CS 10:

Problem solving via Object Oriented
Programming

Pattern Matching



YEAH... IFYOU COULD JUST GO AHEAD AND

ADD PATTERN MATCHING AND/OR AN ML-

LIKE TYPE SYSTEM .




» 1. Pattern matching to validate input
 Regular expressions

 Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems



Pattern matching goal: ensure input passes

a validation check

Pattern matching process:
* Given some input (e.g., a series of characters)

* Also given a pattern that describes what
constitutes valid input
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 Then check to see if a particular input “passes’
validation check (or in other words, input
matches the pattern)



Sometimes it is useful to be able to detect

or require patterns

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjip@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

I A I A I
One or more One or Ends with one of a set
more .
characters predefined of values
characters
Followed Followed

by @ by . s


mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu

Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “a” matches “a”



Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “a” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl RZ



Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “a” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl RZ

Alternative: One or the other alel|i]lo]u matches any vowel

Ri | Ry



Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “@” matches “a@”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl RZ

Alternative: One or the other alel|i]lo]u matches any vowel

Ri | R;

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”

reference/extraction



Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “@” matches “a@”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl RZ

Alternative: One or the other alel|i]lo]u matches any vowel

Ri | R;

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”

reference/extraction

ou_n

Character classes  Alternative characters and [a-c] matches “a” or “b” or “c”, while
[c;-¢,] and [Ac;-¢,]  excluded characters [*a-c] matches any but abc
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Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “@” matches “a@”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl RZ

Alternative: One or the other alel|i]lo]u matches any vowel

Ri | R;

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”

reference/extraction

ou_n

Character classes  Alternative characters and [a-c] matches “a” or “b” or “c”, while
[c;-¢,] and [Ac;-¢,]  excluded characters [*a-c] matches any but abc

n u

| “cat”,

n u

Repetition: R* Matches 0 or more times “ca*t” matches “ct caat”
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Regular expressions (regex) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
 Can be really complex and messy, but there are basic patterns

Character Match a character “@” matches “a@”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl RZ

Alternative: One or the other alel|i]lo]u matches any vowel

Ri | R;

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”

reference/extraction

ou_n

Character classes  Alternative characters and [a-c] matches “a” or “b” or “c”, while

[c;-¢,] and [Ac;-¢,]  excluded characters [*a-c] matches any but abc
Repetition: R* Matches 0 or more times “ca*t” matches “ct”, “cat”, “caat”
Non-zero Matches 1 or more times “ca+t” matches “cat” or “caat” or

repetition: R+ “caaat”, but not “ct” L2



We can use regex to see if an email address

is valid

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjip@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

As a simple RegEx: [a-z.]+@[a-z.]* [a-z]+. (com | edu | org ...)

Check: This simple regex has some

tip@cs.dartmouth.edu -- valid  issues dealing with real email
Student.name -- invalid addresses



mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
mailto:tjp@cs.dartmouth.edu

Turns out a robust email address validator

Is quite complicated

(?:[a-z0-91#5%&'*+/=2"_{|}-]+(?:\.[a-z0-

OIHS%& *+/=27 “{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-
\x1fAx21\x23-\x5b\x5d-\x7f] | \\[\x01-\x09\x0b\x0c\x0e-
\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-20-9])?\.)+[a-z0-9](?:[a-
z0-9-]*[a-z0-9])? |\[(?:(?:25[0-5] | 2[0-4][0-9] | [01] ?[0-9][O-
9]1?)\.){3}(?:25[0-5]| 2[0-4][0-9] | [01]?[0-9][0-9]? | [a-z0-9-]*[a-zO-
9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f] | \\[\x01-
\x09\x0b\x0c\x0e-\x7f])+)\])

* Hard to understand what this does
 We can use a graph to make things
easier to understand

Source: IETF RFC2822 1



A Graph can implement the idea of a regex

Email addresses follow a pattern:
mailbox@domain.TLD
example: tip@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

A Graph can represent the pattern for email addresses .
Sample addresses can be easily verified if in correct form L


mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu

1. We can define a set of rules that must
be followed

2. We may be able to represent those
rules with a Graph

16



1. Pattern matching to validate input
 Regular expressions

» * Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems

17



We can model States as Vertices and

Transitions as Edges in a directed Graph

Finite Automata validating input Set of input symbols called
Begin at alphabet
Start Transition from A to B

Start

end States, non-double circle
States are invalid end States

if input 0, else to C 0,1 Double circle indicates valid

Operation:
* Begin at Start State
Stay in C * Read character of input

States as O, 1 regardless if * Follow graph according
Graph givenOor1 to input
Vertices e Continue until no more
input characters
\ Edges can loop back ° If at valid end State,
Edges as transitions to same vertex input valid, else invalid
between States based (“self loop”) What does this do?

