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Agenda

1. Pattern matching to validate input
• Regular expressions

• Deterministic/Non-Deterministic 
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model 
complex systems
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Pattern matching goal: ensure input passes 
a validation check

Pattern matching process:
• Given some input (e.g., a series of characters)

• Also given a pattern that describes what 
constitutes valid input

• Then check to see if a particular input “passes” 
validation check (or in other words, input 
matches the pattern)
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Sometimes it is useful to be able to detect 
or require patterns

Email addresses follow a pattern: 
mailbox@domain.TLD  
example: tjp@cs.dartmouth.edu

One or more 
characters

Followed 
by @

One or 
more 
characters

Ends with one of a set 
predefined of values

Followed 
by .

We can specify a pattern or rules for email addresses:
 <characters> @ <characters>.<com | edu | org | …>

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation: 
R1 R2

One after the other “cat” matches “c” then “a” then “t”
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation: 
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative: 
R1 | R2

One or the other a|e|i|o|u matches any vowel
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation: 
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative: 
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows 
reference/extraction

c(a|o)t matches “cat” or “cot”
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation: 
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative: 
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows 
reference/extraction

c(a|o)t matches “cat” or “cot”

Character classes 
[c1-c2] and [^c1-c2]

Alternative characters and 
excluded characters

[a-c] matches “a” or “b” or “c”, while 
[^a-c] matches any but abc
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation: 
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative: 
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows 
reference/extraction

c(a|o)t matches “cat” or “cot”

Character classes 
[c1-c2] and [^c1-c2]

Alternative characters and 
excluded characters

[a-c] matches “a” or “b” or “c”, while 
[^a-c] matches any but abc

Repetition: R* Matches 0 or more times “ca*t” matches “ct”, “cat”, “caat”
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Regular expressions (regex) are a common 
way of looking for patterns in Strings
Regular expressions (regex)

• Most programming languages have support for regex
• Can be really complex  and messy, but there are basic patterns

Operation Meaning Example

Character Match a character “a” matches “a”

Concatenation: 
R1 R2

One after the other “cat” matches “c” then “a” then “t”

Alternative: 
R1 | R2

One or the other a|e|i|o|u matches any vowel

Grouping: (R) Establishes order; allows 
reference/extraction

c(a|o)t matches “cat” or “cot”

Character classes 
[c1-c2] and [^c1-c2]

Alternative characters and 
excluded characters

[a-c] matches “a” or “b” or “c”, while 
[^a-c] matches any but abc

Repetition: R* Matches 0 or more times “ca*t” matches “ct”, “cat”, “caat”

Non-zero 
repetition: R+

Matches 1 or more times “ca+t” matches “cat” or “caat” or 
“caaat”, but not “ct”



We can use regex to see if an email address 
is valid 

Email addresses follow a pattern: 
mailbox@domain.TLD  
example: tjp@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
 <characters> @ <characters>.<com | edu | org | …>

As a simple RegEx: [a-z.]+@[a-z.]* [a-z]+. (com | edu | org …)

Check:
tjp@cs.dartmouth.edu -- valid
Student.name -- invalid

This simple regex has some 
issues dealing with real email 
addresses

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
mailto:tjp@cs.dartmouth.edu
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Turns out a robust email address validator 
is quite complicated

(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-
9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-
\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-
\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-
z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-
9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-
9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-
\x09\x0b\x0c\x0e-\x7f])+)\])

Source: IETF RFC2822

• Hard to understand what this does
• We can use a graph to make things 

easier to understand



Email addresses follow a pattern: 
mailbox@domain.TLD  
example: tjp@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
 <characters> @ <characters>.<com | edu | org | …>

A Graph can represent the pattern for email addresses
Sample addresses can be easily verified if in correct form 15

A Graph can implement the idea of a regex

a-z. @

Start

a-z

com

. edu

org

.

.

.

mailto:mailbox@domain.TLD
mailto:tjp@cs.dartmouth.edu
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Key points

1. We can define a set of rules that must 
be followed

2. We may be able to represent those 
rules with a Graph
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Agenda

1. Pattern matching to validate input
• Regular expressions

• Deterministic/Non-Deterministic 
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model 
complex systems
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We can model States as Vertices and 
Transitions as Edges in a directed Graph

A

C

B

Finite Automata validating input

0

1

0,1

0,1
States as 
Graph 
Vertices

Edges as transitions 
between States based 
on input

Transition from A to B 
if input 0, else to C

Edges can loop back 
to same vertex 
(“self loop”)

