
CS 10:
Problem solving via Object Oriented

Programming

Graph Traversals
Dartmouth CS10 Winter 2025

2

Agenda

1. Depth first search (DFS)

2. Breadth first search (BFS)

3. Examples from last class and today

3

Graph traversals are useful to answer
questions about relationships
Some Graph traversals uses

• Uses are often around reachability

• Computing path from vertex u to vertex v

• Given start vertex s on Graph G, compute a path with the
minimum number of edges between s and all other vertices (or
report no such path exists)

• Testing whether G is fully connected (e.g., all vertices reachable)

• Identifying cycles in G (or reporting no cycle exists)

• Today’s examples have no few cycles (cycles next class)

4

Depth First Search (DFS) uses a stack to
explore as if in a maze

A

B

C

D

F

Start

Goal: compute path from
start to goal (or to all
other nodes)

DFS basic idea
• Keep going until you

can’t go any further,
then back track

• Relies on a Stack
(implicit or explicit) to
keep track of where
you’ve beenGoal

E

H

G I

Graph structure from http://stackoverflow.com/questions/687731/breadth-first-vs-depth-first

5

Some of you did Depth First Search on
Problem Set 1
RegionFinder pseudo code

Loop over all the pixels

 If a pixel is unvisited and of the correct color

 Start a new region

 Keep track of pixels need to be visited, initially just one

 As long as there's some pixel that needs to be visited

 Get one to visit

 Add it to the region

 Mark it as visited

 Loop over all its neighbors

 If the neighbor is of the correct color

 Add it to the list of pixels to be visited

 If the region is big enough to be worth keeping, do so

Loop over all the pixels

 If a pixel is unvisited and of the correct color

 Start a new region

 Keep track of pixels need to be visited, initially just one

 As long as there's some pixel that needs to be visited

 Get one to visit

 Add it to the region

 Mark it as visited

 Loop over all its neighbors

 If the neighbor is of the correct color

 Add it to the list of pixels to be visited

 If the region is big enough to be worth keeping, do so

6

Some of you did Depth First Search on
Problem Set 1
RegionFinder pseudo code

If you added to end of list…

7

Some of you did Depth First Search on
Problem Set 1
RegionFinder pseudo code

And if you get a pixel from end
of list, you implemented a stack

Loop over all the pixels

 If a pixel is unvisited and of the correct color

 Start a new region

 Keep track of pixels need to be visited, initially just one

 As long as there's some pixel that needs to be visited

 Get one to visit

 Add it to the region

 Mark it as visited

 Loop over all its neighbors

 If the neighbor is of the correct color

 Add it to the list of pixels to be visited

 If the region is big enough to be worth keeping, do so

If you added to end of list…

8

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

9

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

A

Push(A)

10

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

Pop(A)

11

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

Pop(A), mark visited

1
“Visit” the
node

12

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C B

Push unvisited adjacent

1

• What method would we use
on our AdjacencyMapGraph?

• graph.outNieghbors(u)
• Order pushed onto stack

depends on order of nodes
from outNeighbors iterator

13

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C

Pop(B), mark visited

2

1

Order nodes
visited

14

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C

Push unvisited adjacent (F, but not A)

2

F

1

Order nodes
visited

15

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C

Pop(F), mark visited

2

3

1

Order nodes
visited

16

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C

Push unvisited adjacent (H, but not B)

2

3

1

H

Order nodes
visited

17

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C

Pop(H), mark visited

2

3

1

4 Order nodes
visited

18

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D C

Nothing to push, back up by popping C

2

3

1

4 Order nodes
visited

19

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D

Pop(C), mark visited

2

3

1

4

5

Order nodes
visited

20

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E D

Nothing to push, back up by popping D

2

3

1

4 Order nodes
visited

5

21

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E

Pop(D), mark visited

2

3

1

4

6

Order nodes
visited

5

22

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E

Push unvisited adjacent (G, but not A)

2

3

1

4

G

Order nodes
visited

6

5

23

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E

Pop(G), mark visited

2

3

1

4

7

Order nodes
visited

6

5

24

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E

Push unvisited adjacent (I, but not D)

