CS 10:

Problem solving via Object Oriented
Programming

Graph Traversals

» 1. Depth first search (DFS)

2. Breadth first search (BFS)

3. Examples from last class and today

Graph traversals are useful to answer

guestions about relationships

Some Graph traversals uses

Uses are often around reachability

Computing path from vertex u to vertex v

Given start vertex s on Graph g, compute a path with the
minimum number of edges between s and all other vertices (or
report no such path exists)

Testing whether G is fully connected (e.g., all vertices reachable)

Ildentifying cycles in G (or reporting no cycle exists)

Today’s examples have re few cycles (cycles next class) .

Depth First Search (DFS) uses a stack to

explore as if in a maze

Goal: compute path from
start to goal (or to all
other nodes)

DFS basic idea

e Keep going until you
can’t go any further,
then back track

* Relies on a Stack
(implicit or explicit) to
keep track of where
you’ve been

Graph structure from http://stackoverflow.com/questions/687731/breadth-first-vs-depth-first

Some of you did Depth First Search on

Problem Set 1

RegionFinder pseudo code

Loop over all the pixels
If a pixel 1s unvisited and of the correct color
Start a new region
Keep track of pixels need to be visited, 1nitially just one
As long as there's some pixel that needs to be visited
Get one to visit
Add 1t to the region
Mark 1t as visited
Loop over all its neighbors
If the neighbor is of the correct color
Add it to the list of pixels to be visited
If the region 1is big enough to be worth keeping, do so

Some of you did Depth First Search on

Problem Set 1

RegionFinder pseudo code

Loop over all the pixels
If a pixel 1s unvisited and of the correct color
Start a new region
Keep track of pixels need to be visited, 1nitially just one
As long as there's some pixel that needs to be visited
Get one to visit
Add 1t to the region
Mark 1t as visited
Loop over all its neighbors
If the neighbor is of the correct color
Add it to the list of pixels to be wvisited
If the regif 1s big enough to be worth keeping, do so

If you added to end of list...

Some of you did Depth First Search on

Problem Set 1

RegionFinder pseudo code

Loop over all the pixels
If a pixel 1s unvisited and of the correct color
Start a new region
Keep track of pixels need to be visited, 1nitially just one
As long as there's some pixel that needs to be visited

Get one to visit _ : :
Add it to the region And if you get a pixel from end

Mark it as visited of list, you implemented a stack

Loop over all its neighbors
If the neighbor is of the correct color
Add it to the list of pixels to be wvisited
If the regif 1s big enough to be worth keeping, do so

If you added to end of list...

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

10

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty: w\isit” the
u = stack.pop/()
1if !u.visited node
u.visited = frue

(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(A), mark visited
Stack

11

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
1if !u.visited
u.visited = true
(do something while here)
for v € u.adjacent

if Mv.visited
tack.push (v)

Push unvisited adjacent - what method would we use
on our AdjacencyMapGraph?
Stack » graph.outNieghbors(u)
t * Order pushed onto stack
Goal @ @ @ depends on order of nodes
from outNeighbors iterator
12

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

- — » Order nodes
visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
1if !u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(B), mark visited
Stack

T 066

13

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

- — » Order nodes
visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
1if !u.visited
u.visited = true
(do something while here)
» for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (F, but not A)
Stack

T 066

14

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

_ - — » Order nodes
o visited
DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(F), mark visited
Stack

T 066

15

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

_ - — » Order nodes
o ., visited
DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
» for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (H, but not B)
Stack

T 0006

16

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop ()
if 'u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(H), mark visited
Stack

T 066

17

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Nothing to push, back up by popping C
Stack

T 066

18

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop()
if 'u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(C), mark visited
Stack

T o6

19

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop()
if 'u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Nothing to push, back up by popping D
Stack

T o6

20

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop ()
if 'u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(D), mark visited
Stack

T ©

21

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

3 4 - - » Ordernodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
» for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (G, but not A)
Stack

T o6

22

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(G), mark visited

23

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
» for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (I, but not D)
Stack

T o0

24

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop()
if 'u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(l), mark visited

25

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

3 4 - — » Order nodes

———~ ’——~
~

visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop ()
if 'u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Nothing to push, back up by popping E

26

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

3 4 - — » Order nodes
visited
DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
» u = stack.pop()
1if !u.visited

u.visited = true

(do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(E), mark visited
Stack

27

Depth First Search (DFS) finds a path

between start and other nodes (if exists)

3 4 - O.rc.jer nodes
- ~ " o visited

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop/()
if 'u.visited
u.visited = true
(do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Found goal
Stack

Goal

28

After DFS, we can find a path from the start

node to all other nodes in the Graph
Discovery edges

e Edges that lead to unvisited nodes called discovery edges
e Discovery edges form a tree on the graph (root, no cycles)
e Can traverse from start to goal on tree (if goal reachable)
e Can tell us which nodes are not reachable from start (not
on path formed by discovery edges)

With DFS, path not guaranteed to be shortest path!

Back, cross, and forward edges

* Edges that lead to previously discovered nodes

* Back edges lead to ancestor nodes, forward edges to
descendants, cross edges to non-ancestor or descendant

* Back edges indicate presence of a cycle in the Graph

e Today’s focus on graphs without cycles

29

To find path from start to goal, keep track

of previous node as nodes are “discovered”

Path from start to goal

1. Do DFS from start Path Atol

* When node discovered,
record previous node

* Could keep Map with
node as Key and
previous as Value

2. After DFS complete, find
path using Map

* Begin at goal node

t * Track backward on Map
until find start node

* Will find a path if it
exists, but not
necessarily the shortest
path (wait for BFS)

Null

O M OO | > | > > >

- » Order nodes
visited

30

To find path from start to goal, keep track

of previous node as nodes are “discovered

Path from start to goal
1. Do DFS from start Path A to |
* When node discovered,
record previous node

