
CS 10:
Problem solving via Object Oriented

Programming

Encapsulation
Dartmouth CS10 Winter 2025

2

From last class: One way to loop over array
elements is to use a C-style for loop

public class MultipleVariablesArray {
 public static void main(String[] args) {
 int numberOfScores = 5;
 double[] scores = new double[numberOfScores]; //store quiz scores
 scores[0] = 10; //zero indexed in Java
 scores[1] = 3.2;
 scores[2] = 6.5;
 scores[3] = 7.8;
 scores[4] = 8.8; //valid indices are 0..4
 //scores[5] = 9; //error, index out of bounds!
 System.out.println(scores);

 System.out.print("[");
 for (int i = 0; i < numberOfScores-1; i++) {
 System.out.print(scores[i] + ", ");
 }
 System.out.println(scores[numberOfScores-1] + "]");
 }
}

Commonly use a variable to declare array size

Code

Output

$ javac MultipleVariablesArray.java
$ java MultipleVariablesArray
D@1dbd16a6
[10.0, 3.2, 6.5, 7.8, 8.8]

10 3.2 6.5 7.8 8.8

0 1 2 3 4

Index

C-style for loop
Three components:
1. Initialization
2. Conditional
3. Increment

See Day 1 slides for 2D
array, useful for SA-1

3

Agenda

1. Encapsulation

2. Getters/setters

3. Constructors

4. Objects vs. primitives

5. Applications vs classes

Key points:
1. Encapsulation brings code and data together

into one thing called an object
2. A class provides a blueprint for instantiating

(creating) objects
3. An object’s data is stored in instance

variables
4. Many objects can be instantiated from a

class, each object gets its own instance
variables

4

OOP relies on four main pillars to create
robust, adaptable, and reusable code
Four “pillars” of OOP

Abstraction
• Name

functionality, not
how to
implement

• Leads to Abstract
Data Types
(ADTs)

Encapsulation
• Bind code and data into one thing called an

object
• Code called methods in OOP (not functions)

Inheritance
• Create specialty versions that

“inherit” functionality of parent
• Reduces code

Polymorphism
Same name,
many meanings

OOP Pillars

Abstraction Encapsulation Inheritance Polymorphism

5

Today we will focus on encapsulation

Encapsulation
• Binds code (methods) and data together into one

self-contained “thing”, called an object in Java

• Each object has its own data about itself
(e.g., student name and graduation year)

• Objects can make data about itself public or private

• Private data allows an object to control access to
data from outside (e.g., if private, then only the
object itself can alter its internal data)

6

We start with a Student class to represent
one student

Example Student class
• We will model students as objects
• Objects encapsulate:

• Data about one student (e.g., name, year)
• Actions students can take (e.g, study,

attendClass) called methods
• Objects are defined by a class

• Like a blueprint – a class tells how to create an
object (such as a house)

• A class does not itself create objects
• Each object is instantiated (created) from the class

in Java using the “new” keyword
• There can be many objects created from the same

class (like there can be many houses built from the
same blueprint)

Data
• Name
• Year

Methods (code)
• Study
• Attend class

7

/**
 * Student series demonstrates encapsulation by representing a student in a class
 * Student0 - base example with name and graduation year
 *
 * @author Tim Pierson, Dartmouth CS10, Winter 2025
 */

public class Student0 {
 String name;
 int graduationYear;

 public static void main(String[] args) {
 Student0 alice = new Student0();
 alice.name = "Alice";
 alice.graduationYear = 2027;
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

8

Student0.java is our first “real” class
represents one student

JavaDoc tells what the program does and
who wrote it
• Starts with /** ends with */
• Provides an @author tag describing who

wrote it
• For problem sets, if you work with a

partner, include an @author tag for both
partners

Provide a JavaDoc for the class itself, plus
one for each method

Student0.java

9

Student0.java is our first “real” class
represents one student

Class Student0 holds data about one student

Java naming convention:
• Classes start with a capital letter
• Variables use camelCase (not snake_case

like Python or C)
• I will be looking for you to follow this

convention in CS10!

Student0.java/**
 * Student series demonstrates encapsulation by representing a student in a class
 * Student0 - base example with name and graduation year
 *
 * @author Tim Pierson, Dartmouth CS10, Winter 2025
 */

public class Student0 {
 String name;
 int graduationYear;

 public static void main(String[] args) {
 Student0 alice = new Student0();
 alice.name = "Alice";
 alice.graduationYear = 2027;
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

10

Each student has “instance variables” that
hold data about the student

Data is stored in instance variables
• Instance variables are declared

outside any method (otherwise
they’d be local to the method)

• You can think of them like global
variables for the class

• Track student’s name and
graduation year

• Must declare data type (String
and integer here)

• Java initializes instance variables
to to 0, null, or false by default
(unlike local variables, which are
not initialized!)

