
CS 10:
Problem solving via Object Oriented

Programming

Pattern Matching
Dartmouth CS10 Winter 2025

2

3

Agenda

1. Pattern matching to validate input
• Regular expressions

• Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems

4

Pattern matching goal: ensure input passes
a validation check

Pattern matching process:
• Given some input (e.g., a series of characters)

• Also given a pattern that describes what
constitutes valid input

• Then check to see if a particular input “passes”
validation check (or in other words, input
matches the pattern)

5

Sometimes it is useful to be able to detect
or require patterns

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjp@cs.dartmouth.edu

One or more
characters

Followed
by @

One or
more
characters

Ends with one of a set
predefined of values

Followed
by .

We can specify a pattern or rules for email addresses:
 <characters> @ <characters>.<com | edu | org | …>

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu

6

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

7

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation:
R1 R2

One after the other “cat” matches “c” then “a” then “t”

8

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation:
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative:
R1 | R2

One or the other a|e|i|o|u matches any vowel

9

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation:
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative:
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows
reference/extraction

c(a|o)t matches “cat” or “cot”

10

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation:
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative:
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows
reference/extraction

c(a|o)t matches “cat” or “cot”

Character classes
[c1-c2] and [^c1-c2]

Alternative characters and
excluded characters

[a-c] matches “a” or “b” or “c”, while
[^a-c] matches any but abc

11

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation:
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative:
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows
reference/extraction

c(a|o)t matches “cat” or “cot”

Character classes
[c1-c2] and [^c1-c2]

Alternative characters and
excluded characters

[a-c] matches “a” or “b” or “c”, while
[^a-c] matches any but abc

Repetition: R* Matches 0 or more times “ca*t” matches “ct”, “cat”, “caat”

12

Regular expressions (regex) are a common
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation:
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative:
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows
reference/extraction

c(a|o)t matches “cat” or “cot”

Character classes
[c1-c2] and [^c1-c2]

Alternative characters and
excluded characters

[a-c] matches “a” or “b” or “c”, while
[^a-c] matches any but abc

Repetition: R* Matches 0 or more times “ca*t” matches “ct”, “cat”, “caat”

Non-zero
repetition: R+

Matches 1 or more times “ca+t” matches “cat” or “caat” or
“caaat”, but not “ct”

We can use regex to see if an email address
is valid

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjp@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
 <characters> @ <characters>.<com | edu | org | …>

As a simple RegEx: [a-z.]+@[a-z.]* [a-z]+. (com | edu | org …)

Check:
tjp@cs.dartmouth.edu -- valid
Student.name -- invalid

This simple regex has some
issues dealing with real email
addresses

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
mailto:tjp@cs.dartmouth.edu

14

Turns out a robust email address validator
is quite complicated

(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-
9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-
\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-
\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-
z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-
9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-
9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-
\x09\x0b\x0c\x0e-\x7f])+)\])

Source: IETF RFC2822

• Hard to understand what this does
• We can use a graph to make things

easier to understand

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjp@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
 <characters> @ <characters>.<com | edu | org | …>

A Graph can represent the pattern for email addresses
Sample addresses can be easily verified if in correct form 15

A Graph can implement the idea of a regex

a-z. @

Start

a-z

com

. edu

org

.

.

.

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu

16

Key points

1. We can define a set of rules that must
be followed

2. We may be able to represent those
rules with a Graph

17

Agenda

1. Pattern matching to validate input
• Regular expressions

• Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems

18

We can model States as Vertices and
Transitions as Edges in a directed Graph

A

C

B

Finite Automata validating input

0

1

0,1

0,1
States as
Graph
Vertices

Edges as transitions
between States based
on input

Transition from A to B
if input 0, else to C

Edges can loop back
to same vertex
(“self loop”)

Stay in C
regardless if
given 0 or 1

Double circle indicates valid
end States, non-double circle
States are invalid end States

Operation:
• Begin at Start State
• Read character of input
• Follow graph according

to input
• Continue until no more

input characters
• If at valid end State,

input valid, else invalid
What does this do?
• Accepts any input

starting with 0

Start

Set of input symbols called
alphabetBegin at

Start

19

Finite Automata (FA) are formally defined
as 5-tuple of States, Transitions, and inputs