Stay in C 
regardless if 
given 0 or 1

Double circle indicates valid 
end States, non-double circle 
States are invalid end States

Operation:
• Begin at Start State
• Read character of input
• Follow graph according 

to input
• Continue until no more 

input characters
• If at valid end State, 

input valid, else invalid
What does this do?
• Accepts any input 

starting with 0

Start

Set of input symbols called 
alphabetBegin at 

Start
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Finite Automata (FA) are formally defined 
as 5-tuple of States, Transitions, and inputs

FA = (Q, ∑, δ, q0, F) 
• Q – finite set of States (vertices in graph)
• ∑ – complete set of possible input symbols (called the alphabet) 
• δ – transition function where δ: Q × ∑ → Q (given current State Q 

and input symbol ∑, transition to next State Q according to δ)  
• q0 – initial State; q0 ∈ Q (means q0 is an element of Q)
• F is a set of valid end States; F ⊆ Q (means F is a subset of Q)

We say FA “accepts” (validates) input A=a1a2a3…an if sequence of 
States R=r0r1r2…rn exists in Q such that:
• r0=q0            //initial State is Start 
• ri+1 = δ(ri, ai+1), for i=0,1, ..., n−1    //input leads to next State
• rn ∈ F    //last State is an element of the valid end States

Finite Automata as 5-tuple (Q, ∑, δ, q0, F) 
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We can build FAs to validate or reject input

Accept any string that starts with 00

A
0

B C

D

0

0,1

0,11
1

Start

Define Start 
State

Handle first 0 Handle second 0

Handle any 
remaining

Handle 
invalid 
input on 
first two 
characters

Handle any remaining      
invalid input

Vertices with no escape 
sometimes called a “trap”

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf
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FAs can demonstrate “recent memory”

Accept any string that ends with 00

A
0

B C
0

0Start

Define Start 
State

Stay here if 
input is 1

Not a valid 
end State

Handle first 0 Handle second 0

Handle any 
remaining 0s

Handle any remaining      
invalid input

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

1
1 1
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Can split FA into pieces to demonstrate 
“permanent memory”
Match first and last symbols

A

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

C

D

B

E

Start 0

1
0

1 1

0

0

1

0

1

Start with 0, 
must end with 0

Start with 1, 
must end with 1

Stay in valid end State B if 0, 
else invalid State C

Stay in valid end State E if 1, 
else invalid State D
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What do these FAs do?

A
0

B

1

0,1 Input has at least one 0

0
B

1

0
CA

1

0,1

Input has at most one 0

Adapted from: https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/1.pdf

A
0

B

1

1

C

D
0,1

0 0

1
Input starts and ends with 0 
(and a single 0 counts)
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Finite Automata come in two flavors, 
Deterministic and Nondeterministic

A

C

B

Deterministic Finite 
Automaton (DFA)

0

1

0,1

0,1

A B
0

0

Nondeterministic Finite 
Automaton (NFA)

• Exactly one transition 
for each possible input

• No ambiguity

• May have 0, 1, or more 
choices for each transition

• Unspecified inputs are invalid
• True if end in any valid State

Start Start

C

0
1
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Sometimes we cannot map from a State a 
single next State

0,1
B

C

0

1

0

1

0

0

NFAs can have multiple next States

Start

EA

D
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Sometimes we cannot map from a State a 
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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Sometimes we cannot map from a State a 
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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Sometimes we cannot map from a State a 
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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Sometimes we cannot map from a State a 
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

D 0 {B,D}

D 1 {}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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Sometimes we cannot map from a State a 
single next State

Key Input Paths

A 0 {B,C}

A 1 {B}

B 0 {A}

B 1 {E}

C 0 {}

C 1 {D}

D 0 {B,D}

D 1 {}

E 0 {}

E 1 {}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

0 {B,C}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

0 {B,C}

1 {E,D}

NFAs can have multiple next States

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

NFAs can have multiple next States

Multiple 
possible end 
States

If end now, 
input is valid 
because D is 
valid end State

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

1 {E}

NFAs can have multiple next States

Still have valid 
end State, if 
input ends now, 
return true

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

1 {E}

0 {}

NFAs can have multiple next States

No valid States, 
return false

0,1
B

C

0

1

0

1

0

0

Start

EA

D
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In that case, must keep track of all possible 
States

Input Possible 
States

Start {A}

0 {B,C}

1 {E,D}

0 {B,D}

1 {E}

0 {}

NFAs can have multiple next States

No valid States, 
return false

0,1
B

C

0

1

0

1

0

0

Start

EA

D

Key point: kept track of all possible 
States as input processed
If any ending state is valid, then 
accept input
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One more practice before looking at code, 
what does this NFA do?