• Each object we create gets its
own instance variables

Student0.java/**
 * Student series demonstrates encapsulation by representing a student in a class
 * Student0 - base example with name and graduation year
 *
 * @author Tim Pierson, Dartmouth CS10, Winter 2025
 */

public class Student0 {
 String name;
 int graduationYear;

 public static void main(String[] args) {
 Student0 alice = new Student0();
 alice.name = "Alice";
 alice.graduationYear = 2027;
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

/**
 * Student series demonstrates encapsulation by representing a student in a class
 * Student0 - base example with name and graduation year
 *
 * @author Tim Pierson, Dartmouth CS10, Winter 2025
 */

public class Student0 {
 String name;
 int graduationYear;

 public static void main(String[] args) {
 Student0 alice = new Student0();
 alice.name = "Alice";
 alice.graduationYear = 2027;
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

11

Student objects are created from the class
by using the keyword “new”

• “Instance” of class Student0 called
“alice” is “instantiated” (created)

• Alice’s type is Student0, akin to how
graduationYear is an integer

• Use keyword “new” to create
(allocate memory) a new object of
type Student0

• Java initializes instance variables
name to null and graduationYear to 0

Student0.java

/**
 * Student series demonstrates encapsulation by representing a student in a class
 * Student0 - base example with name and graduation year
 *
 * @author Tim Pierson, Dartmouth CS10, Winter 2025
 */

public class Student0 {
 String name;
 int graduationYear;

 public static void main(String[] args) {
 Student0 alice = new Student0();
 alice.name = "Alice";
 alice.graduationYear = 2027;
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

12

Instance variables can be accessed using
the dot operator

• Alice’s instance
variables can be set by
using the dot operator

• For example: alice.name
• Here Alice’s details are

then printed to console

Student0.java

/**
 * Student series demonstrates encapsulation by representing a student in a class
 * Student0 - base example with name and graduation year
 *
 * @author Tim Pierson, Dartmouth CS10, Winter 2025
 */

public class Student0 {
 String name;
 int graduationYear;

 public static void main(String[] args) {
 Student0 alice = new Student0();
 alice.name = "Alice";
 alice.graduationYear = 2027;
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

13

Instance variables can be accessed using
the dot operator

• Updating instance variables
directly is considered bad form
in Java (but not in Python)

• We will not do this in Java!
• Better to let the objects update

own instance variables
• We will provide methods (code)

that can be called to update
instance variables

Student0.java

14

Agenda

1. Encapsulation

2. Getters/setters

3. Constructors

4. Objects vs. primitives

5. Applications vs classes

Key points:
1. Data can be public or private
2. Access to data is normally controlled by

getter (return varible’s value) and setter
(update variable’s value) methods

15

Pierson’s mental model of objects

name
graduationYear

• Castle walls protect instance
variables from access or
modification by outsiders

16

Pierson’s mental model of objects

• Castle walls protect instance
variables from access or
modification by outsiders

• Methods (code) allow outsiders to
call code to operate on instance
variables

• Outsiders call getName to get the
student’s name, setName to
change the student’s name

• Code can decide if it is going to
allow the change

getName

setName

name
graduationYear

public class Student01 {
 protected String name;
 protected int graduationYear;

 /**
 * Setters for instance variables
 */
 public void setName(String name) { this.name = name; }
 public void setYear(int year) { graduationYear = year; }

 public static void main(String[] args) {
 Student01 alice = new Student01();
 alice.setName("Alice");
 alice.setYear(2027);
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

17

Access modifiers such as “protected” can
prevent outside modification

• protected allows this class (and
subclasses) to access instance variables

• Sets up “castle walls”
• public allows anyone to access instance

variables (no walls)
• More on this topic soon

Student01.java

public class Student01 {
 protected String name;
 protected int graduationYear;

 /**
 * Setters for instance variables
 */
 public void setName(String name) { this.name = name; }
 public void setYear(int year) { graduationYear = year; }

 public static void main(String[] args) {
 Student01 alice = new Student01();
 alice.setName("Alice");
 alice.setYear(2027);
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

