CS 10:

Problem solving via Object Oriented
Programming

Synchronization

» 1. Threads and interleaving execution

2. Producer/consumer

3. Deadlock, starvation

Threads are a way for multiple processes to

run “concurrently”

Threads Assume MyThread IS a

class that extends
Thread

MyThread mMust
MyThread 2 implement a run
method

Execution begins by
calling start on a
MyThread Object, run
method then executes

MyThread 1

MyThread n

main() {
MyThread t = new MyThread() ;

//start thread at run method, main C I ointo halt
thread keeps running dan Call join 1O N4

t.start () main program until

thread finishes
//halt main until thread finishes

t.join ()

Concurrent threads can access the same

resources; this can cause problems

Concurrency

MyThread 1 total+=1

VT MyThread
allfphosiaim ‘ static int total
» A static variable is a Class variable, ' total+=1

there is only one MyThread n
* Every Object of MyThread Class
references the same static variable

* Threads can be interrupted at any time by the Operating System
and another Thread may run

* When each Thread tries to increment total, it gets a current copy
of total, adds 1, then stores it back in memory

 What can go wrong? 4

Let’s make it interesting, what is the final

value of total?

Incrementer.java

total is static so it is a Class variable
(one total for all Incrementer Objects)

7 public class Incrementer extends Thre

8 private static int total = 9; // a variable shared by all incrementers
9 private static final int times = 1@Baqggi____--::-iff-T?ny times to increment total, in each thread
10
1= One million (not a trick)
12 * Increments total the specified number of times
13 */
al4e public void run() { i P
i for tint 0t 4 < timess ise) { What will total be at end:
16 , total Top three guesses?
18 }
19

20- public static void main(String [] args) throws Exception { Two Incrementer ObjECtS that
g% Incrementer incl = new Incrementer(); / eXtend Thread (so et

Incrementer incZ = new Incrementer();

23 H

24 // Fire off threads and wait for them to complete Implement run() methOd)

25 incl.start(); . .

e inc2. startO: * start() begins Thread running and calls run() method
o 123-;21:85 * main() continues running after incl.start(), so inc2
29 starts immediately after inc1 (main() does not block
30 Syktem.out.println("total at end = " + total);

31} and wait for incl to finish)

32 }

A

* incl.join() causes main() to block until inc1.run() finishes
* inc2.join() causes main() to block until inc2.run() finishes >

Move to next slide only after running

I CEINEREAEYE

Run Incrementer.java before proceeding

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementer.java

7 public class Incrementer extends Thread {

8 private static int total = 0; // a variable shared by all incrementers
9 private static final int times = 1000000; // how many times to increment total, in each thread
10
11= /**
12 * Increments total the specified number of times
13 */
al4e public void run() {
15 for (int 1 = 0; i < times; i++) {
16 total++;
17 }
18 }
19
20= public static void main(String [] args) throws Exception {
21 Incrementer incl = new Incrementer();
22 Incrementer incZ = new Incrementer();
23
24 // Fire off threads and wait for them to complete
25 incl.start();
26 inc2.start();
27 incl. join();
28 inc2.join();
29
30 System.out.println("total at end = " + total);
31 }
32 }

A

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementer.java

7 public class Incrementer extends Thread {

8 private static int total = 0; // a variable shared by all incrementers
9 private static final int times = 1000000; // how many times to increment total, in each thread
19 oppe .
e e Increment total one million times:
12 * Increments total the specified number of times o tOtaI++ iS rea"y 3 operations (lOOkS |ike 1)
13 */
14 public void runQ) { / 1. Get value of total from memory
15 for (int 1 = 0; i < times; i++) {
16 total++; 2. Add one to total
17 .
18 3 ’ 3. Write total back to memory
19
20= public static void main(String [] args) throws Exception {
21 Incrementer incl = new Incrementer(); . H . HPY
- Incrementer incZ — new Incrementer(y, OPErating System might interrupt a Thread at any point:
23 o it’
24 // Fire off threads and wait for them to cé_mnp élteread? Value Of tOtaI fr:om men_]ory (SaY It's 10)
25 incl.startQ; * incl gets interrupted and inc2 begins running
26 inc2.start(); . . .
27 incl.joinQ); * inc2 reads value of total (10), increments and writes
58 he? . o :
o tnez-Jewne) back (total=11)
30 System.out.println("total at end = " + total);
S * Sayinc2 runs for 5 iterations (total=15)