A Null
Could keep Map with . A
node as Key and c A
previous as Value
2. After DFS complete, find D A
path using Map E A
Begin at goal node F B
Track backward on Map | G D
until find start node H F
 Will find a path if it | G
exists, but not
- - » Ordernodes necessarily the shortest Path

visited Gl

path (wait for BFS)

31

To find path from start to goal, keep track

of previous node as nodes are “discovered

Path from start to goal
1. Do DFS from start Path A to |
* When node discovered,
record previous node

A Null
Could keep Map with . A
node as Key and c A
previous as Value
2. After DFS complete, find D A
path using Map E A
Begin at goal node F B
Track backward on Map | G D
until find start node H F
* Will find a path if it | G
exists, but not
- - » Ordernodes necessarily the shortest Path

isi D,G,|
visited path (wait for BFS)

32

To find path from start to goal, keep track

of previous node as nodes are “discovered

Path from start to goal
1. Do DFS from start Path A to |
* When node discovered,
record previous node

A Null
Could keep Map with . A
node as Key and c A
previous as Value
2. After DFS complete, find D A
path using Map E A
Begin at goal node F B
Track backward on Map | G D
until find start node H F
* Will find a path if it | G
exists, but not
- - » Ordernodes necessarily the shortest Path

isi A,D,G,|
visited path (wait for BFS)

33

To find path from start to goal, keep track

of previous node as nodes are “discovered

Goal
Found path, but not .

necessarily shortest path

- » Order nodes
visited

After DFS from start can
find a path from start to
any other reachable node

Path from start to goal

. Do DFS from start Path A to |
When node discovered,
record previous node A Null
Could keep Map with . A
node as Key and c A
previous as Value

. After DFS complete, find D A
path using Map E A
Begin at goal node F B
Track backward on Map | G D
until find start node H F
Will find a path if it | G
exists, but not
necessarily the shortest Path

A,D,G,|

path (wait for BFS) .

Could we start from node other than A? No!

GraphTraversal.java: DFS code

17 public class GraphTraversal<V,E> {

18

public Map<V,V> backTrack; //keep track of prior vertex when v

J¥*

* Constructor. Initialize backTrack to new HashMap.

When running DFS (or BFS), keep track

*/ . .
blic GraphTroversal() { of prior vertex when a vertex is
backTrack = new HashMap<V,V>(); discovered
}
. Map Key is current vertex, Value is prior
* Depth First Search vertex
* @param G -- graph to search
* @param start -- starting vertex
*/

public void DFSCAdjacencyMapGraph<V,E> G, V start) {

}

System.out.println("\nDepth First Search tr . — o
backTrack = new HashMap<V,V>(); //initialize backTrack DFS glven Graph G and start vertex

backTrack.put(start, null); //load start node with null pa ° 1cl 1
Set<V> visited = new HashSet<V>(); //Set to track which ve Use Set to traCk VISItEd vertices

Stack<V> stack = new Stack<V>(); //stack to implement DFS e Use Stack to track vertices to visit

stack.push(start); //push start vertex * Follow pseudo code from previous
while (!stack.isEmpty()) { //loop until no more vertices .
V u = stack.pop(); //get most recent vertex slides

if (lvisited.contains(u)) { //if not already visited

visited.add(u); //add to visited Set Add vertex to backTrack when
for (V v : G.outNeighbors(u)) { //loop over o

if (lvisited.contains(v)) { //if n discovered

stack.push(v); //push pop=et Sted neighbor H :

backTrack puttv, v: Mee thet thievere = Only discovered vertices are added,
) } non-reachable vertices not added to

+ After DFS can get from start to any backTrack

reachable node in Graph using backTrack

35

DFS run time is O(n+m)

Run time
* Assume graph with n nodes and m edges

e Visit each node at most one time due to visited indicator
 Examine each edge at most one time

* Run-time complexity is O(n+m)

36

After DFS (or BFS) findPath() finds a path

from start to end if it exists

GraphTraversal.java Make sure DFS or BFS has been previously
run from start vertex

public List<V> findPath(V start, V end) {
ffcheck that DF5 or BFS have already been rug from start
if (backTrack.isEmpty() || !'backTrack.containsKey(start) ||
(backTrack.containsKey(start) &% backTrack.get(start) != null)) {
System.out.println{"Run DFS or BFS on " + start + " before trying to find a path");
return new ArrayList<V=();

¥ Make sure end vertex

System.out.println("Path from " + start + " to " + end);
//make sure end vertex in backTrack reachable
if (!backTrack.containsKey(end)) {

System.out.println("\tNo path found");
return new ArrayList<V=();

}
ffstart from end vertex and work backward to start vertex
List<V> path = new LinkedList<V>(); //this will hold the path from start to end vertex

V current = end; //start at end vertex
fflogp Trom end vertex back to start vertex

while (current != null) {

S path.add(index: @,current);
current = backTrack.get{current); //geT

15 vertex to front of arraylist path

dex that discovered fhis vgrie
' Loopbackward from

}
System.out.printinipath); end to start (parent null)
return path; . .

} * Run time performance? * Add new vertices to

* Dependent on length of front of path

path from start to end * Return path when done *’

1. Depth first search (DFS)

» 2. Breadth first search (BFS)

3. Examples from last class and today

38

Breadth First Search (BFS) finds shortest

path between start and other nodes

Goal: compute path from start
to goal (or to all other nodes)

BFS basic idea
* Explore outward in “ripples”

* Look at all nodes 1 step away,
then all nodes 2 steps away...

* Relies on a Queue (implicit or
explicit) implementation

 Path from s to any other
vertex is shortest

39

Some of you did Breadth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel is unvisited and of the correct color
Start a new region
Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited
Get one to visit
Add it to the region
Mark 1t as visited
Loop over all its neighbors
If the neighbor is of the correct color
Add it to the list of pixels to be visited
If the region 1s big enough to be worth keeping, do so

40

Some of you did Breadth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel is unvisited and of the correct color
Start a new region
Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited
Get one to visit
Add it to the region
Mark 1t as visited
Loop over all its neighbors
If the neighbor is of the correct color
Add it to the list of pixels to be visited
If the regit 1s big enough to be worth keeping, do so

If you added to end of list...