* Accepts any input .

on input - -
starting with O



Finite Automata (FA) are formally defined

as 5-tuple of States, Transitions, and inputs

Finite Automata as 5-tuple (Q, 3, 6, q,, F)

FA = (Qr 2; 61 qor F)

 Q —finite set of States (vertices in graph)

* Y —complete set of possible input symbols (called the alphabet)

« & —transition function where 6: Q x > - Q/(given current State Q
and input symbol 3, transition to next State Q according to 6)

* (o —initial State; q, € Q (means q, is an element of Q)

 Fisasetof valid end States; F € Q (means F is a subset of Q)

We say FA “accepts” (validates) input A=a,0,a,...a, if sequence of
States R=r,r,r,...r, exists in Q such that:

* r,=q, //initial State is Start

* r,,=0(r,a,), fori=0,1, .., n-1 //input leads to next State

* r, €F //last Stateis an element of the valid end States



We can build FAs to validate or reject input

Accept any string that starts with 00

Handle any
remaining
Start Handle first O Handle second 0 O, 1
0
Define Start
State O, 1

!—Iano!le Handle any remaining
invalid invalid input

input on

first two Vertices with no escape

characters sometimes called a “trap” 0

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf



4

FAs can demonstrate “recent memory’

Accept any string that ends with 00 Handle any

remaining Os

Start Handle first O Handle second 0 0
0 0
A B
1 . 1

Define Start . o

State . an .e.any remaining
invalid input

Stay here if

inputis 1

Not a valid

end State

21

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf



Can split FA into pieces to demonstrate

“permanent memory”
Match first and last symbols

Stay in valid end State B if O,
else invalid State C

Start with 0, 1 1
must end with 0
Start 0 C
0
0 0
Start with 1, D
must end with 1
1

Stay in valid end State E if 1,
else invalid State D

22

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf



What do these FAs do?

0 ‘ O, 1 Input has at least one 0
@

0,1

Input has at most one 0

1
C Input starts and ends with 0

(and a single 0 counts)

23

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf



Finite Automata come in two flavors,

Deterministic and Nondeterministic

Deterministic Finite Nondeterministic Finite
Automaton (DFA) Automaton (NFA)
Start 0,1 Start 0
*G)
1
0,1
e Exactly one transition e May have 0, 1, or more
for each possible input choices for each transition
* No ambiguity * Unspecified inputs are invalid

 True if end in any valid State



Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

25



Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States
Key Input Paths

A 0 {B,C}
A 1 {B}
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Sometimes we cannot map from a State a

single next State

Input Paths
0 {B,C}

1 {B}
0 {A}
1 {E}
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Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States
Key Input Paths

{B,C}
{B}
{A}
{E}
{
{D}

O O W W > >
- O = O +—» O

28



Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Key Input Paths
A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

D 0 {B,D}

D 1 {}

29



Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

()
<

m m O O O O © @ >» > A

Input

- oo —r O = O + O +—» O

Paths
{B,C}
{B}
{A}
{E}

{}
{D}
{B,D}
{}

{}

{}
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In that case, must keep track of all possible
States

NFAs can have multiple next States

Input Possible
States

@ Start {A}
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In that case, must keep track of all possible
States

NFAs can have multiple next States

Input Possible
States
Start {A}

0 {B,C}

32



In that case, must keep track of all possible
States

NFAs can have multiple next States

Input Possible
States

Start {A}

0 {B,C}

1 {E,D}
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In that case, must keep track of all possible
States