18

“setter” methods are used to update
instance variables instead of dot operator

• “Setter” methods allows object to update its
own instance variables based on value passed in
as a parameter

• Could do error checking here (ex., suppose year
can’t be negative)

• Note the one-line syntax!
• void means this method does not return a value

Student01.java

19

“setter” methods are used to update
instance variables instead of dot operator

• Setter naming convention:
set<VariableName>

• Convention is not enforced by Java
• setYear would typically be called

setGraduationYear to match the
instance variable name

• Java doesn’t care what you call
these methods

Student01.javapublic class Student01 {
 protected String name;
 protected int graduationYear;

 /**
 * Setters for instance variables
 */
 public void setName(String name) { this.name = name; }
 public void setYear(int year) { graduationYear = year; }

 public static void main(String[] args) {
 Student01 alice = new Student01();
 alice.setName("Alice");
 alice.setYear(2027);
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

public class Student01 {
 protected String name;
 protected int graduationYear;

 /**
 * Setters for instance variables
 */
 public void setName(String name) { this.name = name; }
 public void setYear(int year) { graduationYear = year; }

 public static void main(String[] args) {
 Student01 alice = new Student01();
 alice.setName("Alice");
 alice.setYear(2027);
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

20

Setters usually take a value as a parameter
that matches instance variable data type

Instance variable name is a String, so
the setter parameter is also a String

• “this.name” means the
“instance variable name” for
this object

• name refers to the parameter
• “this” is used when there is

ambiguity between variable
names (instance variable or
parameter here)

• “this” is like “self” in Python

Student01.java

public class Student01 {
 protected String name;
 protected int graduationYear;

 /**
 * Setters for instance variables
 */
 public void setName(String name) { this.name = name; }
 public void setYear(int year) { graduationYear = year; }

 public static void main(String[] args) {
 Student01 alice = new Student01();
 alice.setName("Alice");
 alice.setYear(2027);
 System.out.println("Name: " + alice.name +
 ", Year: " + alice.graduationYear);
 }
}

21

Setters usually take a value as a parameter
that matches instance variable data type

• “this” keyword not needed if there
is no ambiguity

• Here the parameter’s name is year
and the instance variable is
graduationYear

• Java can determine which variable
to use based on the name

• Above the parameter and instance
variable have the same name

Student01.java

public class Student02 {
 protected String name;
 protected int graduationYear;

 /**
 * Setters for instance variables
 */
 public void setName(String name) { this.name = name; }
 public void setYear(int year) {
 //only accept valid years
 if (year > 1769 && year < 2100) {
 graduationYear = year;
 }
 }

<snip>

22

Setters allow an object to decide whether
to accept a new value

• setYear checks that the year parameter
is reasonable

• For example, a year of -1 would not
make sense

• Later we will throw an exception to tell
the caller we did not take the new value

• For now, we simply ignore invalid values
and leave graduationYear unchanged for
invalid input

Student02.java

23

“Getters” return values
public class Student03 {
 protected String name;
 protected int graduationYear;

<snip>

 /**
 * Getters for instance variables
 */
 public String getName() { return name; }
 public int getGraduationYear() { return graduationYear; }

public static void main(String[] args) {
 Student03 alice = new Student03();
 alice.setName("Alice");
 alice.setYear(2027);

• Getters are used to return protected
instance variables so other code can
see the variable’s value

• Naming convention is like setters,
get<VariableName>

• Method declarations give the return
data type

• Java returns one value (unlike Python,
which can return multiple values)

• Use void as a return data type if a
method does not return a value

Student03.java

24

Agenda

1. Encapsulation

2. Getters/setters

3. Constructors

4. Objects vs. primitives

5. Applications vs classes

Key points:
1. Constructors are a way to initialize new

objects
2. Constructors are called when an object is

first instantiated

25

Constructors allow us to initialize an object
when it is instantiated

public class Student03 {
 protected String name;
 protected int graduationYear;

<snip>

 /**
 * Getters for instance variables
 */
 public String getName() { return name; }
 public int getGraduationYear() { return graduationYear; }

public static void main(String[] args) {
 Student03 alice = new Student03();
 alice.setName("Alice");
 alice.setYear(2027);

• Remember: by default, instance variables are
initialized to 0, null, or false

• So, name is null and graduationYear is 0 here
• This is not what we normally want
• It would be tedious to call the setter for each

instance variable
• We have a better way – constructors!