A

B

D

0

1
0,1

0,1

Start

C

E

1

0
0,1

Accepts any string with 
embedded 00 or 11
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DFA.java creates Deterministic Finite 
Automata

• Store start node (there will be only one)
• Store valid end states in Set (could be 

multiple valid end States) 
• Track Transitions with Map of Maps

• Key for outer Map is State
• Value for outer Map another Map
• Inner Map has Character as Key, 

next State as Value
• So, given a State and a Character, 

can look up next State

• Parse States in String[] ss = {“A,S”,”B,E”,”C”}
• States will be in form:

• <Char>, S indicates starting State (e.g., 
“A,S” means A is the Start)

• <Char>, E indicates ending State (e.g., 
“B,E” means B is an end State)

• <Char> indicates non-starting or ending 
state (e.g., “C”)
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DFA.java creates Deterministic Finite 
Automata

• Parse Transitions in String[] ts = {“A,B,0”…
• Transition in form:

• <State1>,<State2>,<Char>,<Char>
• Means transition from State1 to 

State2 if see character <Char>
• “A,B,0” means transition from State A 

to State B if given Character 0
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DFA.java creates Deterministic Finite 
Automata

• Parse Transitions in String[] ts = {“A,B,0”…
• Transition in form:

• <State1>,<State2>,<Char>,<Char>
• Means transition from State1 to 

State2 if see character <Char>
• “A,B,0” means transition from State A 

to State B if given Character 0
• Add Transitions to Map called transitions
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DFA.java creates Deterministic Finite 
Automata

• Create 3 States:
• A (start), B (end), C

• Create transitions between States based 
on input

A

C

B
0

1

0,1

0,1

Transitions 
Map

A 0 B

1 C

B 0 B

1 B

C 0 C

1 C
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DFA.java creates Deterministic Finite 
Automata

• Match test string s
• Start at start (A)
• Follow transitions

A

C

B
0

1

0,1

0,1

Transitions
Map

A 0 B

1 C

B 0 B

1 B

C 0 C

1 C

• Create 3 States:
• A (start), B (end), C

• Create transitions between States based 
on input

All true

All false
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NFA.java creates Non-Deterministic Finite 
Automata

• Like DFA, but transitions are a Map of Map 
of Lists

• State -> Character -> Next possible states for 
this Character (could be more than one)

• Add List of next States in constructor
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NFA.java creates Non-Deterministic Finite 
Automata

Keep a Set of all possible States that could 
be reached from all currStates given input 

Set currStates tracks all possible States 
given input so far
Initially set to start

• Given input and all possible current 
States, track all possible next states

• Return false if no valid next states
• Update currStates to nextStates

After processing all input, see if any State in 
currState is a valid end state 
If yes, then return true, else false

PS-5 is similar to this!

addAll adds all 
items in List to 
nextStates Set
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Agenda

1. Pattern matching to validate input
• Regular expressions

• Deterministic/Non-Deterministic 
Finite Automata (DFA/NFA)

2. Finite State Machines (FSM) to model 
complex systems
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Finite State Machines (FSM) work like FAs, 
but track the State of a complex system

Finite State Machine (FSM)
1. Enumerate all States possible for the system

2. Enumerate all possible Events that can occur

3. Map Transition from each State to another 
State (possibly the same State) given any Event

4. Start at known State

5. Transition to new State as Events occur

6. You now track the current state of the system
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Sensors detect arrival and departure of 
cars in parking spaces
One sensor in each parking space (11,000 total sensors in San Fran)

Image: Fybr.com

Sensors occasionally 
make mistakes 
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Parking meters detect payments and 
payment expirations
One parking meter per parking space

Image: Fybr.com
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Aggregate sensor data to show drivers 
where they can find parking in real time
Fisherman’s Wharf in San Francisco, CA

Image: sfpark.org

Green  < 75% occupied, yellow = 75-90% occupied, red > 90% occupied
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The parking space could be modeled with a 
complicated if-then structure
Simplified automobile parking

void handleEvent(Event e) {
 if (event==“Payment”) { 
  if (occupancy==“Occupied” && payment==“Not Paid”) {
   //set time on meter
  elseif (occupancy=“Occupied” && payment==“Paid”) {
   //increment time on meter
  …

Occupancy

Vacant Occupied

Payment
status

Not Paid Vacant
Not paid

Occupied
Not paid

Paid Vacant
Paid

Occupied
Paid

Error prone and 
inflexible

Handle every 
event, from 
every state
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Combination of occupancy and payments 
leads to four States for each space
Simplified automobile parking