NFAs can have multiple next States

S ) Input Possible
tart States
Start {A}
0 {B,C}
Multiple 1 {E,D}
possible end 0 {B,D}
States
If end now,
input is valid
because D is

valid end State

34



In that case, must keep track of all possible
States

NFAs can have multiple next States

Input Possible
States
Start {A}
0 {B,C}
1 {E,D}
0 {B,D}
1 {E} Still have valid

end State, if
input ends now,
return true

35



In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
States
Start {A}
0 {B,C}
1 {E,D}
0 {B,D}
1 {E} No valid States,
return false
0 {}

36



In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
States
Start {A}
0 {B,C}
1 {E,D}
0 {B,D}
1 {E} No valid States,
return false
0 {}
0 Key point: kept track of all possible

States as input processed
If any ending state is valid, then
accept input 37



One more practice before looking at code,
what does this NFA do?

Accepts any string with
embedded 00 or 11

38



DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18
19
20
21

22¢

23
24

25¢

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

String start; AGreseme—orty-ome=stortT-postton
Set<String> ends; //possibly multiple end states, hence the set in:
Map<String, Map<Character,String>> transitions; // state -> (charac

/**
* Constructs the DFA from the arrays, as specified in the overall
*/
DFA(String[] ss, String[] ts) {
ends = new TreeSet<String>Q);
transitions = new TreeMap<String, Map<Character,String>>();

// Parse states
for (String v : ss) {
String[] pieces = v.split(","); //pieces[@] = state name,
//look for start and end markers
if (pieces.length>1) {
if (pieces[1].equals("S™)) {
start = pieces[@];
1
else if (pieces[1].equals("E")) {
ends.add(pieces[@]);

1
1
}
°
// Parse transitions
for (String e : ts) { °

String[] pieces = e.split(","); //pieces[@] = starting fro

String from = pieces[@];

String to = pieces[1];

if (Itransitions.containsKey(from)) {
transitions.put(from, new TreeMap<Character,String>())

1

for (int i=2; i<pieces.length; i++) { //could be multiple -
transitions.get(from).put(pieces[i].charAt(@), to);

1

}

System.out.println("start:"+start);
System.out.println("end:"+ends);
System.out.println("transitions:"+transitions);

» Store start node (there will be only one)
» Store valid end states in Set (could be
multiple valid end States)
e Track Transitions with Map of Maps
* Key for outer Map is State
e Value for outer Map another Map
* Inner Map has Character as Key,
next State as Value
* So, given a State and a Character,
can look up next State

Parse States in String[] ss = {“A,S”,”B,E”,”C"}
States will be in form:
e <Char>, S indicates starting State (e.g.,
“A,S” means A is the Start)
* <Char>, E indicates ending State (e.g.,
“B,E” means B is an end State)
* <Char> indicates non-starting or ending
state (e.g., “C") 39



DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18
19
20
21

22¢

23
24

25¢

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

String start; //assume only one starting position
Set<String> ends; //possibly multiple end states, hence the set in:
Map<String, Map<Character,String>> transitions; // state -> (charac

/**
* Constructs the DFA from the arrays, as specified in the overall
*/
DFA(String[] ss, String[] ts) {
ends = new TreeSet<String>Q);
transitions = new TreeMap<String, Map<Character,String>>();

// Parse states
for (String v : ss) {
String[] pieces = v.split(","); //pieces[@] = state name,
//look for start and end markers
if (pieces.length>1) {
if (pieces[1].equals("S™)) {
start = pieces[@];
1
else if (pieces[1].equals("E")) {
ends.add(pieces[@]);

1

[
[}

}

°
// Parse transitions

for (String e : ts) {
String[] pieces = e.split(","); //pieces[@] = starting fro
String from = pieces[@];
String to = pieces[1];
if (Itransitions.containsKey(from)) {
transitions.put(from, new TreeMap<Character,String>()) °

1
for (int i=2; i<pieces.length; i++) { //could be multiple -
transitions.get(from).put(pieces[i].charAt(@), to);
1
}

System.out.println("start:"+start);
System.out.println("end:"+ends);
System.out.println("transitions:"+transitions);

Parse Transitions in String[] ts = {“A,B,0”...
Transition in form:

<Statel>,<State2>,<Char>,<Char>
Means transition from Statel to
State2 if see character <Char>