FA = (Q, ∑, δ, q0, F)
• Q – finite set of States (vertices in graph)
• ∑ – complete set of possible input symbols (called the alphabet)
• δ – transition function where δ: Q × ∑ → Q (given current State Q

and input symbol ∑, transition to next State Q according to δ)
• q0 – initial State; q0 ∈ Q (means q0 is an element of Q)
• F is a set of valid end States; F ⊆ Q (means F is a subset of Q)

We say FA “accepts” (validates) input A=a1a2a3…an if sequence of
States R=r0r1r2…rn exists in Q such that:
• r0=q0 //initial State is Start
• ri+1 = δ(ri, ai+1), for i=0,1, ..., n−1 //input leads to next State
• rn ∈ F //last State is an element of the valid end States

Finite Automata as 5-tuple (Q, ∑, δ, q0, F)

20

We can build FAs to validate or reject input

Accept any string that starts with 00

A
0

B C

D

0

0,1

0,11
1

Start

Define Start
State

Handle first 0 Handle second 0

Handle any
remaining

Handle
invalid
input on
first two
characters

Handle any remaining
invalid input

Vertices with no escape
sometimes called a “trap”

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

21

FAs can demonstrate “recent memory”

Accept any string that ends with 00

A
0

B C
0

0Start

Define Start
State

Stay here if
input is 1

Not a valid
end State

Handle first 0 Handle second 0

Handle any
remaining 0s

Handle any remaining
invalid input

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

1
1 1

22

Can split FA into pieces to demonstrate
“permanent memory”
Match first and last symbols

A

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

C

D

B

E

Start 0

1
0

1 1

0

0

1

0

1

Start with 0,
must end with 0

Start with 1,
must end with 1

Stay in valid end State B if 0,
else invalid State C

Stay in valid end State E if 1,
else invalid State D

23

What do these FAs do?

A
0

B

1

0,1 Input has at least one 0

0
B

1

0
CA

1

0,1

Input has at most one 0

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

A
0

B

1

1

C

D
0,1

0 0

1
Input starts and ends with 0
(and a single 0 counts)

24

Finite Automata come in two flavors,
Deterministic and Nondeterministic

A

C

B

Deterministic Finite
Automaton (DFA)

0

1

0,1

0,1

A B
0

0

Nondeterministic Finite
Automaton (NFA)

• Exactly one transition
for each possible input

• No ambiguity

• May have 0, 1, or more
choices for each transition

• Unspecified inputs are invalid
• True if end in any valid State

Start Start

C

0
1

25

Sometimes we cannot map from a State a
single next State

0,1
B

C

0

1

0

1

0

0

NFAs can have multiple next States

Start

EA

D

26

Sometimes we cannot map from a State a
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

27

Sometimes we cannot map from a State a
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

28

Sometimes we cannot map from a State a
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

29

Sometimes we cannot map from a State a
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

D 0 {B,D}

D 1 {}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

30

Sometimes we cannot map from a State a
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

D 0 {B,D}

D 1 {}

E 0 {}

E 1 {}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

31

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

32

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

0 {B,C}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

33

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

0 {B,C}

1 {E,D}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D

34

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

NFAs can have multiple next States

Multiple
possible end
States

If end now,
input is valid
because D is
valid end State

0,1
B

C

0

1

0

1

0

0

Start

EA

D

35

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

1 {E}

NFAs can have multiple next States

Still have valid
end State, if
input ends now,
return true

0,1
B

C

0

1

0

1

0

0

Start

EA

D

36

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

1 {E}

0 {}

NFAs can have multiple next States

No valid States,
return false

0,1
B

C

0

1

0

1

0

0

Start

EA

D

37

In that case, must keep track of all possible
States

Input Possible
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

1 {E}

0 {}

NFAs can have multiple next States

No valid States,
return false

0,1
B

C

0

1

0

1

0

0

Start

EA

D

Key point: kept track of all possible
States as input processed
If any ending state is valid, then
accept input

38

One more practice before looking at code,
what does this NFA do?