41

Some of you did Breadth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel is unvisited and of the correct color
Start a new region
Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited

Get one to visit _ : :
Add it to the region And if you get a pixel from front

Mark it as visited of list, you implemented a Queue

Loop over all its neighbors
If the neighbor is of the correct color
Add it to the list of pixels to be visited
If the regT 1s big enough to be worth keeping, do so

If you added to end of list...

42

Breadth First Search (BFS) finds shortest

path between start and other nodes

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

43

Breadth First Search (BFS) finds shortest

path between start and other nodes

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

enqueue(A)

Queue

44

Breadth First Search (BFS) finds shortest

path between start and other nodes

enqueue(A)

Queue

O

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

45

Breadth First Search (BFS) finds shortest

path between start and other nodes

“Visit” node u

BFS algorithm

enqueue (s) //sta
s.visited = tr
repeat until A Tind goal vertex or

node

gqueue empi#:
u =/AOequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(A), visit A

Queue

46

Breadth First Search (BFS) finds shortest

path between start and other nodes

“Visit” node u

BFS algorithm

enqueue (s) //sta
s.visited = tr
repeat until A Tind goal vertex or

node

queue empi:
u =/Adequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

enqueue unvisited adjacent

Queue

T ooo00

47

Breadth First Search (BFS) finds shortest

path between start and other nodes

- - » Ordernodes
visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(B), enqueue unvisited adjacent F (not A)

Queue

T ooo00

48

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
visited
BFS algorithm
enqueue (s) //start node

s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(C), enqueue unvisited adjacent (none)

Queue

T ooo0

49

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
visited
BFS algorithm
enqueue (s) //start node

s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(D), enqueue unvisited adjacent G (not A)

Queue

T oo0

50

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
visited
BFS algorithm
enqueue (s) //start node

s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(E), enqueue unvisited adjacent (none)

Queue

T oo

51

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
visited
BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

Found goal! Can stop now

Queue

T oo

52

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
visited
BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !'v.visited
v.visited = true
enqueue (V)

Keep going to further illustrate BFS process

Queue

T oo

53

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
visited
BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !'v.visited
v.visited = true
enqueue (V)

Notice that all nodes 1 step

Queue
t away are visited before any

Goal O O node 2 steps away is visited

54

Breadth First Search (BFS) finds shortest

path between start and other nodes

6 - — » Order nodes
7S visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(F), enqueue unvisited adjacent H

Queue

T oo

55

Breadth First Search (BFS) finds shortest

path between start and other nodes

6 - — » Order nodes
7S visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(G), enqueue unvisited adjacent |

Queue

T oo

56

Breadth First Search (BFS) finds shortest

path between start and other nodes

6 - — » Order nodes
7S visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(G), enqueue unvisited adjacent |

Queue Notice that all nodes 2 steps

t O O away are visited before any

node 3 steps away is visited

57

Breadth First Search (BFS) finds shortest

path between start and other nodes

6 8 - — » Order nodes
7T i visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(H), enqueue unvisited adjacent (none)

Queue

T o

58

Breadth First Search (BFS) finds shortest

path between start and other nodes

6 8 - Order nodes
7S - = visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
» u = dequeque ()
(do something here)
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (V)

dequeue(l), enqueue unvisited adjacent (none)

Queue

59

Breadth First Search (BFS) finds shortest

path between start and other nodes

- — » Order nodes
bl bt visited

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
gqueue empty:
u = dequeque ()
(do something here)
for v € u.adjacent
if !'v.visited
v.visited = true
enqueue (V)

All reachable nodes from start explored

Queue

60

Node discovery tells us something about

the graph
Discovery edges
e Edges that lead to unvisited nodes called discovery edges
* Discovery edges form a tree on the graph (root, no cycles)
e Can traverse from start to goal on tree (if goal reachable)
* Can tell us which nodes are not reachable (not on path

formed by discovery edges)
Path guaranteed to have smallest number of edges

Can track how we got to node to find shortest path
 Keep track of parent vertex

* Parent of each vertex is vertex that discovered it
 Parentis unique because we don’t visit vertices twice

61

To find path from start to goal, keep track

of previous node as nodes are “discovered”

6 __ 8 Path from start to goal

1. Do BFS from start Path Ato E

* When node discovered,
record previous node

* Could keep Map with
node as Key and
previous as Value

2. After BFS complete, find
path on Map

* Begin at goal node

* Track backward on Map
until find start node

 Will find shortest path
if it exists

Null

A
B
C
D
E
F
G
H
|

O M OO | > | > > >

Goal

62
= = 2 Order nodes visited

To find path from start to goal, keep track

of previous node as nodes are “discovered”

6 __ 8 Path from start to goal

1. Do BFS from start Path AtoE

* When node discovered,
record previous node

A Null

* Could keep Map with . A
node as Key and c A

previous as Value
2. After BFS complete, find D A
path on Map E A
* Begin at goal node F B
* Track backward on Map G D
Found shortest path until find start node H F
 Will find shortest path || G

After BFS from start can e)

find shortest path from if it exists Path
Goal start to any other AE

reachable node
= = 2 Order nodes visited

63

BFS run-time complexity is O(n+m)

Run time
* Assume graph with n nodes and m edges

* Visit each node at most one time due to visited indicator
* Visit each edge at most one time
* Run-time complexity O(n+m)

e Useful for the Kevin Bacon game (PS-4)!