“A,B,0” means transition from State A
to State B if given Character 0

40



DFA.java creates Deterministic Finite

Automata

17 public class DFA {

18
19
20
21

22¢

23
24

25¢

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

String start; //assume only one starting position
Set<String> ends; //possibly multiple end states, hence the set in:
Map<String, Map<Character,String>> transitions; // state -> (charac

/**
* Constructs the DFA from the arrays, as spgcified in the overall
*/

DFA(String[] ss, String[] ts) {

ends = new TreeSet<String>Q);
transitions = new TreeMap<String, Map<Charakter,String>>();

// Parse states
for (String v : ss) {
String[] pieces = v.split(","); //pieces[@
//look for start and end markers
if (pieces.length>1) {
if (pieces[1].equals("S™)) {
start = pieces[@];

= state name,

1

else if (pieces[1].equals("E")) {
ends.add(pieces[@]);

}

}

// Parse transitions
for (String e : ts) {
String[] pieces = e.split(","); //pieces[@] = starting
String from = pieces[@];
String to = pieces[1];
if (Itransitions.containsKey(from)) {
transitions.put(from, new TreeMap<Character,String>())
1
for (int i=2; i<pieces.length; i++) { //could be multiple -
transitions.get(from).put(pieces[i].charAt(@), to);
1
}

System.out.println("start:"+start);
System.out.println("end:"+ends);
System.out.println("transitions:"+transitions);

Parse Transitions in String[] ts = {“A,B,0”...
Transition in form:

<Statel>,<State2>,<Char>,<Char>
Means transition from Statel to
State2 if see character <Char>

“A,B,0” means transition from State A
to State B if given Character 0

Add Transitions to Map called transitions

41



DFA.java creates Deterministic Finite

Automata

65= public boolean match(String s) {

66 String curr = start; // where we are now 011
67 for (int i=0; i<s.length(); i++) {
68 char ¢ = s.charAt(i);
69 if (!transitions.get(curr).containsKey(c)) {
70 System.out.println("This isn't a DFA! No transition from "+curr+" for
71 return false;
72 }
73 curr = transitions.get(curr).get(c); // take a step according to c
74 }
75 return ends.contains(curr); // did we end up in one of the desired final states? 01
76 } ’
77
78¢ Viul
79 * Helper method to test matching against a bunch of strings, printing the results
2? *;1, 4 test(Stringl] inoute { * Create 3 States:
= public void tes ring[] inputs
82 for (String s : inputs) e A (start), B (end), C
83 System.out.println(s + ":" + match(s)); oo
g1} * Create transitions between States based
85 :
86 public static void main(String[] args) { on mPUt A 0 B
87 String[] ss1 = { "A,S", "B,E", "C" }; .
88 Stl"'l.l"lg[:l tsl = { "A,B,@", "A,C,l", "BsBsG:l"s "C,C,@,l" }s TranSItlonS 1 C
89 DFA dfal = new DFA(ssl, tsl);
90 Map B |0 [B
91 String[] testsTl = { "@", "0@", "00000", "0010101" };
92 dfal.test(testsT1); 1 B
93 String[] testsFl1 = { "", "1", "1100110" };
94 dfal.test(testsF1); C 0 C
95 }
96 } 1 C 42




DFA.java creates Deterministic Finite

Automata

. , * Match test string s
65= public boolean match(String s) {

66 String curr = start; // where we are how Start at start (A) 0,1
67 for (int i=0; i<s.length(); i++) { .
s char ¢ = 5. charAt(i): * Follow transitions
69 if (!transitions.get(curr).containsKey(c)) {
70 System.out.println("This isn't a DFA! No transition from "+curr+" for
71 return false;
72 }
73 curr = transitions.get(curr).get(c); // take a step according to c
74 }
75 return ends.contains(curr); // did we end up in one of the desired final states? 01
76 } ’
77
78¢ /x*
79 * Helper method to test matching against a bunch of strings, printing the results
2? *;1, 4 test(Stringl] inoute { * Create 3 States:
= public void tes ring[] inputs
82 for (String s : inputs) e A (start), B (end), C
83 System.out.println(s + ":" + match(s)); oo
81} * Create transitions between States based
85 :
86 public static void main(String[] args) { on mPUt A 0 B
87 String[] ss1 = { "A,S", "B,E", "C" }; .
88 Str‘ing[] tSl = { "AiB!GHS "A!cilni "B]Bioilui "c!cieilu }; Transltlons 1 C
89 DFA dfal = new DFA(ssl, tsl);
90 Map B |0 [B
91 String[] testsTl = { "@", "0@", "00000", "0010101" };
92 dfal.test(testsT1); — 1 B
93 String[] testsFl = { "", "1", "1100110" }; All true
94 dfal.test(testsF1); C 0 C
95} . All false
9% } 1 C 43