A

B

D

0

1
0,1

0,1

Start

C

E

1

0
0,1

Accepts any string with
embedded 00 or 11

39

DFA.java creates Deterministic Finite
Automata

• Store start node (there will be only one)
• Store valid end states in Set (could be

multiple valid end States)
• Track Transitions with Map of Maps

• Key for outer Map is State
• Value for outer Map another Map
• Inner Map has Character as Key,

next State as Value
• So, given a State and a Character,

can look up next State

• Parse States in String[] ss = {“A,S”,”B,E”,”C”}
• States will be in form:

• <Char>, S indicates starting State (e.g.,
“A,S” means A is the Start)

• <Char>, E indicates ending State (e.g.,
“B,E” means B is an end State)

• <Char> indicates non-starting or ending
state (e.g., “C”)

40

DFA.java creates Deterministic Finite
Automata

• Parse Transitions in String[] ts = {“A,B,0”…
• Transition in form:

• <State1>,<State2>,<Char>,<Char>
• Means transition from State1 to

State2 if see character <Char>
• “A,B,0” means transition from State A

to State B if given Character 0

41

DFA.java creates Deterministic Finite
Automata

• Parse Transitions in String[] ts = {“A,B,0”…
• Transition in form:

• <State1>,<State2>,<Char>,<Char>
• Means transition from State1 to

State2 if see character <Char>
• “A,B,0” means transition from State A

to State B if given Character 0
• Add Transitions to Map called transitions

42

DFA.java creates Deterministic Finite
Automata

• Create 3 States:
• A (start), B (end), C

• Create transitions between States based
on input

A

C

B
0

1

0,1

0,1

Transitions
Map

A 0 B

1 C

B 0 B

1 B

C 0 C

1 C

43

DFA.java creates Deterministic Finite
Automata

• Match test string s
• Start at start (A)
• Follow transitions

A

C

B
0

1

0,1

0,1

Transitions
Map

A 0 B

1 C

B 0 B

1 B

C 0 C

1 C

• Create 3 States:
• A (start), B (end), C

• Create transitions between States based
on input

All true

All false

44

NFA.java creates Non-Deterministic Finite
Automata

• Like DFA, but transitions are a Map of Map
of Lists

• State -> Character -> Next possible states for
this Character (could be more than one)

• Add List of next States in constructor

45

NFA.java creates Non-Deterministic Finite
Automata

Keep a Set of all possible States that could
be reached from all currStates given input

Set currStates tracks all possible States
given input so far
Initially set to start

• Given input and all possible current
States, track all possible next states

• Return false if no valid next states
• Update currStates to nextStates

After processing all input, see if any State in
currState is a valid end state
If yes, then return true, else false

PS-5 is similar to this!

addAll adds all
items in List to
nextStates Set

46

Agenda

1. Pattern matching to validate input
• Regular expressions

• Deterministic/Non-Deterministic
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model
complex systems

47

Finite State Machines (FSM) work like FAs,
but track the State of a complex system

Finite State Machine (FSM)
1. Enumerate all States possible for the system

2. Enumerate all possible Events that can occur

3. Map Transition from each State to another
State (possibly the same State) given any Event

4. Start at known State

5. Transition to new State as Events occur

6. You now track the current state of the system

48

Sensors detect arrival and departure of
cars in parking spaces
One sensor in each parking space (11,000 total sensors in San Fran)

Image: Fybr.com

Sensors occasionally
make mistakes

49

Parking meters detect payments and
payment expirations
One parking meter per parking space

Image: Fybr.com

50

Aggregate sensor data to show drivers
where they can find parking in real time
Fisherman’s Wharf in San Francisco, CA

Image: sfpark.org

Green < 75% occupied, yellow = 75-90% occupied, red > 90% occupied

51

The parking space could be modeled with a
complicated if-then structure
Simplified automobile parking

void handleEvent(Event e) {
 if (event==“Payment”) {
 if (occupancy==“Occupied” && payment==“Not Paid”) {
 //set time on meter
 elseif (occupancy=“Occupied” && payment==“Paid”) {
 //increment time on meter
 …

Occupancy

Vacant Occupied

Payment
status

Not Paid Vacant
Not paid

Occupied
Not paid

Paid Vacant
Paid

Occupied
Paid

Error prone and
inflexible

Handle every
event, from
every state

52

Combination of occupancy and payments
leads to four States for each space
Simplified automobile parking

Paid
Status

Not
Paid

Paid

Occupied Status

Vacant Occupied

Four possible
States

Four Events:
Arrival/Departure
Payment/Expiration

Events cause the system to transition between States

Start at vacant and
not paid

Arrival event

Payment
event

Departure event

Expiration
event

Vacant,
Not Paid

53

The parking space could be modeled more
simply with a Finite Automata
Simplified automobile parking