Student03.java

26

Constructors run first when an object it is
instantiated; allow object initialization

public class Student04 {
 protected String name;
 protected int graduationYear;

 public Student04() {
 //default constructor: you get this by default
 }

 public Student04(String name, int year) {
 this.name = name;
 graduationYear = year;
 }

<snip>

public static void main(String[] args) {
 Student04 abby = new Student04();
 Student04 alice = new Student04("Alice", 2027);

• Constructors have same name as class
• Run when object is first instantiated
• This constructor takes no parameters
• name is null, graduationYear is 0

• If you don’t provide any constructors,
then you implicitly get one like this

Student04.java

public class Student04 {
 protected String name;
 protected int graduationYear;

 public Student04() {
 //default constructor: you get this by default
 }

 public Student04(String name, int year) {
 this.name = name;
 graduationYear = year;
 }

<snip>

public static void main(String[] args) {
 Student04 abby = new Student04();
 Student04 alice = new Student04("Alice", 2027);

27

Overload constructors (and other methods)
to create multiple method versions

• This constructor takes two parameters, one
for each instance variable

• Multiple methods with same name is called
overloading

• Java determines which to use based on
parameters provided when called (signature)

Student04.java

public class Student04 {
 protected String name;
 protected int graduationYear;

 public Student04() {
 //default constructor: you get this by default
 }

 public Student04(String name, int year) {
 this.name = name;
 graduationYear = year;
 }

<snip>

public static void main(String[] args) {
 Student04 abby = new Student04();
 Student04 alice = new Student04("Alice", 2027);

28

Overload constructors (and other methods)
to create multiple method versions

• When abby is instantiated, Java calls the first
constructor (no parameters provided)

• When alice is instantiated, Java calls the
second constructor (String and an int)

• What values do abby’s instance variables
hold? alice’s?

Student04.java

29

Objects can have other methods other
than a constructor

public class Student05 {
 protected String name;
 protected int graduationYear;
 protected double studyHours;
 protected double classHours;

<snip>

 /**
 * Getters for instance variables
 */
 public String getName() { return name; }
 public int getGraduationYear() { return graduationYear; }
 public double getstudyHours() { return studyHours; }
 public double getclassHours() { return classHours; }

Add new instance variables to track
hours studying and in class

Add getters for new instance variables

Student05.java

/**
 * adds hoursSpent to the studyHours to track time this student spent studying
 * @param hoursSpent - number of hours spent studying (can have decimal component)
 * @return - total number of hours spent studying including the new hours passed in
 */
public double study(double hoursSpent) {
 System.out.println("Hi Mom! It's " + name +". I'm in studying!");
 studyHours += hoursSpent;
 return studyHours;
}

/**
 * adds hoursSpent to the classHours to track time this student spent in class
 * @param hoursSpent - number of hours spent in class (can have decimal component)
 * @return - total number of hours spent in class including the new hours passed in
 */
public double attendClass(double hoursSpent) {
 System.out.println("Hi Dad! It's " + name +". I'm in class!");
 classHours += hoursSpent;
 return classHours;
}

30

Objects can have other methods other
than a constructor

study method
• Alerts Mom
• adds hours spent studying
• Returns total hours spent

studying

attendClass method
Like study method but
alerts Dad

Don’t forget JavaDocs

Student05.java

31

Agenda

1. Encapsulation

2. Getters/setters

3. Constructors

4. Objects vs. primitives

5. Applications vs classes

Key points:
1. Primitive variables are stored on the stack
2. Objects are stored in the heap

32

Recall: Java defines several primitive types,
each of fixed memory size

Type Description Size Examples

int Integer values (no decimal
component)

32 bits (4 bytes) -104,…1,2,3…107,…5032

double Double precision floating
point (has decimal
component)

64 bits (8 bytes) -123.45, 1.6

boolean true or false 1 bit true, false

char Characters 16 bits (2 bytes for
Unicode)

‘a’,’b’,…’z’

Common primitive types

NOTE: Java provides an Object wrapper for each primitive (called autoboxing).
Reference them with an initial capital letter (e.g., Integer, Double, Boolean, Character)

33

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

• Stack is where Java keeps
track of its variables

• Heap is for dynamic memory
allocation (take CS50 for more)

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

34

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

?

• While executing line, space is
allocated on the stack for the
primitive local variables

• Java doesn’t initialize local
variables (like it does instance
variables)

• Exception (error) raised if try to
use a local variable before value
assigned (e.g., i=i+1; is exception)

i

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

35

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

?