NFA.java creates Non-Deterministic Finite

Automata

1b pUDLLC CLOASS NFA

17 String start;

18 Set<String> ends;

19 Map<String, Map<Character,List<String>>> transitions; // state -> (character -> [next states])

20 // note the difference from DFA: can ha ultiple different transitions from state for character

21

22= /**

23 * Constructs the DFA from the arrays, as specified in overall header ..

24 %/ * Like DFA, but transitions are a Map of Map
25s NFA(String[] ss, String[] ts) { .

26 ends = new TreeSet<String>(); Of LlStS

27 transitions = new TreeMap<String, Map<Character,List<String>>>(); .

28 L * ~State -> Character -> Next possible states for
29 tates

30 for (String v : ss) { this Character (could be more than one)
31 String[] pieces = v.split(",");

32 if (pieces.length>1) {

33 if (pieces[1].equals("S")) start = pieces[@];

34 else if (pieces[1].equals("E")) ends.add(pieces[@]);

35 }

36 } . .

37 * Add List of next States in constructor
38 // Transitions

39 for (String e : ts) {

40 String[] pieces = e.split(",");

41 String from = pieces[@], to = pieces[1];

42 if (ltransitions.containsKey(from)) transitions.put(from/ new TreeMap<Character,List<String>>

43 for (int i=2; i<pieces.length; i++) {

44 char c = pieces[i].charAt(@);

45 // difference from DFA: list of next states

46 if (ltransitions.get(from).containsKey(c)) transitions.get(from).put(c, new ArraylList<Str

47 transitions.get(from).get(c).add(to);

48 }

49 1

50

51 System.out.println("start:"+start);

52 System.out.println("end:"+ends);

53 System.out.println("transitions:"+transitions); 44

54 1



NFA.java creates Non-Deterministic Finite

Automata

60=

6l
62
63
64
65
66
67
68
69
70
71
72
73
74
75
70
77
78
79

Set currStates tracks all possible States
given input so far

public boolean match(String s) Initially set to start

}

// difference from DFA; tiple current states
Set<String> currStates ™= new TreeSet<String>();
currStates.add(start); . Keep a Set of all possible States that could
for (int 1=0; i<s.length(); i++) { . )
char ¢ = s.charAt(i); be reached from all currStates given input
Set<String> nextStates = new TreeSet<String>();
// transition from each current state to each of its next s
for (String state : currStates) . addAll adds all

if (tr‘ansitions.get(staw“l(ey(c,)) items in List to
nextStates.addAll(transitions.get(state).get(c));

if (nextStates.isEmpty(\ return false; // no way forward f nextStates Set

currStates = nextStates;

}

// end up 1n multiple states -- accep

for (String state : currStates) { . . .
if (ends.contains(state)) return true; > ° Given input and all possible current

} States, track all possible next states
return false;  Return false if no valid next states
Update currStates to nextStates

if any 1s an end state

After processing all input, see if any State in
currState is a valid end state

PS-5 is similar to this! 45
If yes, then return true, else false



1. Pattern matching to validate input
 Regular expressions

 Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

» 2. Finite State Machines (FSM) to model
complex systems
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Finite State Machines (FSM) work like FAs,

but track the State of a complex system

Finite State Machine (FSM)
1. Enumerate all States possible for the system

2. Enumerate all possible Events that can occur

3. Map Transition from each State to another
State (possibly the same State) given any Event

4. Start at known State
5. Transition to new State as Events occur

6. You now track the current state of the system
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Sensors detect arrival and departure of
cars in parking spaces