Occupied,
Not Paid

Start
Sensor detects
vehicle arrival

Meter paid Meter paid

Sensor detects
vehicle departure

Payment
expired

Payment
expired

Vacant,
Paid

Sensor detects
vehicle departure

Sensor detects
vehicle arrival

States transition
as Events happen

Model four
States as
FSM vertices

Model the
Transition
from each
State for
each Event
(self loops
not shown)

Events processed from
Queue as they occur

Current State is
combination of
paid status and
occupancy

Occupied,
Paid

54

The parking space could be modeled more
simply with a Finite Automata
Simplified automobile parking States transition

as events happen

Vacant,
Not Paid

Occupied,
Not Paid

Start
Sensor detects
vehicle arrival

Meter paid Meter paid

Sensor detects
vehicle departure

Payment
expired

Payment
expired

Vacant,
Paid

Sensor detects
vehicle departure

Sensor detects
vehicle arrival

Occupied,
Paid

55

The parking space could be modeled more
simply with a Finite Automata
Simplified automobile parking States transition

as events happen

• Sensor detects
arrival

• Transition to
Occupied Not
Paid

Vacant,
Not Paid

Occupied,
Not Paid

Start
Sensor detects
vehicle arrival

Meter paid Meter paid

Sensor detects
vehicle departure

Payment
expired

Payment
expired

Vacant,
Paid

Sensor detects
vehicle departure

Sensor detects
vehicle arrival

Occupied,
Paid

56

The parking space could be modeled more
simply with a Finite Automata
Simplified automobile parking States transition

as events happen

• Sensor detects
arrival

• Transition to
Occupied Not
Paid

• Sensor detects
departure

• Transition to
Vacant Not
Paid

Vacant,
Not Paid

Occupied,
Not Paid

Start
Sensor detects
vehicle arrival

Meter paid Meter paid

Sensor detects
vehicle departure

Payment
expired

Payment
expired

Vacant,
Paid

Sensor detects
vehicle departure

Sensor detects
vehicle arrival

Occupied,
Paid

57

The parking space could be modeled more
simply with a Finite Automata
Simplified automobile parking States transition

as events happen

• Sensor detects
arrival

• Transition to
Occupied Not
Paid

• Sensor detects
departure

• Transition to
Vacant Not
Paid

• Meter paid,
but no arrival

Vacant,
Not Paid

Occupied,
Not Paid

Start
Sensor detects
vehicle arrival

Meter paid Meter paid

Sensor detects
vehicle departure

Payment
expired

Payment
expired

Vacant,
Paid

Sensor detects
vehicle departure

Sensor detects
vehicle arrival

Occupied,
Paid

58

The parking space could be modeled more
simply with a Finite Automata
Simplified automobile parking States transition

as events happen

• Sensor detects
arrival

• Transition to
Occupied Not
Paid

• Sensor detects
departure

• Transition to
Vacant Not
Paid

• Meter paid,
but no arrival

Sensor
probably
erroneously
detected
departure,
send someone
to figure out
why!

Vacant,
Not Paid

Occupied,
Not Paid

Start
Sensor detects
vehicle arrival

Meter paid Meter paid

Sensor detects
vehicle departure

Payment
expired

Payment
expired

Vacant,
Paid

Sensor detects
vehicle departure

Sensor detects
vehicle arrival

Occupied,
Paid

59

Tracking the State of each space allows San
Francisco to monitor city-wide parking
Fisherman’s Wharf in San Francisco, CA

Image: sfpark.org

Green < 75% occupied, yellow = 75-90% occupied, red > 90% occupied

60

With a slight modification, Finite Automata
can validate input like Huffman
Finite Automata validating input

0

0 1

1

Input Result

00 a

a b

c

Leaves represent valid end states
Here can loop back to root from leaf (this is not common)
Invalid if input ends and not at valid end state (leaves here)
This is an extension of Huffman, go back to root after finding leaf

Start

With a slight modification, Finite Automata
can validate input like Huffman
Finite Automata validating input

Input Result

00 a

01 b0

0 1

1

a b

c

Start

Leaves represent valid end states
Here can loop back to root from leaf (this is not common)
Invalid if input ends and not at end state
This is an extension of Huffman, go back to root after finding leaf

With a slight modification, Finite Automata
can validate input like Huffman
Finite Automata validating input

Input Result

00 a

01 b

1 c

0

0 1

1

a b

c

Start

Leaves represent valid end states
Here can loop back to root from leaf (this is not common)
Invalid if input ends and not at end state
This is an extension of Huffman, go back to root after finding leaf

