
CS 10:
Problem solving via Object Oriented

Programming

Info Retrieval
Dartmouth CS10 Winter 2025

2

ADT Overview

List

Description Keep items
stored in
order by
index

Common use • Grow to
hold any
number of
items

Implementation
options

• Linked list
• Growing

array

Java provided • LinkedList
• ArrayList

3

ADT Overview

List (Binary) Tree

Description Keep items
stored in
order by
index

Keep hierarchical
relationship
between nodes

Common use • Grow to
hold any
number of
items

• Find items
quickly by Key

• BST generally
faster than List

Implementation
options

• Linked list
• Growing

array

• BinaryTree
• BST
• 2-3-4
• Red-Black

Java provided • LinkedList
• ArrayList

4

ADT Overview

List (Binary) Tree Set

Description Keep items
stored in
order by
index

Keep hierarchical
relationship
between nodes

Keep an
unordered
set of objects

Common use • Grow to
hold any
number of
items

• Find items
quickly by Key

• BST generally
faster than List

• Prevent
duplicates

Implementation
options

• Linked list
• Growing

array

• BinaryTree
• BST
• 2-3-4
• Red-Black

• List
• Tree
• Hash table

Java provided • LinkedList
• ArrayList

• TreeSet
• HashSet

5

ADT Overview

List (Binary) Tree Set Map

Description Keep items
stored in
order by
index

Keep hierarchical
relationship
between nodes

Keep an
unordered
set of objects

Keep a set of
Key/Value
pairs

Common use • Grow to
hold any
number of
items

• Find items
quickly by Key

• BST generally
faster than List

• Prevent
duplicates

• Find items
quickly by
Key

Implementation
options

• Linked list
• Growing

array

• BinaryTree
• BST
• 2-3-4
• Red-Black

• List
• Tree
• Hash table

• List
• Tree
• Hash table

Java provided • LinkedList
• ArrayList

• TreeSet
• HashSet

• TreeMap
• HashMap

6

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

Key points:
1. Sets are an unordered collection of items

like the mathematical notion of a set
2. Sets prevent duplicates
3. Can be implemented with trees (Java

provides a TreeSet)

7

Sets are an unordered collection of items
without duplicates
Set ADT
• Model for mathematical definition of a Set
• Like a List, but:

• Logically unordered (no ith item, can’t set/get by index)
• No duplicates allowed

• Operations:
• add(E e) – adds e to Set if not already present
• contains(E e) – returns true if e in Set, else false
• remove(E e) – removes e from Set
• size() – returns number of elements in Set
• isEmpty() – true if no elements in Set, else false
• Iterator<E> iterator() – returns iterator over Set

8

Sets start out empty

Set

Initial state

isEmpty: True
size: 0

9

First item added will always create a new
entry in the Set (item can’t be a duplicate)

Set isEmpty: False
size: 1

1

add(1)

10

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 2

27

add(27)

1

11

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 3

27

add(6)

1

6

12

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 4

27

add(12)

1

6

12

13

Can think of adding items to Set like adding
items to “Bag of items” – no item ordering

Set isEmpty: False
size: 5

27

add(15)

1

6

12

15

14

Adding an item that is already in the Set
does not change the Set

Set isEmpty: False
size: 5

27

add(6)

1

6

12

15

6 already in Set
No change

15

Items can be removed

Set isEmpty: False
size: 5

27

remove(1)

1

6

12

15

16

Items can be removed

Set isEmpty: False
size: 4

27

remove(1)

6

12

15

1 removed
size reduced

17

Can also check to see if item is in Set

Set isEmpty: False
size: 4

27

contains(12)

6

12

15

True

18

Can also check to see if item is in Set

Set isEmpty: False
size: 4

27

contains(13)

6

12

15

False

19

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a tree

20

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a tree

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

21

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a tree

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

contains(e) O(h) • Search for node until found or hit leaf
• Might have to search longest path
• Can’t be more than h+1 checks

22

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a tree

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

contains(e) O(h) • Search for node until found or hit leaf
• Might have to search longest path
• Can’t be more than h+1 checks

remove(e) O(h) • Traverse tree to find element, then delete it

23

Trees are one way to implement the Set
ADT

Sets implemented with Trees
• Could implement as a List, but linear search time
• Trees are a natural way to think about implementation
• If the Set is implemented with a tree