2

3

1

4

7

I

Order nodes
visited

6

5

25

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E

Pop(I), mark visited

2

3

1

4

7 8

Order nodes
visited

6

5

26

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

E

Nothing to push, back up by popping E

2

3

1

4

7 8

Order nodes
visited

6

5

27

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

Pop(E), mark visited

2

3

1

4

7 8

9

Order nodes
visited

6

5

28

Depth First Search (DFS) finds a path
between start and other nodes (if exists)

DFS algorithm
stack.push(s) //start node

repeat until find goal vertex or

stack empty:

 u = stack.pop()

 if !u.visited

 u.visited = true

 (do something while here)

 for v ∈ u.adjacent
 if !v.visited

 stack.push(v)

A

B

C

D

F

Start

Goal

E

H

G I

Stack

Found goal

2

3

1

4

7 8

Order nodes
visited

9

6

5

29

After DFS, we can find a path from the start
node to all other nodes in the Graph
Discovery edges
• Edges that lead to unvisited nodes called discovery edges
• Discovery edges form a tree on the graph (root, no cycles)
• Can traverse from start to goal on tree (if goal reachable)
• Can tell us which nodes are not reachable from start (not

on path formed by discovery edges)
• With DFS, path not guaranteed to be shortest path!

Back, cross, and forward edges
• Edges that lead to previously discovered nodes
• Back edges lead to ancestor nodes, forward edges to

descendants, cross edges to non-ancestor or descendant
• Back edges indicate presence of a cycle in the Graph
• Today’s focus on graphs without cycles

30

To find path from start to goal, keep track
of previous node as nodes are “discovered”

A

B

C

D

F

Start

GoalE

H

G I

2

3

1

4

7 8

Path from start to goal
1. Do DFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After DFS complete, find
path using Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find a path if it

exists, but not
necessarily the shortest
path (wait for BFS)

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to I

Order nodes
visited

9

6

5

31

To find path from start to goal, keep track
of previous node as nodes are “discovered

A

B

C

D

F

Start

E

H

G I

2

3

1

4

7 8

Path
G,I

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to I

Goal

Order nodes
visited

Path from start to goal
1. Do DFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After DFS complete, find
path using Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find a path if it

exists, but not
necessarily the shortest
path (wait for BFS)

9

6

5

32

To find path from start to goal, keep track
of previous node as nodes are “discovered

A

B

C

D

F

Start

E

H

G I

2

3

1

4

7 8

Path
D,G,I

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to I

Goal

Order nodes
visited

Path from start to goal
1. Do DFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After DFS complete, find
path using Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find a path if it

exists, but not
necessarily the shortest
path (wait for BFS)

9

6

5

33

To find path from start to goal, keep track
of previous node as nodes are “discovered

A

B

C

D

F

Start

E

H

G I

2

3

1

4

7 8

Path
A,D,G,I

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to I

Goal

Order nodes
visited

Path from start to goal
1. Do DFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After DFS complete, find
path using Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find a path if it

exists, but not
necessarily the shortest
path (wait for BFS)

9

6

5

34

To find path from start to goal, keep track
of previous node as nodes are “discovered

A

B

C

D

F

Start

E

H

G I

2

3

1

4

7 8

Found path, but not
necessarily shortest path

After DFS from start can
find a path from start to
any other reachable node

Path
A,D,G,I

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to I

Goal

Order nodes
visited

Could we start from node other than A? No!

Path from start to goal
1. Do DFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After DFS complete, find
path using Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find a path if it

exists, but not
necessarily the shortest
path (wait for BFS)

9

6

5

35

GraphTraversal.java: DFS code

• When running DFS (or BFS), keep track
of prior vertex when a vertex is
discovered

• Map Key is current vertex, Value is prior
vertex

DFS – given Graph G and start vertex
• Use Set to track visited vertices
• Use Stack to track vertices to visit
• Follow pseudo code from previous

slides
• Add vertex to backTrack when

discovered
• Only discovered vertices are added,

non-reachable vertices not added to
backTrackAfter DFS can get from start to any

reachable node in Graph using backTrack

36

DFS run time is O(n+m)