64

GraphTraversal.java: BFS code

GraphTraversal.java * When running BFS, keep track of prior
vertex when a vertex is discovered
* backTrack Map Key is current vertex,

60= public void BFS(AdjacencyMapGraph<V,E> G, V start) { Value IS prior (parent) vertex
6l System.out.println("\nBreadth First Search from " + start);
62 backTrack = new HashMap<V,V>(); //inilalize backTrack

63 backTrack.put(start, null); //load stant vertex with null parent

64 Set<V> visited = new HashSet<V>(); //Sef\ to track which vertices have already been visited
65 Queue<V> queue = new LinkedList<V>(); //dueue to implement BFS

66

67 queue.add(start); //enqueue start vertex

68 visited.add(start); //add start to visited Skt

69 while (!queue.isEmpty()) { //loop until no moke vertices

70 V u = queue.remove(); //dequeue

71 for (V v : G.outNeighbors(u)) { //loop over\out neighbors

72 if (!visited.contains(v)) { //if neighboN not visited, then neighbor is discovered
73 visited.add(v); //add neighbor to vis\ted Set

74 queue.add(v); //enqueue neighbor

75 backTrack.put(v, u); //save that this v&rtex was discovered from prior vertex
o) ¥ BFS — given Graph G and start vertex
;g X } e Use Set to track visited vertices

~~ Use Queue to track which vertices to visit
* Follow pseudo code
 Add vertex to backTrack when discovered

* Use same findPath() method
65

1. Depth first search (DFS)
2. Breadth first search (BFS)

» 3. Examples from last class and today

66

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113= public static void main(String[] args) {
114 //set up graph from class introducing Graphs
115 GraphTraversal<String,String> GT = new GraphTraversal<String,String>(); f] [j
116 AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>(); rnen
117 g.insertVertex("Alice"); AI' ’
118 g.insertVertex("Bob"); ce
119 g.insertVertex("Charlie™"); create gra ph - B{Jb
120 g.insertVertex("Dartmouth™); v
121 g.insertVertex("Elvis"); ‘:_l-]."'i E.-"’ "F"E"d E'.‘:.
122 g.insertDirected("Alice", "Dartmouth", "follower"); N - _ﬁ
123 g.insertDirected("Bob", "Dartmouth", "follower™); P] % .,.E,‘l
124 g.insertDirected("Charlie”, "Dartmouth", "follower"); -l:}.) Eu,"‘-
125 g.insertDirected("Elvis", "Dartmouth", "follower"); -~ #i
126 g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge
127 g.insertDirected("Alice", "Elvis", "friend"); // not symmetric, directed edge! ‘{juqiif [)EirtrT1(]th}1 ~
128 g.insertDirected("Charlie"”, "Elvis", "follower™"); 'E-—d ﬂu}?
129 o .
130 //run DFS from Alice * Run DFS with start=Alice . \%@P
131 GT.DFSCg, "Alice"); . . Elvis
132 //'F'Lr"ld path fr‘omustﬁlrt to end“) ° Flnd L‘Paths from Allce Eha[lie
133 GT.findPath("Bob", "Dartmouth"); //DFS wasn't run from Bob, should reject this
134 GT.findPath("ALi@R", "Dartmouth™); follower
135 GT.findPath("Alick", "Charlie");
136 GT.findPath("Alicq", "Alice");
137
138 //run BFS
139 GT.BFS(g,"Alice™);
140 H
141 //find path from start to end Allce Nu”
142 GT.findPath("Alice",{Dartmouth");
143 GT.findPath("Alice", Charlie"); E; t) /\I'
144 (0) Ice
{f] Problems @ Javadeo [}, Declaration [Gonsole 52 %5 Debug &7 Explessions &) Error Log 2° Call Hierarchy h I
<terminated> ava lion] /Library/Javs k1.8.0_112.jdk/Contents/Home/bin/java (Feb 12, 2018, 4:31:06 PM) .
UCPLUIl 1T LI DL JCul il TTVIl ALLLCT D E
Run DFS or BFS on Bob before tryingfto find a path artmOUt VIS
Path from Alice to Dartmouth‘;\‘
[Alice, Elvis, Dartmouth] 1 (") ”) 1 1
[Alice, Elvis, Dartmouth] findPath(“Bob”, “Dartmouth Elvis Alice

No path found
Path from Alice to Alice DFS nOt run frOm BOb
[Alice] o

DFS was run from Alice

Breadth First Search from Alice
Path fron mtice tobartmuth S0 o not do this search (check findPath code) -

Path from Alice to Charlie
No path found

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113= public static void main(String[] args) {

114 //set up graph from class introducing Graphs

115 GraphTraversal<String,String> GT = new GraphTraversal<String,String>(); fri!3i1[j

116 AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>();

117 g.insertVertex("Alice"); %

118 g.insertVertex("Bob");

119 g.insertVertex("Charlie™"); create gra ph B{Jb

120 g.insertVertex("Dartmouth™); v

121 g.insertVertex("Elvis"); f"E" d E'.""

122 g.insertDirected("Alice", "Dartmouth", "follower"); _ﬁ

123 g.insertDirected("Bob", "Dartmouth", "follower™); “E}

124 g.insertDirected("Charlie”, "Dartmouth", "follower"); Eu,"‘-

125 g.insertDirected("Elvis", "Dartmouth", "follower"); #i

126 g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge

127 g.insertDirected("Alice", "Elvis", "friend™); // not symmetric, directed edge! Hrtmﬂuth P

128 g.insertDirected("Charlie"”, "Elvis", "follower™"); ---______* ﬂu}?

129 o .

130 //run DFS from Alice ® Run DFS Wlth Sta rt=A|ICE / \%@

131 GT.DFS(g, "Alice™); . . Elvis a

D e e oy, ors EING paths from Alice Charlie
. s ; s ject this

134 GT.findPath("Alice", "Dartmouth™); fk)ll{]\ﬂff}f

135 GT.findPath("AligW', "Charlie");

136 GT.findPath("Alicq", "Alice");

137

138 //run BFS

139 GT.BFS(g,"Alice™);

140 H

141 //find path from stdrt to end Allce Nu”

142 GT.findPath("Alice",{Dartmouth");

143 GT.findPath("Alice", \Charlie"); BOb Allce

144

[Problems @ Javadoc [G) Declaration |) Console 2 % Debug € Exflessions] Error Log &* Call Hierarchy

<terminated> Java lion] /Library/Javs 1.8.0_112.jdk/Contents/Home/binsjava (Feb 12, 2018, 4:31:08 PM] .