• Soon we will see another, more efficient way to
implement a Set using a hash table

Operation Run-time Notes

add(e) O(h) • Search for node until found or hit leaf
• If not found, add new leaf (if found do nothing)
• Might have to add node on longest path
• Can’t be more than h+1 checks

contains(e) O(h) • Search for node until found or hit leaf
• Might have to search longest path
• Can’t be more than h+1 checks

remove(e) O(h) • Traverse tree to find element, then delete it

24

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

Set <String> • Add each word in
text to Set

• Duplicates not
maintained

25

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Set <String>
Pretend

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

26

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Set <String>
Pretend
that

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

27

Can use a Set to easily identify the unique
words in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Set <String>
Pretend
that
this
string
was
loaded
…

• “that” seen again
• Already in Set, so Set

does not change
• At the end the Set

will contain all the
unique words in the
text

Pseudocode
• Create Set with String as

element
• Loop over each word in text
• Add to Set
• Print Set when done

28

UniqueWords.java: Use a Set to easily
identify the unique words in a body of text

Large amount of text simulates webpage

split() makes an array
with entry for each
word (including
duplicates)

Java has Set implementation
based on Red/Black Tree
Implements Set interface
Set elements are Strings hereAdd all words to Set, discarding duplicates

No duplicate words
Print calls toString on TreeSet class

Why is output alphabetical?
toString does In-order tree traversal!

29

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

Key points:
1. Maps look items up by Key and return Value
2. Python programmers, think dictionaries
3. Can be implemented with trees (Java provides a

TreeMap)

30

Map ADT associates Keys with Values

Map ADT
• Key is used to look up a Value (ex., student ID finds student record)
• Python programmers can think of Maps as Dictionaries
• Value could be an object (e.g., a person object or student record)
• Duplicate Values allowed, but not duplicate Keys
Operations:

• containsKey(K key) – true if key in Map, else false
• containsValue(V value) – true if one or more entries have value
• get(K key) – returns value for specified key or null otherwise
• put(K key, V value) – store key/value in Map; overwrite existing

value if key found (NOTE: no add operation in Map ADT)
• remove(K key) – removes key from Map and returns value
• keySet() – returns Set of Keys in Map (which has iterator)
• size() – returns number of elements in Map
• isEmpty() – true if no elements in Map, else false

31

Like Sets, Maps initially start out empty

Map

Key <StudentID> Value <Student Name>

isEmpty: True
size: 0

32

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 1

put(123, “Charlie”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

33

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 2

put(987, “Alice”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Alice

34

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 3

put(456, “Bob”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Alice

456 Bob

35

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 3

put(456, “Bob”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Alice

456 Bob

36

Items are adding to a Map using
put(Key,Value)

isEmpty: False
size: 3

put(456, “Bob”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Alice

456 Bob

• NOTE: Keys are not necessarily kept in order
• Implementation details left to the designer
• Today we use a tree, but we will discuss another

option next class

37

If an item already exits, put(Key,Value) will
update the Value for that Key

isEmpty: False
size: 3

put(987, “Ally”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Alice

456 Bob

38

If an item already exits, put(Key,Value) will
update the Value for that Key

isEmpty: False
size: 3

put(987, “Ally”)

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Ally

456 Bob

put overwrites Value if item with Key is already in Map

39

Can remove items by Key and get Value for
that Key (or null if Key not found)

isEmpty: False
size: 3

remove(987) => “Ally”

Map

Key <StudentID> Value <Student Name>

123 Charlie

987 Ally

456 Bob

Removes item with Key and returns Value

40

Can remove items by Key and get Value for
that Key (or null if Key not found)

isEmpty: False
size: 2

remove(987) => null

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

Returns null if Key not found
Does not throw Exception

41

keyset() returns a Set of Keys in the Map

isEmpty: False
size: 2

keyset() => Set {123, 456}

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

Set has an iterator which can be used to iterate over all Keys in Map

42

get(Key) returns the Value for the Key (or
null if Key not found)

isEmpty: False
size: 2

get(456) => “Bob”