Paid 
Status

Not 
Paid

Paid

Occupied Status

Vacant Occupied

Four possible 
States

Four Events:
Arrival/Departure
Payment/Expiration

Events cause the system to transition between States

Start at vacant and 
not paid

Arrival event

Payment 
event

Departure event

Expiration 
event



Vacant, 
Not Paid
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The parking space could be modeled more 
simply with a Finite Automata
Simplified automobile parking 

Occupied, 
Not Paid

Start
Sensor detects 
vehicle arrival

Meter paid Meter paid

Sensor detects 
vehicle departure

Payment 
expired

Payment 
expired

Vacant, 
Paid

Sensor detects 
vehicle departure

Sensor detects 
vehicle arrival

States transition 
as Events happen

Model four 
States as 
FSM vertices 

Model the 
Transition 
from each 
State for 
each Event 
(self loops 
not shown)

Events processed from 
Queue as they occur

Current State is 
combination of 
paid status and 
occupancy

Occupied, 
Paid
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The parking space could be modeled more 
simply with a Finite Automata
Simplified automobile parking States transition 

as events happen

Vacant, 
Not Paid

Occupied, 
Not Paid

Start
Sensor detects 
vehicle arrival

Meter paid Meter paid

Sensor detects 
vehicle departure

Payment 
expired

Payment 
expired

Vacant, 
Paid

Sensor detects 
vehicle departure

Sensor detects 
vehicle arrival

Occupied, 
Paid
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The parking space could be modeled more 
simply with a Finite Automata
Simplified automobile parking States transition 

as events happen

• Sensor detects 
arrival

• Transition to 
Occupied Not 
Paid

Vacant, 
Not Paid

Occupied, 
Not Paid

Start
Sensor detects 
vehicle arrival

Meter paid Meter paid

Sensor detects 
vehicle departure

Payment 
expired

Payment 
expired

Vacant, 
Paid

Sensor detects 
vehicle departure

Sensor detects 
vehicle arrival

Occupied, 
Paid
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The parking space could be modeled more 
simply with a Finite Automata
Simplified automobile parking States transition 

as events happen

• Sensor detects 
arrival

• Transition to 
Occupied Not 
Paid

• Sensor detects 
departure

• Transition to 
Vacant Not 
Paid

Vacant, 
Not Paid

Occupied, 
Not Paid

Start
Sensor detects 
vehicle arrival

Meter paid Meter paid

Sensor detects 
vehicle departure

Payment 
expired

Payment 
expired

Vacant, 
Paid

Sensor detects 
vehicle departure

Sensor detects 
vehicle arrival

Occupied, 
Paid
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The parking space could be modeled more 
simply with a Finite Automata
Simplified automobile parking States transition 

as events happen

• Sensor detects 
arrival

• Transition to 
Occupied Not 
Paid

• Sensor detects 
departure

• Transition to 
Vacant Not 
Paid

• Meter paid, 
but no arrival

Vacant, 
Not Paid

Occupied, 
Not Paid

Start
Sensor detects 
vehicle arrival

Meter paid Meter paid

Sensor detects 
vehicle departure

Payment 
expired

Payment 
expired

Vacant, 
Paid

Sensor detects 
vehicle departure

Sensor detects 
vehicle arrival

Occupied, 
Paid
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The parking space could be modeled more 
simply with a Finite Automata
Simplified automobile parking States transition 

as events happen

• Sensor detects 
arrival

• Transition to 
Occupied Not 
Paid

• Sensor detects 
departure

• Transition to 
Vacant Not 
Paid

• Meter paid, 
but no arrival

Sensor 
probably 
erroneously 
detected 
departure, 
send someone 
to figure out 
why!

Vacant, 
Not Paid

Occupied, 
Not Paid

Start
Sensor detects 
vehicle arrival

Meter paid Meter paid

Sensor detects 
vehicle departure

Payment 
expired

Payment 
expired

Vacant, 
Paid

Sensor detects 
vehicle departure

Sensor detects 
vehicle arrival

Occupied, 
Paid



59

Tracking the State of each space allows San 
Francisco to monitor city-wide parking
Fisherman’s Wharf in San Francisco, CA

Image: sfpark.org

Green  < 75% occupied, yellow = 75-90% occupied, red > 90% occupied
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With a slight modification, Finite Automata 
can validate input like Huffman
Finite Automata validating input
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Leaves represent valid end states
Here can loop back to root from leaf (this is not common)
Invalid if input ends and not at valid end state (leaves here)
This is an extension of Huffman, go back to root after finding leaf
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