Run time
• Assume graph with n nodes and m edges

• Visit each node at most one time due to visited indicator

• Examine each edge at most one time

• Run-time complexity is O(n+m)

37

After DFS (or BFS) findPath() finds a path
from start to end if it exists

Make sure DFS or BFS has been previously
run from start vertex

Make sure end vertex
reachable

• Loop backward from
end to start (parent null)

• Add new vertices to
front of path

• Return path when done

• Run time performance?
• Dependent on length of

path from start to end

GraphTraversal.java

38

Agenda

1. Depth first search (DFS)

2. Breadth first search (BFS)

3. Examples from last class and today

39

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal: compute path from start
to goal (or to all other nodes)

BFS basic idea
• Explore outward in “ripples”

• Look at all nodes 1 step away,
then all nodes 2 steps away…

• Relies on a Queue (implicit or
explicit) implementation

• Path from s to any other
vertex is shortest

Goal

E

H

G I

40

Some of you did Breadth First Search on
Problem Set 1
RegionFinder

Loop over all the pixels

 If a pixel is unvisited and of the correct color

 Start a new region

 Keep track of pixels need to be visited, initially just one

 As long as there's some pixel that needs to be visited

 Get one to visit

 Add it to the region

 Mark it as visited

 Loop over all its neighbors

 If the neighbor is of the correct color

 Add it to the list of pixels to be visited

 If the region is big enough to be worth keeping, do so

Loop over all the pixels

 If a pixel is unvisited and of the correct color

 Start a new region

 Keep track of pixels need to be visited, initially just one

 As long as there's some pixel that needs to be visited

 Get one to visit

 Add it to the region

 Mark it as visited

 Loop over all its neighbors

 If the neighbor is of the correct color

 Add it to the list of pixels to be visited

 If the region is big enough to be worth keeping, do so

41

Some of you did Breadth First Search on
Problem Set 1
RegionFinder

If you added to end of list…

Loop over all the pixels

 If a pixel is unvisited and of the correct color

 Start a new region

 Keep track of pixels need to be visited, initially just one

 As long as there's some pixel that needs to be visited

 Get one to visit

 Add it to the region

 Mark it as visited

 Loop over all its neighbors

 If the neighbor is of the correct color

 Add it to the list of pixels to be visited

 If the region is big enough to be worth keeping, do so

42

Some of you did Breadth First Search on
Problem Set 1
RegionFinder

And if you get a pixel from front
of list, you implemented a Queue

If you added to end of list…

43

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

44

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

enqueue(A)

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

45

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

enqueue(A)

A

1

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

46

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(A), visit A

1

“Visit” node u

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

47

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

enqueue unvisited adjacent

B C D E

1

“Visit” node u

48

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(B), enqueue unvisited adjacent F (not A)

C D E F

2

1

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

49

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(C), enqueue unvisited adjacent (none)

D E F

2

1

3

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

50

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(D), enqueue unvisited adjacent G (not A)

E F G

2

1

4

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

3

51

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(E), enqueue unvisited adjacent (none)

F G

2

1

5

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

4

3

52

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

Found goal! Can stop now

F G

2

1

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

 5

4

3

53

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

Keep going to further illustrate BFS process

F G

2

1

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

 5

4

3

54

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue Notice that all nodes 1 step
away are visited before any
node 2 steps away is visitedF G

2

1

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

 5

4

3

55

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(F), enqueue unvisited adjacent H

G H

2

1

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

 5

4

3

6

56

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(G), enqueue unvisited adjacent I

H I

2

1

6

7

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

 5

4

3

57

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(G), enqueue unvisited adjacent I

H I

2

1

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

Notice that all nodes 2 steps
away are visited before any
node 3 steps away is visited

6

7

5

4

3

58

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(H), enqueue unvisited adjacent (none)

I

2

1

8 Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

6

7

5

4

3

59

Breadth First Search (BFS) finds shortest
path between start and other nodes

A

B

C

D

F

Start

Goal

E

H

G I

Queue

dequeue(I), enqueue unvisited adjacent (none)

