon flow BL

canyon flow BL+E1
canyon flow BL+E1+E2

Lougher flow BL
adapt to higher resolution

adapt to lower resoltion

Figure 8.13: DQM Adaptive Service Scenario