?

• While executing line, space is
allocated on the stack for the
primitive local variables

• Java doesn’t initialize local
variables (like it does instance
variables)

• Exception (error) raised if try to
use a local variable before value
assigned (e.g., i=i+1; is exception)

• NOTE: showing primitive types as
same size for convenience

i

d

36

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

?

?

?

• While executing line, space is
allocated on the stack for the
primitive local variables

• Java doesn’t initialize local
variables (like it does instance
variables)

• Exception (error) raised if try to
use a local variable before value
assigned (e.g., i=i+1; is exception)

• NOTE: showing primitive types as
same size for convenience

i

d

b

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

37

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

?

?

?

?

• While executing line, space is
allocated on the stack for the
primitive local variables

• Java doesn’t initialize local
variables (like it does instance
variables)

• Exception (error) raised if try to
use a local variable before value
assigned (e.g., i=i+1; is exception)

• NOTE: showing primitive types as
same size for convenience

i

d

b

c

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

38

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

1.6

7

true

‘a’

• After executing line, values
assigned to primitive local
variables

i

d

b

c

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

39

Declaring a primitive variable allocates
stack space that holds variable’s value

Stack Heap

1.6

7

true

‘a’

• Stack holds the values of
the primitive data types

• Printing a primitive type
prints its value

i

d

b

c

public class MemoryAllocationPrimitives {

 public static void main(String[] args) {
 //declare local variables
 int i; double d; boolean b; char c;

 //assign values to local variables
 i=7; d=1.6; b=true; c='a';

 //print new values
 System.out.println("Local variables: "+
 "i="+i+" d="+d+" b="+b+" c="+c);
 }
}

Output
Local variables: i=7 d=1.6 b=true c=a

40

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);

alice 6acbcfc0

Memory location
6acbcfc0

name “Alice”

year 2027

• Stack holds memory address of object (with
primitives, stack holds variable’s value)

• Memory address tells Java where to find the
“alice” object in memory

• Object itself allocated elsewhere in memory
(in heap, not on stack)

• OS chooses where to allocate

41

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword

alice

bob null

6acbcfc0

Memory location
6acbcfc0

name “Alice”

year 2027

• “bob” is allocated on the stack, but is
null (points nowhere)

• Null means “no value”
• This is because bob did not use the

“new” keyword to allocate memory
and cause the constructor to run

• Null pointer exception if try to use
bob now

42

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword
 bob = alice; //bob equals alice

alice

bob 6acbcfc0

6acbcfc0

Memory location
6acbcfc0

name “Alice”

year 2027

• bob set equal to alice
• bob gets same value on stack that

alice holds
• bob now references to the exact

same memory location as alice
• bob and alice are “aliases” of each

other

43

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword
 bob = alice; //bob equals alice
 Student05 charlie = new Student05("Charlie", 2025);
 7cc355be

alice

bob

charlie

6acbcfc0

6acbcfc0

Memory location
6acbcfc0

name “Alice”

year 2027

name “Charlie”

year 2025charlie object gets new allocation
elsewhere in memory because “new”
keyword used

44

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword
 bob = alice; //bob equals alice
 Student05 charlie = new Student05("Charlie", 2025);
 System.out.println(alice.name +" "+bob.name);

7cc355be

alice

bob

charlie

6acbcfc0

6acbcfc0

Memory location
6acbcfc0

name “Alice”

year 2027

name “Charlie”

year 2025

• name value for alice and bob is the same
because stored at the exact same memory
address

• Java “dereferences” memory address stored on
the stack to find objects on the heap

• For alice Java goes to memory location 6acbcfc0
on the heap and prints the name stored there

• Does the same for bob
• Java doesn’t know or care that alice and bob

both reference the same memory on the heap

Output
Alice Alice

45

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword
 bob = alice; //bob equals alice
 Student05 charlie = new Student05("Charlie", 2025);
 System.out.println(alice.name +" "+bob.name);

 //update alice’s name
 alice.setName(“Ally”);

7cc355be

alice

bob

charlie

6acbcfc0

6acbcfc0

Memory location
6acbcfc0

name “Ally”

year 2027

name “Charlie”

year 2025

• alice.name set to “Ally” but Bob is
not explicitly changed by this line
of code

• Expect alice’s name to change
• What about bob?