UCpui 1L oL ;Cul il ||u||;yr\|.|.\.c ! ! ! ! Dartmouth EIVIS

Run DFS or BFS on Bob before trying\to find a path

Path from Alice to Dartmouth “ ” o« ”

[Alice, Elvis, Dartmouth] (H) H H

Wice, Ewvis, nartnouth] B findPath(“Alice”, “Dartmouth”) finds path | Elvis Alice
No path found

Path from Alice to Alice AIiCE'>EIViS'>Da rtmouth

[Alice]

oo Pathyes, but not shortest path

Path from Alice to Dartmouth Ghortest is Alice->Dartmouth -

[Alice, Dartmouth]
Path from Alice to Charlie
No path found

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113= public static void main(String[] args) {

114 //set up graph from class introducing Graphs

115 GraphTraversal<String,String> GT = new GraphTraversal<String,String>(); ﬁ,iend

116 AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>();

117 g.insertVertex("Alice"); Ar -]

118 g.insertVertex("Bob");

119 g.insertVertex("Charlie™"); create gra ph e L = B{Jb
120 g.insertVertex("Dartmouth™); v

121 g.insertVertex("Elvis"); ;?’ E.-"’ f"E" d E'.""
122 g.insertDirected("Alice", "Dartmouth", "follower"); N - _ﬁ
123 g.insertDirected("Bob", "Dartmouth", "follower™); P] % .,.E,‘l
124 g.insertDirected("Charlie”, "Dartmouth", "follower"); -l:}.) Eu,"‘-
125 g.insertDirected("Elvis", "Dartmouth", "follower"); -~ “'-.

126 g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge

127 g.insertDirected("Alice", "Elvis", "friend™); // not symmetric, directed edge! 1| w-E;l' Dai"tmﬂuth P

128 g.insertDirected("Charlie"”, "Elvis", "follower™"); i{ili-:‘j______* ﬂu}?

129 o o

130 //run DFS. from Alice * Run DFS with start=Alice \%@
131 GT.DFS(g, "Alice™); . . Elvis a
132 //find path from start toend ® Find LHaths from Alice < Charlie
133 GT.findPath("Bob", "Dartmouth"); //DFS wasn't run from Bob, should reject this

134 GT.findPath("Alice", "Dartmouth™); fﬂl |‘DWET

135 GT.findPath("Alice", "Charlie");

136 GT.findPath("Aljge", "Alice");

137

138 //run BFS

139 GT.BFS(g,"Alice"};

140 .

141 //find path from §tart to end Allce Nu”
142 GT.findPath("Alicd', "Dartmouth™);

143 GT.findPath("Alicel, "Charlie"); .
142 Bob Alice

[Problems @ Javadoc [G) Declaration | B Console 82 | % Debug Expressions &) Error Log & Call Hierarchy

<terminateds [Java ion] ALibrary/Jave ines/jdk1.8.0_112.jdk/Contents/Home/bin/java (Feb 12, 2018, 4:31:06 PM)

UCPUIT | LI DL JCUl Wil 11 Ulll MLLVC

Run DFS or BFS on Bob before tryihg to find a path

Path from Alice to Dartmouth

[Alice, Elvis, Dartmouth]

Path from Alice to Charlie
No path found

X S~ . e . .
P oM Atice to Alice Alice can’t reach Charlie in this graph
Breadth First Search from Alice Charlie iS nOt in baCkTI'aCk

Path from Alice to Dartmouth
[Alice, Dartmouth] 69
Path from Alice to Charlie

No path found

Dartmouth Elvis

Elvis Alice

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113= public static void main(String[] args) {

114 //set up graph from class introducing Graphs

115 GraphTraversal<String,String> GT = new GraphTraversal<String,String>();

116 AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>();
117 g.insertVertex("Alice");

118 g.insertVertex("Bob");

119 g.insertVertex("Charlie™"); create gra ph

120 g.insertVertex("Dartmouth™);

121 g.insertVertex("Elvis");

122 g.insertDirected("Alice", "Dartmouth", "follower");

123 g.insertDirected("Bob", "Dartmouth", "follower™);

124 g.insertDirected("Charlie”, "Dartmouth", "follower");

125 g.insertDirected("Elvis", "Dartmouth", "follower");

126 g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge
127 g.insertDirected("Alice", "Elvis", "friend"); // not symmetric, directed edge!
128 g.insertDirected("Charlie"”, "Elvis", "follower™");

129 o .
130 //run DFS from Alice ® Run DFS Wlth Start=A|ICE
131 GT.DFS(g,"Alice"); . .

132 //find path from start toend ® Find LPaths from Alice
133 GT.findPath("Bob", "Dartmouth"); //DFS wasn't run from Bob, should reject this
134 GT.findPath("Alice", "Dartmouth™);

135 GT.findPath("Alice", "Charlie");

136 GT.findPath("Alice","Alice");

137

138 //run BFS

139 GT.BFS(g,"Alice"};

140

141 //find path from §tart to end

142 GT.findPath("Alicq", "Dartmouth");

143 GT.findPath("Alicey, "Charlie");

144

[Problems @ Javadoc [G) Declaration | B Console 82 | % Debug

<terminateds GraphTraversal [Java ion] /Library/Jav
UCPLUIT 1T LI DL JCul Gl 1Tl ALLLwc

Run DFS or BFS on Bob before trying to find a path
Path from Alice to Dartmouth
[Alice, Elvis, Dartmouth]
Path from Alice to Charlie
No path found

path from Alice ro Mlice €= Allice can reach herself

Expressions @] Error Log &* Call Hierarchy
1.8.0_112.jdk/Contents/Home/binfjava (Feb 12, 2018, 4:31:06 PM)

Breadth First Search from Alice
Path from Alice to Dartmouth
[Alice, Dartmouth]
Path from Alice to Charlie

No path found

friend
»

Alice Bab

€

;-3? < . friend &
S/ % ¢
Q L5 qé;h

Dartmouth ;