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

43

get(Key) returns the Value for the Key (or
null if Key not found)

isEmpty: False
size: 2

get(987) => null

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

Returns null if Key not found
Does not throw Exception

44

containsKey(Key) returns True if Key in
Map, False otherwise

isEmpty: False
size: 2

containsKey(123) => True

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

45

containsKey(Key) returns True if Key in
Map, False otherwise

isEmpty: False
size: 2

containsKey(987) => False

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

46

containsValue(Value) returns True if Value
in Map, False otherwise

isEmpty: False
size: 2

containsValue(“Bob”) => True

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

47

containsValue(Value) returns True if Value
in Map, False otherwise

isEmpty: False
size: 2

containsValue(“Alice”) => False

Map

Key <StudentID> Value <Student Name>

123 Charlie

456 Bob

48

Trees are one way to implement the Map
ADT
Maps implemented with Trees
• Could implement as a List, but linear search time
• Like Sets, Trees are natural way to think about Map implementation
• Problem: no easy way to implement containsValue() because Tree searches for

Keys not Values (but containsKey() is easy!)
• Could search entire Tree for Value

• Problem: linear time

• Idea: keep a Set of values, update on each put and then search Set
• Problem: the same Value could be stored with different keys, so if delete

Key from Map, can’t necessarily delete Value from Set

• Better idea: keep a second Tree with Values as Keys and counts of each Value
• When adding a Value, increment its count in the second Tree
• When deleting a Key, decrement Value count, delete Value in second Tree

if count goes to zero
• Now have O(h) time search for containsValue()
• Uses more memory, but has better speed

49

containsValue() keep two trees: trade
memory for speed

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

• Each node has Key and Value
• Duplicate Values allowed,

duplicate Keys not allowed
• Easy to do containsKey(key)

• Search Tree for key
• Return false if hit leaf and

key not found, else true

• Each node has Value and count of
how many times Value in Map

• Easy to do containsValue(value)
• Search Tree for value
• Return false if hit leaf and value

not found, else true
• Approach trades memory for speed

50

On put(key,value), add Key/Value to Tree,
increment count (if needed)

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

put(987, “Bob”)

987
Bob

51

On put(key,value), add Key/Value to Tree,
increment count (if needed)

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

put(987, “Bob”)

987
Bob

Increment
count

52

On put(key,value), add Key/Value to Tree,
increment count (if needed)

123
Bob

56
Alice

456
Charlie

Bob
2

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

put(987, “Bob”)

987
Bob

Increment
count

53

On remove(key), delete Key/Value and
decrement count

123
Bob

56
Alice

456
Charlie

Bob
2

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(987)

987
Bob

54

On remove(key), delete Key/Value and
decrement count

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(987)

• Know there is still one
“Bob” in the Tree

• Don’t delete node “Bob”
from this tree

55

On remove(key), delete Key/Value and
decrement count

123
Bob

56
Alice

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(56)

Remove “Alice”

56

On remove(key), delete Key/Value and
decrement count

123
Bob

456
Charlie

Bob
1

Alice
1

Charlie
1

Tree with Key and Value Tree with Value and count

remove(56)

Because count goes to 0,
remove “Alice” here too

Must also update counts if
a put() replaces a value Key point: trade memory for speed!

57

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)

• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map

Key <String> Value <Integer>

Pretend 1

58

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)

• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map

Key <String> Value <Integer>

Pretend 1

that 1

59

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)

• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map

Key <String> Value <Integer>

Pretend 1

that 1

this 1

60

Can use a Map to count word occurrences
in a body of text

"Pretend that this string was loaded from a web page. We won't go to all that
trouble here. This string contains multiple words. And multiple copies of multiple
words. And multiple words with multiple copies. It is to be used as a test to
demonstrate how sets work in removing redundancy by keeping only one copy of
each thing. Is it very very redundant in having more than one copy of some words?”