Output
Alice Alice

46

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword
 bob = alice; //bob equals alice
 Student05 charlie = new Student05("Charlie", 2025);
 System.out.println(alice.name +" "+bob.name);

 //update alice’s name
 alice.setName(“Ally”);
 System.out.println(alice.name +" "+bob.name);

7cc355be

alice

bob

charlie

6acbcfc0

6acbcfc0

Memory location
6acbcfc0

year 2027

name “Charlie”

year 2025

Output
Alice Alice
Ally Ally

• name is the same for both alice and bob
objects because they point to the same
memory address (aliases)

• Changing one changes the other
• Like Python setting two lists equal to each

other, change one list, change the other also
• charlie’s name is still “Charlie”

name “Ally”

47

Declaring objects makes pointer on the
stack, but object itself is elsewhere

Stack Heap
public static void main(String[] args) {
 //declare Student objects
 Student05 alice = new Student05("Alice", 2027);
 Student05 bob; //notice no new keyword
 bob = alice; //bob equals alice
 Student05 charlie = new Student05("Charlie", 2025);
 System.out.println(alice.name +" "+bob.name);

 //update alice's name
 alice.setName("Ally");
 System.out.println(alice.name+" "+bob.name);

 //printing objects implicitly calls toString()
 System.out.println(alice+" "+bob+" "+charlie);
}

7cc355be

alice

bob

charlie

6acbcfc0

6acbcfc0

Memory location
6acbcfc0

name “Ally”

year 2027

name “Charlie”

year 2025

• Printing an object causes an implicit call to “toString()” function
• This can be overriden (see course webpage)
• By default toString() prints memory address of object (for primitives, value is printed)

Output
Alice Alice
Ally Ally
Student05@6acbcfc0 Student05@6acbcfc0 Student05@7cc355be

/**
 * Return a String representation of a student
 * @return - string representing the student
 */
public String toString() {
 String s = "Name: " + name + ", graduation year: "
 + graduationYear + "\n";
 s += "\tHours studying: " + studyHours + "\n";
 s += "\tHours in class: " + classHours;
 return s;
}

public static void main(String[] args) {
 Student06 alice = new Student06("Alice", 2027); //calls first constructor
 alice.study(1.5);
 alice.attendClass(1.1);
 System.out.println(alice);
}

48

Special toString method returns a String
representation of an object

• toString is called when an object is printed
• Method should return a string

representation of the object

“\n” is a new line character
“\t” is a tab character

Return String

Output
Name: Alice, graduation year: 2027
 Hours studying: 1.5
 Hours in class: 1.1

New line character puts
following text on next line

Tab character indents
DO NOT print in
toString method!

Student06.java

If toString not provided, Java prints
value based on memory address

49

Agenda

1. Encapsulation

2. Getters/setters

3. Constructors

4. Objects vs. primitives

5. Applications vs classes Key points:
1. Multiple applications can use

the same class

50

Frequently we will create classes and use
them in application or driver programs

StudentTrackerApp

AdmissionsApp

Student07 class does not have
a main method

It is used to model one
student at a college

Application programs can
then use the class to create
objects to suit their business
logic

Application programs
(sometimes called “driver”
programs) provide the business
logic to accomplish a task

Here we have an application
for a college’s Admissions
office

Another application might be
used by the Registrar to track
students

Multiple application programs
can use the same Student class

Student07

51

Frequently we will create classes and use
them in application or driver programs

public class Student07 {
 protected String name;
 protected int graduationYear;
 double studyHours;
 double classHours;

 public Student07() {
 //default constructor: you get this by default
 }

 public Student07(String name, int year) {
 this.name = name;
 graduationYear = year;
 }

<snip>

 public double study(double hoursSpent) {
 System.out.println("Hi Mom! It's " + name + ". I'm studying!");
 studyHours += hoursSpent;
 return studyHours;
 }

 public double attendClass(double hoursSpent) {
 System.out.println("Hi Dad! It's " + name +". I'm in class!");
 classHours += hoursSpent;
 return classHours;
 }

 public String toString() {
 String s = ”Name: " + name + ", graduation year: " + graduationYear + "\n";
 s += "\tHours studying: " + studyHours + "\n";
 s += "\tHours in class: " + classHours;
 return s;
 }
}

• Student07 class does not
have a main method

• Note: JavaDocs and
getters/setters removed to
fit on the slide!