One sensor in each parking space (11,000 total sensors in San Fran)




Parking meters detect payments and
payment expirations

One parking meter per parking space
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N
\\\
N
>




Aggregate sensor data to show drivers

where they can find parking in real time

Fisherman’s Wharf in San Francisco, CA

Green < 75% occupied, yellow = 75-90% occupied, red > 90% occupied
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The parking space could be modeled with a

complicated if-then structure

Simplified automobile parking

Occupancy
Vacant Occupied
Not Paid | Vacant Occupied

Payment Not paid Not paid
status Paid Vacant Occupied

Paid Paid
void handleEvent(Event e) { Error prone and

if (event=="Payment”) { inflexible

if (occupancy=="Occupied” && payment==“Not Paid”) {
Handle every //set time on meter
event, fromeIsehc (occupancy=“Occupied” && payment==“Paid”) {
every state //increment time on meter
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Combination of occupancy and payments

leads to four States for each space

Simplified automobile parking ~ Four possible Four Events:

States Arrival/Departure
Start at vacantand  Occupied Status Payment/Expiration
hot paid Vacant Occupied
Arrival event
Not
Paid
Paid
Status
Paid

Events cause the system to transition between States



The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking Events processed from

Queue as they occur
Start Y

Model four
States as
FSM vertices

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

tates transition

as Events happen
Meter paid Payment Payment Meter paid
Model the expired expired
Transition .
from each Sensor detects Current State is
State for Vacant, vehicle departure Occupied, \\combination of
Paid > Paid aid status and
each Event Sensor detects P
(self loops vehicle arrival occupancy

not shown)

53



The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition

as events happen
Start

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid Meter paid

expired expired

Sensor detects

Vacant, vehicle departure

Paid

Occupied,
Paid

>

Sensor detects
vehicle arrival
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The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition

as events happen
Start

Sensor detects
vehicle arrival

* Sensor detects
arrival

* Transition to
Occupied Not
Paid

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid Meter paid

expired expired

Sensor detects

Vacant, vehicle departure

Paid

Occupied,
Paid

>

Sensor detects
vehicle arrival
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The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition

as events happen
Start

Sensor detects
vehicle arrival

* Sensor detects
arrival

* Transition to
Occupied Not
Paid

* Sensor detects

Meter paid departure

* Transition to
Vacant Not
Paid

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid
expired expired

Sensor detects
vehicle departure

Vacant,
Paid

Occupied,
Paid

>

Sensor detects
vehicle arrival
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The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition
as events happen

Start

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid

Meter paid .
expired expired

Sensor detects

Vacant, vehicle departure

Paid

Occupied,
Paid

>
Sensor detects

vehicle arrival

Sensor detects
arrival
Transition to
Occupied Not
Paid

Sensor detects
departure
Transition to
Vacant Not
Paid

Meter paid,
but no arrival
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The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking States transition
as events happen

Start

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment PaymentI

Meter paid Meter paid

expired expired

Sensor

probably Sensor detects

erroneously Vacant, vehicle departure Occupied, .
detected Paid > Paid
departure, Sensor detects

send someone vehicle arrival

to figure out
why!

Sensor detects
arrival
Transition to
Occupied Not
Paid

Sensor detects
departure
Transition to
Vacant Not
Paid

Meter paid,
but no arrival
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Tracking the State of each space allows San

Francisco to monitor city-wide parking

Fisherman’s Wharf in San Francisco, CA

Green < 75% occupied, yellow = 75-90% occupied, red > 90% occupied
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With a slight modification, Finite Automata

can validate input like Huffman

Finite Automata validating input

Input Result
00 a

Leaves represent valid end states

Here can loop back to root from leaf (this is not common)

Invalid if input ends and not at valid end state (leaves here)

This is an extension of Huffman, go back to root after finding leaf
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With a slight modification, Finite Automata

can validate input like Huffman

Finite Automata validating input

Input Result
00 a

01 b

1 C

0 Invalid
001100 acca

Leaves represent valid end states

Here can loop back to root from leaf (this is not common)

Invalid if input ends and not at end state

This is an extension of Huffman, go back to root after finding leaf
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