With a slight modification, Finite Automata
can validate input like Huffman
Finite Automata validating input

Input Result

00 a

01 b

1 c

0 Invalid

0

0 1

1

a b

c

Start

Leaves represent valid end states
Here can loop back to root from leaf (this is not common)
Invalid if input ends and not at end state
This is an extension of Huffman, go back to root after finding leaf

With a slight modification, Finite Automata
can validate input like Huffman
Finite Automata validating input

Input Result

00 a

01 b

1 c

0 Invalid

001100 acca

0

0 1

1

a b

c

Start

Leaves represent valid end states
Here can loop back to root from leaf (this is not common)
Invalid if input ends and not at end state
This is an extension of Huffman, go back to root after finding leaf

	Slide 1
	Slide 2
	Slide 3: Agenda
	Slide 4: Pattern matching goal: ensure input passes a validation check
	Slide 5: Sometimes it is useful to be able to detect or require patterns
	Slide 6: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 7: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 8: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 9: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 10: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 11: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 12: Regular expressions (regex) are a common way of looking for patterns in Strings
	Slide 13: We can use regex to see if an email address is valid
	Slide 14: Turns out a robust email address validator is quite complicated
	Slide 15: A Graph can implement the idea of a regex
	Slide 16: Key points
	Slide 17: Agenda
	Slide 18: We can model States as Vertices and Transitions as Edges in a directed Graph
	Slide 19: Finite Automata (FA) are formally defined as 5-tuple of States, Transitions, and inputs
	Slide 20: We can build FAs to validate or reject input
	Slide 21: FAs can demonstrate “recent memory”
	Slide 22: Can split FA into pieces to demonstrate “permanent memory”
	Slide 23: What do these FAs do?
	Slide 24: Finite Automata come in two flavors, Deterministic and Nondeterministic
	Slide 25: Sometimes we cannot map from a State a single next State
	Slide 26: Sometimes we cannot map from a State a single next State
	Slide 27: Sometimes we cannot map from a State a single next State
	Slide 28: Sometimes we cannot map from a State a single next State
	Slide 29: Sometimes we cannot map from a State a single next State
	Slide 30: Sometimes we cannot map from a State a single next State
	Slide 31: In that case, must keep track of all possible States
	Slide 32: In that case, must keep track of all possible States
	Slide 33: In that case, must keep track of all possible States
	Slide 34: In that case, must keep track of all possible States
	Slide 35: In that case, must keep track of all possible States
	Slide 36: In that case, must keep track of all possible States
	Slide 37: In that case, must keep track of all possible States
	Slide 38: One more practice before looking at code, what does this NFA do?
	Slide 39: DFA.java creates Deterministic Finite Automata
	Slide 40: DFA.java creates Deterministic Finite Automata
	Slide 41: DFA.java creates Deterministic Finite Automata
	Slide 42: DFA.java creates Deterministic Finite Automata
	Slide 43: DFA.java creates Deterministic Finite Automata
	Slide 44: NFA.java creates Non-Deterministic Finite Automata
	Slide 45: NFA.java creates Non-Deterministic Finite Automata
	Slide 46: Agenda
	Slide 47: Finite State Machines (FSM) work like FAs, but track the State of a complex system
	Slide 48: Sensors detect arrival and departure of cars in parking spaces
	Slide 49: Parking meters detect payments and payment expirations
	Slide 50: Aggregate sensor data to show drivers where they can find parking in real time
	Slide 51: The parking space could be modeled with a complicated if-then structure
	Slide 52: Combination of occupancy and payments leads to four States for each space
	Slide 53: The parking space could be modeled more simply with a Finite Automata
	Slide 54: The parking space could be modeled more simply with a Finite Automata
	Slide 55: The parking space could be modeled more simply with a Finite Automata
	Slide 56: The parking space could be modeled more simply with a Finite Automata
	Slide 57: The parking space could be modeled more simply with a Finite Automata
	Slide 58: The parking space could be modeled more simply with a Finite Automata
	Slide 59: Tracking the State of each space allows San Francisco to monitor city-wide parking
	Slide 60
	Slide 61: With a slight modification, Finite Automata can validate input like Huffman
	Slide 62: With a slight modification, Finite Automata can validate input like Huffman
	Slide 63: With a slight modification, Finite Automata can validate input like Huffman
	Slide 64: With a slight modification, Finite Automata can validate input like Huffman
	Slide 65: With a slight modification, Finite Automata can validate input like Huffman