Text from which to identify unique words

Pseudocode
• Create Map with String Key and

Integer Value
• Loop over each word in text
• If Map contains(word)

• Increment count Value
• Else put(word) with Value 1

• Print Map when done

Map

Key <String> Value <Integer>

Pretend 1

that 2

this 1

…

61

UniqueWordCounts.java: Use Map to count
word occurrences in a body of text

Large amount of text simulates webpage
Split into words (aka tokens)

Java has Map based on Trees
Implements Map interface

String Key, Integer Value
Loop over
all words

Update
word
counts

We have seen this word before,
increments Value for this Key

Have not seen this word before, put() into
Map with a value of 1 for word Key

Printing Map calls toString() on TreeMap class

Check if word seen previously

62

Maps can also contain Objects such as a
List as their Value

Map

Key<String> Value <List <Integer>>

Pretend head 0 \

that head 1 15 \

this head 2 18 \

…

• Track position where each word appears (first word is at index 0)
• Word may appear in multiple positions (e.g., 7th and 41st index)
• Need a way to track many items for each word (word is Key in Map)
• Use Map with a List as the Value instead of Object representation of a

primitive type (e.g., Integer)
• Map will hold many Lists, one List for each Key
• Here each List element is Integer, represents index where word found

Values as objects is a
powerful concept indeed!

63

UniqueWordPositions.java: Maps can also
contain Objects such as a List as their Value

Create Map with String as Key and List of
Integers as Value

• If Map has this word as a Key then add()
position where word found to List

• get() returns Value which is a List here

• Create a new List if we haven’t seen
this word before

• add() word to new List
• Then put(word, List) into Map

Loop over
all words

Update
word
positions

Check if word seen previously

64

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

Key points:
1. Java provides a FileReader class for reading files
2. Java provides a Scanner class for reading from the

keyboard

65

UniqueWordPositionsFile.java: Read words
from a file instead of hard-coded String

• Load String page from a file
• Rest of the code is the same as

UniqueWordsPosition.java

BufferedReader can read from
a file on disk

• NOTE: Throws exception
• What would happen if file not found?
• Here would pass exception to caller

 (may end execution)

Append each line from file onto
String strDon’t forget to close file

66

A scanner can be used to read input from
keyboard

Declare Scanner to read
from keyboard

Parses input to match assigned
type (e.g., read input as a
String with nextLine())
Execute pauses until user
presses Enter key

Parse input as an integer with
nextInt()

67

Agenda

1. Set ADT

2. Map ADT

3. Reading from file/keyboard

4. Search

68

Search.java: Make different data structures
to help answer questions

Hamlet

Julius Caesar

King Lear

Macbeth

Midsummer

Othello

Romeo & Juliet

Tempest

Shakespeare works Key <String>
filename

Value Map<<String>,<Integer>>
word count

hamlet.txt forbear 1

the 1,150

…

juliusCaesar.txt the 606

Key <String>
filename

Value <Integer>
number words

hamlet.txt 32,831

juliusCaesar.txt 21,183

Key <String>
word

Value <Integer>
total count

forbear 6

forsooth 5

the 5,716

Key <String>
word

Value <Integer>
number files

forbear 3

forsooth 3

the 8

Read

file2WordCounts
• Use filename

as Key
• Store how

many times
each word
appears in file

• Map of Maps!numWords
• Map filename to

number of words in file

numFiles: # of files word is in

totalCounts: How many
total times word appears

69

Demo: Search.java uses Scanner and data
structures to answer questions

Type a word to see how many times it appears in each file
• Love
• Forbear
• Forsooth
• Audience suggestion

n to get n most common words
• Try top 10 words with # 10, then # 100
• Try bottom 10 words with # -10, then # -100

Can restrict to just a single file with # n (e.g., # 10 hamlet.txt)

Search multiple words, does an AND

Play around on your own

70

Key points

1. Sets are an unordered collection of items like the mathematical
notion of a set

2. Sets prevent duplicates
3. Can be implemented with trees (Java provides a TreeSet)
4. Maps look items up by Key and return Value
5. Python programmers, think dictionaries
6. Can be implemented with trees (Java provides a TreeMap)
7. Java provides a FileReader class for reading files
8. Java provides a Scanner class for reading from the keyboard