‘\q‘?%ﬂr

Charlie

folower

-d-"‘-_-d-dak

Elvis

follower

Null

Alice

Alice
Bob
Dartmouth Elvis

Elvis Alice

70

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113= public static void main(String[] args) {

114 //set up graph from class introducing Graphs

115 GraphTraversal<String,String> GT = new GraphTraversal<String,String>(); ffi!3i1[ﬂ

116 AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>();

117 g.insertVertex("Alice"); %

118 g.insertVertex("Bob"); hIiCE Bﬂb
119 g.insertVertex("Charlie™"); L =

120 g.insertVertex("Dartmouth™); v

121 g.insertVertex("Elvis"); ;?’ E.-"’ f"E" d E'.""
122 g.insertDirected("Alice", "Dartmouth", "follower"); N - _ﬁ
123 g.insertDirected("Bob", "Dartmouth", "follower™); P] %‘ .,.E,‘l
124 g.insertDirected("Charlie”, "Dartmouth", "follower"); -l:}.) Eu,"‘-
125 g.insertDirected("Elvis", "Dartmouth", "follower"); -~ #i

126 g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge

127 g.insertDirected("Alice", "Elvis", "friend™); // not symmetric, directed edge! wE;l' Daftmﬂuth P

128 g.insertDirected("Charlie"”, "Elvis", "follower™"); i{ilfl-?______* G'_..I":r

129

130 //run DFS from Alice \%ﬂ
131 GT.DFS(g, "Alice™); Elvis a
132 //find path from start to end £ ChilrliE
133 GT.findPath("Bob", "Dartmouth"); //DFS wasn't run from Bob, should reject this

134 GT.findPath("Alice", "Dartmouth™); fk)ll{]\ﬂff}f

135 GT.findPath("Alice", "Charlie");

136 GT.findPath("Alice","Alice");

b e Run BFS start=Alice
gg éé.BFS?;?"Alice"); &—

140

141 //find path from start to end
142 GT.findPath("Alice", "Dartmouth");
143 GT.findPath("Alice","Charlie");
144

[Problems @ Javadoc [G) Declaration | B Console 52 % Debug €7 Expressions] Error Log &* Call Hierarchy

<terminateds [Java ion] ALibrary/Jave 1.8.0_112 jdi/Contents/Home/binsjava (Feb 12, 2018, 4:31:06 PM)
UCPUIT | LI DL JCUl Wil 11 Ulll MLLVC

Run DFS or BFS on Bob before trying to find a path
Path from Alice to Dartmouth
[Alice, Elvis, Dartmouth]
Path from Alice to Charlie
No path found
Path from Alice to Alice
[Alice]

Breadth First Search from Alice
Path from Alice to Dartmouth
[Alice, Dartmouth] 71
Path from Alice to Charlie
No path found

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113e
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

public static void main(String[] args) {

//set up graph from class introducing Graphs
GraphTraversal<String,String> GT = new GraphTraversal<String,String>();
AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>();

g.insertVertex("Alice");

g.insertVertex("Bob");

g.insertVertex("Charlie™");

g.insertVertex("Dartmouth™);

g.insertVertex("Elvis");

g.insertDirected("Alice", "Dartmouth", "follower");

g.insertDirected("Bob", "Dartmouth", "follower™);
g.insertDirected("Charlie”, "Dartmouth", "follower");
g.insertDirected("Elvis", "Dartmouth", "follower");
g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge
g.insertDirected("Alice", "Elvis", "friend"); // not symmetric, directed edge!
g.insertDirected("Charlie"”, "Elvis", "follower™");

//run DFS from Alice

GT.DFS(g,"Alice");

//find path from start to end

GT.findPath("Bob", "Dartmouth"); //DFS wasn't run from Bob, should reject this
GT.findPath("Alice", "Dartmouth™);

GT.findPath("Alice", "Charlie");

GT.findPath("Alice","Alice");

* Run BFS start=Alice

//run BFS

GT.BFS(g,"Alice"); «—

//find path from start to end
GT.findPath("Alice", "Dartmouth");
GT.findPath("Alice","Charlie");

[Problems @ Javadoc [G) Declaration | B Console 52 % Debug €7 Expressions] Error Log &* Call Hierarchy

<terminateds GraphTraversal [Java ion] /Library/Jav

1.8.0_112 jdi/Contents/Home/binsjava (Feb 12, 2018, 4:31:06 PM)

UCPUIT | LI DL JCUl Wil 11 Ulll MLLVC

Run DFS or BFS on Bob before trying to find a path
Path from Alice to Dartmouth

[Alice, Elvis, Dartmouth]

Path from Alice to Charlie

No path found

Path from Alice to Alice

[Alice]

Breadth First Search from Alice
Path from Alice to Dartmouth
[Alice, Dartmouth]