• Java allows classes to use
another class if they are both
in the same project (cs10 if
you followed my instructions
to set up IntelliJ)

StudentTrackerApp can use
Student07 class because they
are both in the cs10 project
(no need to import)

52

StudentTrackerApp is an application that
uses the Student07 class

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student07[] students = new Student07[numberOfStudents];
 students[0] = new Student07("Alice", 2027);
 students[1] = new Student07("Bob", 2024);
 students[2] = new Student07("Charlie", 2025);

 //print students with for-each loop
 System.out.println("Before studying");
 for (Student07 student : students) {
 System.out.println(student);
 }

No need to import Student class,
Java finds it if in the same project

Create an array of Student07 objects

• Print each student before studying
• Here we use a “for-each” loop

• Get first student at index 0
• Store in local variable called

student of type Student07
• Print student object calls toString

method
• Get next student until all students

processed
• Variable named student goes out

of scope when loop ends

StudentTrackerApp.java

53

StudentTrackerApp is an application that
uses the Student07 class

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student07[] students = new Student07[numberOfStudents];
 students[0] = new Student07("Alice", 2027);
 students[1] = new Student07("Bob", 2024);
 students[2] = new Student07("Charlie", 2025);

 //print students with for-each loop
 System.out.println("Before studying");
 for (Student07 student : students) {
 System.out.println(student);
 }

StudentTrackerApp.java
Output
Before studying
Name: Alice, graduation year: 2027
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob, graduation year: 2024
 Hours studying: 0.0
 Hours in class: 0.0
Name: Charlie, graduation year: 2025
 Hours studying: 0.0
 Hours in class: 0.0

54

StudentTrackerApp is an application that
uses the Student07 class

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student07[] students = new Student07[numberOfStudents];
 students[0] = new Student07("Alice", 2027);
 students[1] = new Student07("Bob", 2024);
 students[2] = new Student07("Charlie", 2025);

 //print students with for-each loop
 System.out.println("Before studying");
 for (Student07 student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);
 Student07 student = students[index];

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 student.study(time);
 }

Loop 10 times to simulate a real application doing some work

• Randomly pick one student to study
• Math.random returns double [0…1)
• Multiply by numberOfStudents
• Notice last index at 2, but multiply

random by 3 to get value [0…3)
• Cast double to integer for index

(truncate decimal component)
• Get student at randomly chosen index

• Simulate student studying for random amount of time
between 0 and 5 hours

• Call study method on Student to track hours spent studying

StudentTrackerApp.java
Output
Before studying
Name: Alice, graduation year: 2027
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob, graduation year: 2024
 Hours studying: 0.0
 Hours in class: 0.0
Name: Charlie, graduation year: 2025
 Hours studying: 0.0
 Hours in class: 0.0

55

StudentTrackerApp is an application that
uses the Student07 class

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student07[] students = new Student07[numberOfStudents];
 students[0] = new Student07("Alice", 2027);
 students[1] = new Student07("Bob", 2024);
 students[2] = new Student07("Charlie", 2025);

 //print students with for-each loop
 System.out.println("Before studying");
 for (Student07 student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);
 Student07 student = students[index];

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 student.study(time);
 }

StudentTrackerApp.java
Output
Before studying
Name: Alice, graduation year: 2027
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob, graduation year: 2024
 Hours studying: 0.0
 Hours in class: 0.0
Name: Charlie, graduation year: 2025
 Hours studying: 0.0
 Hours in class: 0.0
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Charlie. I'm studying!

56

StudentTrackerApp is an application that
uses the Student07 class

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student07[] students = new Student07[numberOfStudents];
 students[0] = new Student07("Alice", 2027);
 students[1] = new Student07("Bob", 2024);
 students[2] = new Student07("Charlie", 2025);

 //print students with for-each loop
 System.out.println("Before studying");
 for (Student07 student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);
 Student07 student = students[index];

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 student.study(time);
 }

 //print students after studying with C-style for loop
 System.out.println("After studying");
 for (int i = 0; i < students.length; i++) {
 System.out.println(students[i]);
 }
 }

Print all students using C-style loop after studying is complete

StudentTrackerApp.java
Output
Before studying
Name: Alice, graduation year: 2027
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob, graduation year: 2024
 Hours studying: 0.0
 Hours in class: 0.0
Name: Charlie, graduation year: 2025
 Hours studying: 0.0
 Hours in class: 0.0
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Charlie. I'm studying!