2

1

9

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

86

7

5

4

3

60

Breadth First Search (BFS) finds shortest
path between start and other nodes

Queue

All reachable nodes from start explored

Order nodes
visited

BFS algorithm
enqueue(s) //start node

s.visited = true

repeat until find goal vertex or

queue empty:

 u = dequeque()

 (do something here)

 for v ∈ u.adjacent
 if !v.visited

 v.visited = true

 enqueue(v)

A

B

C

D

F

Start

Goal

E

H

G I

2

1

9

86

7

5

4

3

61

Node discovery tells us something about
the graph

Discovery edges
• Edges that lead to unvisited nodes called discovery edges
• Discovery edges form a tree on the graph (root, no cycles)
• Can traverse from start to goal on tree (if goal reachable)
• Can tell us which nodes are not reachable (not on path

formed by discovery edges)
• Path guaranteed to have smallest number of edges

Can track how we got to node to find shortest path
• Keep track of parent vertex
• Parent of each vertex is vertex that discovered it
• Parent is unique because we don’t visit vertices twice

62

To find path from start to goal, keep track
of previous node as nodes are “discovered”

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to E

Path from start to goal
1. Do BFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After BFS complete, find
path on Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find shortest path

if it exists

A

B

C

D

F

Start

Goal

E

H

G I

2

1

9

86

7

5

4

3

Order nodes visited

63

To find path from start to goal, keep track
of previous node as nodes are “discovered”

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

Path A to E

Path
A,E

Found shortest path

After BFS from start can
find shortest path from
start to any other
reachable node

Path from start to goal
1. Do BFS from start
• When node discovered,

record previous node
• Could keep Map with

node as Key and
previous as Value

2. After BFS complete, find
path on Map

• Begin at goal node
• Track backward on Map

until find start node
• Will find shortest path

if it exists

A

B

C

D

F

Start

Goal

E

H

G I

2

1

9

86

7

5

4

3

Order nodes visited

64

BFS run-time complexity is O(n+m)

Run time
• Assume graph with n nodes and m edges

• Visit each node at most one time due to visited indicator

• Visit each edge at most one time

• Run-time complexity O(n+m)

• Useful for the Kevin Bacon game (PS-4)!

65

GraphTraversal.java: BFS code
• When running BFS, keep track of prior

vertex when a vertex is discovered
• backTrack Map Key is current vertex,

Value is prior (parent) vertex

BFS – given Graph G and start vertex
• Use Set to track visited vertices
• Use Queue to track which vertices to visit
• Follow pseudo code
• Add vertex to backTrack when discovered
• Use same findPath() method

GraphTraversal.java

66

Agenda

1. Depth first search (DFS)

2. Breadth first search (BFS)

3. Examples from last class and today

• Run DFS with start=Alice
• Find paths from Alice

67

GraphTraversal.java: DFS and BFS on graph
we looked at last class

Create graph

findPath(“Bob”, “Dartmouth”)
DFS not run from Bob
DFS was run from Alice
So do not do this search (check findPath code)

Key Value

Alice Null

Bob Alice

Dartmouth Elvis

Elvis Alice

• Run DFS with start=Alice
• Find paths from Alice

68

GraphTraversal.java: DFS and BFS on graph
we looked at last class

Create graph

findPath(“Alice”, “Dartmouth”) finds path
Alice->Elvis->Dartmouth
Path yes, but not shortest path
Shortest is Alice->Dartmouth

Key Value

Alice Null

Bob Alice

Dartmouth Elvis

Elvis Alice

• Run DFS with start=Alice
• Find paths from Alice

69

GraphTraversal.java: DFS and BFS on graph
we looked at last class

Create graph

Alice can’t reach Charlie in this graph
Charlie is not in backTrack

Key Value

Alice Null

Bob Alice

Dartmouth Elvis

Elvis Alice

• Run DFS with start=Alice
• Find paths from Alice

70

GraphTraversal.java: DFS and BFS on graph
we looked at last class

Create graph

Alice can reach herself

Key Value

Alice Null

Bob Alice

Dartmouth Elvis

Elvis Alice

71

GraphTraversal.java: DFS and BFS on graph
we looked at last class

• Run BFS start=Alice

72

GraphTraversal.java: DFS and BFS on graph
we looked at last class

Key Value

Alice Null

Bob Alice

Dartmouth Alice

Elvis Alice

• Run BFS start=Alice

73

GraphTraversal.java: DFS and BFS on graph
we looked at last class

Key Value

Alice Null

Bob Alice

Dartmouth Alice

Elvis Alice
BFS
findPath(“Alice”, “Dartmouth”) finds shortest path
Alice->Dartmouth (DFS went through Elvis before Dartmouth)