Path from Alice to Charlie

No path found

friend
. >
Alice < Bab

;-3? < . friend &
S/ % ¢
Q L5 qé;h

Dartmouth

%,
T\%ﬂ
Elvis *
€

Charlie

follower

Alice Null
Bob Alice
Dartmouth Alice

Elvis Alice

72

GraphTraversal.java: DFS and BFS on graph

we looked at last class

113= public static void main(String[] args) {
114 //set up graph from class introducing Graphs
115 GraphTraversal<String,String> GT = new GraphTraversal<String,String>(); ﬁ,iend
116 AdjacencyMapGraph<String, String> g = new AdjacencyMapGraph<String,String>();
117 g.insertVertex("Alice"); -]
118 g.insertVertex("Bob"); hIiCE Bﬂb
119 g.insertVertex("Charlie™"); L =
120 g.insertVertex("Dartmouth™); v
121 g.insertVertex("Elvis"); ;?’ E.-"’ f"E" d E'.""
122 g.insertDirected("Alice", "Dartmouth", "follower"); N - _ﬁ
123 g.insertDirected("Bob", "Dartmouth", "follower™); P] % .,.E,‘l
124 g.insertDirected("Charlie”, "Dartmouth", "follower"); -l:}.) Eu,"‘-
125 g.insertDirected("Elvis", "Dartmouth", "follower"); -~ “'-.
126 g.insertUndirected("Alice", "Bob", "friend"); // symmetric, undirected edge
127 g.insertDirected("Alice", "Elvis", "friend™); // not symmetric, directed edge! 1| w-E;l' Dai"tmﬂuth P
128 g.insertDirected("Charlie"”, "Elvis", "follower™"); i{ili-:‘j______* ﬂu}?
129
130 //run DFS from Alice \%ﬂ
131 GT.DFS(g, "Alice™); Elvis a
132 //find path from start to end ChilrliE
133 GT.findPath("Bob", "Dartmouth"); //DFS wasn't run from Bob, should reject this
134 GT.findPath("Alice", "Dartmouth™); fﬂl |‘DWET
135 GT.findPath("Alice", "Charlie");
136 GT.findPath("Alice","Alice");
e P * Run BFS start=Alice
run BFS /
139 GT.BFS "Alice™); H H
140 (o Ateen; * Find paths from Alice Al Null
141 //find path from start to end Ice u
142 GT.findPath("Alice", "Dartmouth");
143 GT.findPath("Alice", "Charlie"); H
T et 5 Bob Alice

[Problems @ Javadoc [G) Declaration | B Console 52 % Debug €7 Expressions] Error Log &* Call Hierarchy

<terminateds [Java ion] ALibrary/Jave 1.8.0_112 jdi/Contents/Home/binsjava (Feb 12, 2018, 4:31:06 PM)

UCPUIT | LI DL JCUl Wil 11 Ulll MLLVC

Run DFS or BFS on Bob before trying to find a path

Path from Alice to Dartmouth

[Alice, Elvis, Dartmouth] 1

Path from Alice to Charlie BFS ElVIS
No path found

Path from Alice to Alice

[ALice] findPath(“Alice”, “Dartmouth”) finds shortest path
ot et Serch ron scokd” Alice->Dartmouth (DFS went through Elvis before Dartmouth)

Path from Alice to Dartmouth
[Alice, Dartmouth] 73
Path from Alice to Charlie

No path found

Dartmouth Alice

Alice

DFS on today’s graph

GraphTraversal.java

145 //set up graph from Graph Traversal class

146 AdjacencyMapGraph<String,String> g2 = new AdjacencyMapGraph<String,String>();

147 g2.insertVertex("A"); g2.insertVertex("B"); gZ2.insertVertex("C"); gZ.insertVertex("D"); DFS
148 g2.insertVertex("E"); g2.insertVertex("F"); g2.insertVertex("G"); g2.insertVertex("H"); gZ.insert

149 g2.insertUndirected("A", "B", "");

150 g2.insertUndirected("B", "F", ""); e Create graph

151 g2.insertUndirected("F", "H", "");

152 g2.insertUndirected("A", "C", ""); e Added extra edge

153 g2.insertUndirected("A", "D", ""); /\ Pd Il
154 g2.insertUndirected("D", "G", ""); u
155 g2.insertUndirected("G", "I", "");

156 g2.insertUndirected("A", "E", ""); E; F
157 g2.insertDirected("I", "H", ""); //directed edge not from clas

158

159 //run DFS from A and find path to H (: /\
160 GT.DFS(g2,"A"); °

161 GT._F:LndPath(nAn, n l); Run DFS from A A
162 ° : D

163 //run BFS from A and find path to H Flnd path A to B

164 GT.BFS(gz,"A"™);

165 GT.findPath("A", "B"); E A
166

167 }

168 F P1
169 }

170

Problems Javadoc Declaration) Console §2 ». Debug Expressions Error Log Call Hierarchy x & :E.;Eﬁ & G D
<terminated= GraphTraversal [Java ion] /Library/Java/JavaVir ves/jdi1.8.0_112 jdik/Contents/t /bin/java (Feb 12, 2018, 5:14:16 PM)
Depth First Search from A +1 I
Path from A to B
[A, D, G, I, H, F, B] | G

Breadth First Search from A
Path from A to B
[A, B]

74

DFS on today’s graph

GraphTraversal.java

145 //set up graph from Graph Traversal class

146 AdjacencyMapGraph<String,String> g2 = new AdjacencyMapGraph<String,String>();

147 g2.insertVertex("A"); g2.insertVertex("B"); gZ2.insertVertex("C"); gZ.insertVertex("D"); DFS
148 g2.insertVertex("E"); g2.insertVertex("F"); g2.insertVertex("G"); g2.insertVertex("H"); gZ.insert

149 g2.insertUndirected("A", "B", ""); h

150 g2.insertUndirected("B", "F", ""); e

151 g2.inser‘tUndir‘ected("F": "H": ""); Create grap

152 g2.insertUndirected("A", "C", ""); e

153 g2.insertUndirected("A", "D", ""); Added eXtra Edge ”
154 g2.insertUndirected("D", "G", ""); A NU
155 g2.insertUndirected("G", "I", "");

156 g2.insertUndirected("A", "E", ""); B F
157 g2.insertDirected("I", "H", ""); //directed edge not from clas

158

159 //run DFS from A and find path to H C A
160 GT.DFS(g2,"A"); °

161 GT._F:LndPath(nAn, 'WN Run DFS from A D A
162 H

163 //run BFS from A and find path to.H Flnd path A to B

164 GT.BFS(gz,"A"™);

165 GT.findPath("A", "B"); E A
166

167 }

168 F H
169 }

170

Problems: Javadoc Declaration E) Console 52 47 Debug &7 Expressions Error Log Call Hierarchy x& ZE.‘EE = G D
<terminated= GraphTraversal [Java ion] /Library/Java/JavaVir ves/jdi1.8.0_112 jdik/Contents/t /bin/java (Feb 12, 2018, 5:14:16 PM)
Depth First Search from A H I
Path from A to B . UR)) UD .
0,6 1, 4 F, 51 g DFS findPath(“A”, “B”) finds path, but not shortest path! I .
Breadth First Search from AA'>D'>G'>I'>H'>F'>B
Path from A to B
[A, B] Why?