A

* inc2 interrupted and inc1 resumes running
* incl increments total to 11 and writes it back
e total now 11 not 16 as expected

Incrementerinterleaving.java demonstrates

interruptions (sometimes)

Incrementerinterleaving.java

6 public class IncrementerInterleaving extends Thread {

7 private static int total = 0; // a variable shared by all incrementers

8 private static final int times = 5; // how many times to increment total, in each thread

9 private String name; // for display purposes

10

12 P i e e oSS m total static as before

Bl Will loop 5 times in run() method

150/ Each Thread gets a name for clarity

16 * Increments total the specified number of times

17 */
218 public void run() { . L. .

19 for (int i = 0; i < times; i++) { * Printing to console is slooowwww

20 int temp = total; . . .

21 System.out.println(name + " gets " + temp); ¢ lees more time for OS to Interrupt

22 temp = t 1; .
0 total = tenp: « Console output shows when read and write
gg) System.out.println(name + " puts " + temp); total

SO * Might expect total to be 10 (5 from incl
28¢= public static void main{(String [] args) throws Exception { H

29 IncrementerInterleaving incl = new IncrementerInterleaving("one"); and 5 from |nC2)

30 IncrementerInterleaving incZ = new IncrementerInterleaving("two");

31

gg {gcii;:agifé;hreads and wait for them to complete o Sometimes totalis 10

i ?”Cf-%t‘.""g); * Most of the time it is not

incl.join(Q); .

gg inc2.join(); * Bugs caused by multiple threads can be

38 System.out.println("total at end = " + total); deViIiShly triCky to find

39 } 9

40 }

A1

Incrementerinterleaving.java

* Run several times
* Interrupted execution causes tricky bugs
* Sometimes it works as expected

e Most of the time it doesn’t...

10

Java provides the keyword synchronized to

make some operations “atomic”

IncrementerTotal.java * IncrementerTotal Class keeps

] a total instance variable
public class IncrementerTotal { « Value of total incremented

priva.te int tot Sl via inc() method

public sydchronized void inc{){ * inc() method is synchronized
total++ so only one Thread at a time

} can be inside inc()

} * IncrementerTotal Class used

. . | on next slide
e synchronized keyword in front of inc method means only one

thread can be running this code at a time

* If multiple threads try to run synchronized code, one thread
runs, all others block until first one finishes

* Once first thread finishes, OS selects another thread to run

« synchronized makes this code “atomic” (e.g., as if it were one
instruction)

e This synchronized approach is called a “mutex” (or monitor), acts
like a “lock” on static total variable

11

IncrementerSync.java uses atomic

operations to ensure desired behavior

IncrementerSync.java

total now an IncrementerTotal Object

total.inc() is synchronized
8 public class IncrementerSync extends Thregd {

9 private static IncrementerTotal total = new IncrementerTotal(); // a variable shared by all incrementers
10 private static final int times = 1000000; // how many times to increment total, in each thread
11
12= Sx*
13 * Increments total the specified number of times
14 */ . .
415+ public void runQ) { * Synchronized total.inc() ensures only one
16 for (int 1 = @; i < times; i++) {
17 total . inc(); g Thread inside inc() at a time
18 } . .
o * inc() runs to completion before another
20 .
21= public static void main(String [] args) throws Exception { Thread a"owed In
22 IncrementerSync incl = new IncrementerSync();
23 IncrementerSync inc2 = new IncrementerSync(); public class IncrementerTotal {
24 private int total = 0;
25 {/ Fire off threads and wait for them to complete public synchronized void inc() {
26 }ncl.start(); total++;
27 inc2.start(Q); }
28 incl.joinQ); }
29 inc2.join(Q);
30
31 System.out.println("total at end = " + total.total);

32 }
33} \
total.total now always 2 million

12

1. Interleaving execution
» 2. Producer/consumer

3. Deadlock, starvation

13

Producers tell Consumers when ready,

Consumers tell Producers when done

Big idea: keep Producers and Consumers in sync

Producer: Consumer:
* Tell Consumer when item is e Block until woken up by
ready (notify Or notifyall) Producer that item ready (wait)
e Block until woken up by * Process item and tell Producer
Consumer that item handled when done (notify or
(wait) notifyAll)