• Run BFS start=Alice
• Find paths from Alice

• Run DFS from A
• Find path A to B

74

DFS on today’s graph

• Create graph
• Added extra edge

A

B

C

D

F

E

H

G I

Key Value

A Null

B F

C A

D A

E A

F H

G D

H I

I G

DFS

GraphTraversal.java

• Create graph
• Added extra edge

75

DFS on today’s graph

A

B

C

D

F

E

H

G I

GraphTraversal.java

Key Value

A Null

B F

C A

D A

E A

F H

G D

H I

I G

DFS

• Run DFS from A
• Find path A to B

DFS findPath(“A”, “B”) finds path, but not shortest path!
A->D->G->I->H->F->B
Why?
DFS explores as in a maze, as far as it can go before backing up
Here DFS popped D from Stack before it popped B and explored until B found

76

BFS on today’s graph

A

B

C

D

F

E

H

G I

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

BFS

GraphTraversal.java

• Run BFS
• Find path A to B

77

BFS on today’s graph

BFS findPath(“A”, “B”) finds shortest path
A->B
Why?
BFS explores outward in ripples

A

B

C

D

F

E

H

G I

Key Value

A Null

B A

C A

D A

E A

F B

G D

H F

I G

BFS

GraphTraversal.java

• Run BFS
• Find path A to B

78

	Slide 1
	Slide 2: Agenda
	Slide 3: Graph traversals are useful to answer questions about relationships
	Slide 4: Depth First Search (DFS) uses a stack to explore as if in a maze
	Slide 5: Some of you did Depth First Search on Problem Set 1
	Slide 6: Some of you did Depth First Search on Problem Set 1
	Slide 7: Some of you did Depth First Search on Problem Set 1
	Slide 8: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 9: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 10: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 11: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 12: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 13: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 14: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 15: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 16: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 17: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 18: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 19: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 20: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 21: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 22: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 23: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 24: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 25: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 26: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 27: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 28: Depth First Search (DFS) finds a path between start and other nodes (if exists)
	Slide 29: After DFS, we can find a path from the start node to all other nodes in the Graph
	Slide 30: To find path from start to goal, keep track of previous node as nodes are “discovered”
	Slide 31: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 32: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 33: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 34: To find path from start to goal, keep track of previous node as nodes are “discovered
	Slide 35: GraphTraversal.java: DFS code
	Slide 36: DFS run time is O(n+m)
	Slide 37: After DFS (or BFS) findPath() finds a path from start to end if it exists
	Slide 38: Agenda
	Slide 39: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 40: Some of you did Breadth First Search on Problem Set 1
	Slide 41: Some of you did Breadth First Search on Problem Set 1
	Slide 42: Some of you did Breadth First Search on Problem Set 1
	Slide 43: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 44: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 45: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 46: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 47: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 48: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 49: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 50: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 51: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 52: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 53: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 54: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 55: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 56: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 57: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 58: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 59: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 60: Breadth First Search (BFS) finds shortest path between start and other nodes
	Slide 61: Node discovery tells us something about the graph
	Slide 62: To find path from start to goal, keep track of previous node as nodes are “discovered”
	Slide 63: To find path from start to goal, keep track of previous node as nodes are “discovered”
	Slide 64: BFS run-time complexity is O(n+m)
	Slide 65: GraphTraversal.java: BFS code
	Slide 66: Agenda
	Slide 67: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 68: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 69: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 70: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 71: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 72: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 73: GraphTraversal.java: DFS and BFS on graph we looked at last class
	Slide 74: DFS on today’s graph
	Slide 75: DFS on today’s graph
	Slide 76: BFS on today’s graph
	Slide 77: BFS on today’s graph
	Slide 78