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student07[] students = new Student07[numberOfStudents];
 students[0] = new Student07("Alice", 2027);
 students[1] = new Student07("Bob", 2024);
 students[2] = new Student07("Charlie", 2025);

 //print students with for-each loop
 System.out.println("Before studying");
 for (Student07 student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);
 Student07 student = students[index];

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 student.study(time);
 }

 //print students after studying with C-style for loop
 System.out.println("After studying");
 for (int i = 0; i < students.length; i++) {
 System.out.println(students[i]);
 }
 }

Output
Before studying
Name: Alice, graduation year: 2027
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob, graduation year: 2024
 Hours studying: 0.0
 Hours in class: 0.0
Name: Charlie, graduation year: 2025
 Hours studying: 0.0
 Hours in class: 0.0
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Charlie. I'm studying!
After studying
Name: Alice, graduation year: 2027
 Hours studying: 7.613054664089111
 Hours in class: 0.0
Name: Bob, graduation year: 2024
 Hours studying: 7.355890449244431
 Hours in class: 0.0
Name: Charlie, graduation year: 2025
 Hours studying: 8.283218705770441
 Hours in class: 0.0

57

StudentTrackerApp is an application that
uses the Student07 class

Will the output be
the same if this
application program
is run again?
No!

StudentTrackerApp.java

58

Key points

1. Encapsulation brings code and data together into one thing called
an object

2. A class provides a blueprint for instantiating (creating) objects
3. An object’s data is stored in instance variables
4. Many objects can be instantiated from a class, each object gets its

own instance variables
5. Data can be public or private
6. Access to data is normally controlled by getter (return varible’s

value) and setter (update variable’s value) methods
7. Constructors are a way to initialize new objects
8. Constructors are called when an object is first instantiated
9. Primitive variables are stored on the stack
10. Objects are stored in the heap
11. Multiple applications can use the same class

	Slide 1
	Slide 2: From last class: One way to loop over array elements is to use a C-style for loop
	Slide 3: Agenda
	Slide 4: OOP relies on four main pillars to create robust, adaptable, and reusable code
	Slide 5: Today we will focus on encapsulation
	Slide 6: We start with a Student class to represent one student
	Slide 7
	Slide 8: Student0.java is our first “real” class represents one student
	Slide 9: Student0.java is our first “real” class represents one student
	Slide 10: Each student has “instance variables” that hold data about the student
	Slide 11: Student objects are created from the class by using the keyword “new”
	Slide 12: Instance variables can be accessed using the dot operator
	Slide 13: Instance variables can be accessed using the dot operator
	Slide 14: Agenda
	Slide 15: Pierson’s mental model of objects
	Slide 16: Pierson’s mental model of objects
	Slide 17: Access modifiers such as “protected” can prevent outside modification
	Slide 18: “setter” methods are used to update instance variables instead of dot operator
	Slide 19: “setter” methods are used to update instance variables instead of dot operator
	Slide 20: Setters usually take a value as a parameter that matches instance variable data type
	Slide 21: Setters usually take a value as a parameter that matches instance variable data type
	Slide 22: Setters allow an object to decide whether to accept a new value
	Slide 23: “Getters” return values
	Slide 24: Agenda
	Slide 25: Constructors allow us to initialize an object when it is instantiated
	Slide 26: Constructors run first when an object it is instantiated; allow object initialization
	Slide 27: Overload constructors (and other methods) to create multiple method versions
	Slide 28: Overload constructors (and other methods) to create multiple method versions
	Slide 29: Objects can have other methods other than a constructor
	Slide 30: Objects can have other methods other than a constructor
	Slide 31: Agenda
	Slide 32: Recall: Java defines several primitive types, each of fixed memory size
	Slide 33: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 34: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 35: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 36: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 37: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 38: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 39: Declaring a primitive variable allocates stack space that holds variable’s value
	Slide 40: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 41: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 42: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 43: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 44: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 45: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 46: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 47: Declaring objects makes pointer on the stack, but object itself is elsewhere
	Slide 48: Special toString method returns a String representation of an object
	Slide 49: Agenda
	Slide 50: Frequently we will create classes and use them in application or driver programs
	Slide 51: Frequently we will create classes and use them in application or driver programs
	Slide 52: StudentTrackerApp is an application that uses the Student07 class
	Slide 53: StudentTrackerApp is an application that uses the Student07 class
	Slide 54: StudentTrackerApp is an application that uses the Student07 class
	Slide 55: StudentTrackerApp is an application that uses the Student07 class
	Slide 56: StudentTrackerApp is an application that uses the Student07 class
	Slide 57: StudentTrackerApp is an application that uses the Student07 class
	Slide 58: Key points