	Slide 1
	Slide 2: ADT Overview
	Slide 3: ADT Overview
	Slide 4: ADT Overview
	Slide 5: ADT Overview
	Slide 6: Agenda
	Slide 7: Sets are an unordered collection of items without duplicates
	Slide 8: Sets start out empty
	Slide 9: First item added will always create a new entry in the Set (item can’t be a duplicate)
	Slide 10: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 11: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 12: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 13: Can think of adding items to Set like adding items to “Bag of items” – no item ordering
	Slide 14: Adding an item that is already in the Set does not change the Set
	Slide 15: Items can be removed
	Slide 16: Items can be removed
	Slide 17: Can also check to see if item is in Set
	Slide 18: Can also check to see if item is in Set
	Slide 19: Trees are one way to implement the Set ADT
	Slide 20: Trees are one way to implement the Set ADT
	Slide 21: Trees are one way to implement the Set ADT
	Slide 22: Trees are one way to implement the Set ADT
	Slide 23: Trees are one way to implement the Set ADT
	Slide 24: Can use a Set to easily identify the unique words in a body of text
	Slide 25: Can use a Set to easily identify the unique words in a body of text
	Slide 26: Can use a Set to easily identify the unique words in a body of text
	Slide 27: Can use a Set to easily identify the unique words in a body of text
	Slide 28: UniqueWords.java: Use a Set to easily identify the unique words in a body of text
	Slide 29: Agenda
	Slide 30: Map ADT associates Keys with Values
	Slide 31: Like Sets, Maps initially start out empty
	Slide 32: Items are adding to a Map using put(Key,Value)
	Slide 33: Items are adding to a Map using put(Key,Value)
	Slide 34: Items are adding to a Map using put(Key,Value)
	Slide 35: Items are adding to a Map using put(Key,Value)
	Slide 36: Items are adding to a Map using put(Key,Value)
	Slide 37: If an item already exits, put(Key,Value) will update the Value for that Key
	Slide 38: If an item already exits, put(Key,Value) will update the Value for that Key
	Slide 39: Can remove items by Key and get Value for that Key (or null if Key not found)
	Slide 40: Can remove items by Key and get Value for that Key (or null if Key not found)
	Slide 41: keyset() returns a Set of Keys in the Map
	Slide 42: get(Key) returns the Value for the Key (or null if Key not found)
	Slide 43: get(Key) returns the Value for the Key (or null if Key not found)
	Slide 44: containsKey(Key) returns True if Key in Map, False otherwise
	Slide 45: containsKey(Key) returns True if Key in Map, False otherwise
	Slide 46: containsValue(Value) returns True if Value in Map, False otherwise
	Slide 47: containsValue(Value) returns True if Value in Map, False otherwise
	Slide 48: Trees are one way to implement the Map ADT
	Slide 49: containsValue() keep two trees: trade memory for speed
	Slide 50: On put(key,value), add Key/Value to Tree, increment count (if needed)
	Slide 51: On put(key,value), add Key/Value to Tree, increment count (if needed)
	Slide 52: On put(key,value), add Key/Value to Tree, increment count (if needed)
	Slide 53: On remove(key), delete Key/Value and decrement count
	Slide 54: On remove(key), delete Key/Value and decrement count
	Slide 55: On remove(key), delete Key/Value and decrement count
	Slide 56: On remove(key), delete Key/Value and decrement count
	Slide 57: Can use a Map to count word occurrences in a body of text
	Slide 58: Can use a Map to count word occurrences in a body of text
	Slide 59: Can use a Map to count word occurrences in a body of text
	Slide 60: Can use a Map to count word occurrences in a body of text
	Slide 61: UniqueWordCounts.java: Use Map to count word occurrences in a body of text
	Slide 62: Maps can also contain Objects such as a List as their Value
	Slide 63: UniqueWordPositions.java: Maps can also contain Objects such as a List as their Value
	Slide 64: Agenda
	Slide 65: UniqueWordPositionsFile.java: Read words from a file instead of hard-coded String
	Slide 66: A scanner can be used to read input from keyboard
	Slide 67: Agenda
	Slide 68: Search.java: Make different data structures to help answer questions
	Slide 69: Demo: Search.java uses Scanner and data structures to answer questions
	Slide 70: Key points