DFS explores as in a maze, as far as it can go before backing up e

Here DFS popped D from Stack before it popped B and explored until B found

BFS on today’s graph

GraphTraversal.java
145 //set up graph from Graph Traversal class
146 AdjacencyMapGraph<String,String> g2 = new AdjacencyMapGraph<String,String>();
147 g2.insertVertex("A"); g2.insertVertex("B"); gZ2.insertVertex("C"); gZ.insertVertex("D"); BFS
148 g2.insertVertex("E"); g2.insertVertex("F"); g2.insertVertex("G"); g2.insertVertex("H"); gZ.insert
149 g2.insertUndirected("A", "B", "");
150 g2.insertUndirected("B", "F", "");
151 g2.insertUndirected("F", "H", "");
152 g2.insertUndirected("A", "C", "");
153 g2.insertUndirected("A", "D", "");
154 g2.insertUndirected("D", "G", ""); /\ hdljll
155 g2.insertUndirected("G", "I", "");
156 g2.insertUndirected("A", "E", ""); E; l\
157 g2.insertDirected("I", "H", ""); //directed edge not from clas
158
159 //run DFS from A and find path to H (: /\
160 GT.DFS(g2,"A");
161 GT.findPath("A", "B");
162 D A
163 //run BFS from A and find path to H
164 GT.BFS(gz,"A"™);
165 GT.findPath("A", "B"); E A
166 °
168 0
160 } * Find pathAto B
170
Problems Javadoc Declaration) Console §2 ». Debug Expressions Error Log Call Hierarchy x & :E.;Eﬁ & G D
<terminated= GraphTraversal [Java ion] /Library/Java/JavaVir ves/jdi1.8.0_112 jdik/Contents/t /bin/java (Feb 12, 2018, 5:14:16 PM)
Depth First Search from A +1 F
Path from A to B
[A, D, G, I, H, F, B] | G

Breadth First Search from A
Path from A to B
[A, B]

BFS on today’s graph

GraphTraversal.java
145 //set up graph from Graph Traversal class
146 AdjacencyMapGraph<String,String> g2 = new AdjacencyMapGraph<String,String>();
147 g2.insertVertex("A"); g2.insertVertex("B"); gZ2.insertVertex("C"); gZ.insertVertex("D"); BFS
148 g2.insertVertex("E"); g2.insertVertex("F"); g2.insertVertex("G"); g2.insertVertex("H"); gZ.insert
149 g2.insertUndirected("A", "B", "");
150 g2.insertUndirected("B", "F", "");
151 g2.insertUndirected("F", "H", "");
152 g2.insertUndirected("A", "C", "");
153 g2.insertUndirected("A", "D", "");
154 g2.insertUndirected("D", "G", ""); A NU”
155 g2.insertUndirected("G", "I", "");
156 g2.insertUndirected("A", "E", ""); B A
157 g2.insertDirected("I", "H", ""); //directed edge not from clas
158
159 //run DFS from A and find path to H C A
160 GT.DFS(g2,"A");
161 GT.findPath("A", "B");
162 D A
163 //run BFS from A and find path to H
164 GT.BFS(gz,"A"™);
165 GT.findPath("A", "B"); E A
166 °
168 0
160 } * Find pathAto B
170
Problems: Javadoc Declaration E) Console 52 47 Debug &7 Expressions Error Log Call Hierarchy x& ZE.‘EE = G D
<terminated= GraphTraversal [Java ion] /Library/Java/JavaVir ves/jdi1.8.0_112 jdik/Contents/t /bin/java (Feb 12, 2018, 5:14:16 PM)
Depth First Search from A H F
Path from A to B ° URD) U .
[A, D, G, I, H, F, B] BFS findPath(“A”, “B”) finds shortest path | G
Breadth First Search from A A->B
Path from A to B
[A, B] Why?

BFS explores outward in ripples .

78

	Slide 1
	Slide 2: Agenda
	Slide 3: Graph traversals are useful to answer questions about relationships
	Slide 4: Depth First Search (DFS) uses a stack to explore as if in a maze
	Slide 5: Some of you did Depth First Search on Problem Set 1
	Slide 6: Some of you did Depth First Search on Problem Set 1
	Slide 7: Some of you did Depth First Search on Problem Set 1
	Slide 8: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 9: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 10: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 11: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 12: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 13: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 14: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 15: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 16: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 17: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 18: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 19: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 20: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 21: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 22: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 23: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 24: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 25: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 26: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 27: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 28: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 29: After DFS, we can find a path from the start node to all other nodes in the Graph
	Slide 30: To find path from start to goal, keep track of previous node as nodes are “discovered”
	Slide 31: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 32: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 33: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 34: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 35: GraphTraversal.java: DFS code
	Slide 36: DFS run time is O(n+m)
	Slide 37: After DFS (or BFS) findPath() finds a path from start to end if it exists
	Slide 38: Agenda
	Slide 39: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 40: Some of you did Breadth First Search on Problem Set 1
	Slide 41: Some of you did Breadth First Search on Problem Set 1
	Slide 42: Some of you did Breadth First Search on Problem Set 1
	Slide 43: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 44: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 45: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 46: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 47: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 48: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 49: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 50: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 51: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 52: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 53: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 54: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 55: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 56: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 57: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 58: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 59: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 60: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 61: Node discovery tells us something about the graph
	Slide 62: To find path from start to goal, keep track of previous node as nodes are “discovered”
	Slide 63: To find path from start to goal, keep track of previous node as nodes are “discovered”
	Slide 64: BFS run-time complexity is O(n+m)
	Slide 65: GraphTraversal.java: BFS code
	Slide 66: Agenda
	Slide 67: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 68: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 69: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 70: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 71: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 72: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 73: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 74: DFS on today’s graph
	Slide 75: DFS on today’s graph
	Slide 76: BFS on today’s graph
	Slide 77: BFS on today’s graph
	Slide 78