* Tell Consumer when next item e Block until woken up by
is ready (notify Or notifyall) Producer (wait)

* There can be multiple * There can be multiple
Producers Consumers

14

Producers and Consumers synchronized

with wait, notify Or notifyAll

wait ()

* Pauses and removes Thread from synchronized method

» Tells Operating System to put this Thread into a list of Threads waiting
to resume execution

 wait () allows another Thread to enter synchronized method

notify ()

» Tells Operating System to pick a waiting Thread and let it run again
(not a FIFO queue, OS decides — take CS58 for more)

* Thread should check that conditions are met for it to continue

notifyAll ()
 Wake up all waiting Threads
e Each Thread should check that conditions are met for it to continue

15

Scenario: Producers produce messages for

Consumers, need to keep in sync

Example

! Consumer [
® e Consumers receive
messages from
Producers
MessageBox .
e Can be multiple
Consumers
ol processing
Producer
messages
 Need a way to make sure Producers don’t create
messages faster than Consumers can process them
* If Producers are too fast, need to make them wait
v until Consumers are ready

* Business school term is “WIP” (work in process) to
describe items built up if Producers generate items
faster than Consumers handle them

16

We can use a semaphore to keep

Producers and Consumers in sync

Example
3
()
Producers check if Consumers check for
MessageBox empty, wait message, wait if empty,
if not ernpty, MessageBox otherwisc? consume
otherwise message in box

produce message

null

* MessageBox Class is acting as a semaphore

* Semaphore can contain data (here one message)

e Unlike a semaphore, a mutex does not contain data
v * A mutex s like a lock — a process takes the lock and
no other process can enter until Tock returned

17

Producer passing messages to Consumer

using semaphore

Example
rgb Stflf‘g msg = ‘message'. Sl!lﬂg msg,
MessageBox empty, Consumers wait for
Producer puts message MessageBox notificatio
gbI}/eli:sageBox MessageBox
MessageBox
pul("message ')* - holds String
produced by a
Producer and will
MessageBox put provide it toa
method synchronized so Consumer via
only one Producer take method
v Thread can be in put

method at a time |

18

Producer passing messages to Consumer

using semaphore

Example

awny

Producer

String msg = "message”;

A Producer placed a

using put
put calls

notifyall to let
other processes
check if they
should run

‘message”

All Producers

wake up and check box,
see full box, wait until
box empty again

MessageBox

Consumers wait for
message in MessageBox MessageBox notificatio

All Consumers
wake up on put
notifyAll and

try to take
message

| Consumer Il

String msq;

19

Producer passing messages to Consumer

using semaphore

Example
® |String msg = "message”; String msg;
Producers wait until All waiting Consumers
MessageBox is empty try to access message
One succeeds and
MessageBox
removes messag
others wait
take()
‘message” | <%
MessageBox take method synchronized so
only one Consumer Thread can be in take
method at a time
v take removes message from MessageBox

Once message removed, take calls notifyAll
to let other processes check if they should run -

Producer passing messages to Consumer

using semaphore

Example
® |String msg = "message”; String msg;
Producer waits until Consumers wait until
MessageBox is empty MessageBox is full
MessageBox
null
take notifies all threads waiting for MessageBox
access using notifyall
* All Producers and Consumers wake up
v Consumer see empty box and go back to waiting
* Producers wake up and may put message [/ msg == ‘message |

now, one succeeds and others go back to waiting
* Process repeats with Producers and Consumer in sync 21

MessageBox.java implements a semaphore

that holds one String

MessagEBOX.java Producer Q , Consumer

7 public class MessageBox { MessageBox holds one String called message
8 private String message = null; MessageBox

©MessageBox is empty, fill it Producers will fill message using put() method

10 N _ Consumer will process message using take() method

11 Put m as message once it's okay to do so (current message has been taken)

12

13 public synchronized void put(String m) throws InterruptedException {

14 //check to see th null, might have been woken by put() notifyAll

12 Wh“:ag‘égf_'“ge = null) { Synchronized put() makes sure only one Producer at a
17 time can store message

18 essage = m; . . .

19 notifyAll(); //wakes producers AND consumers * Wait until MessageBox IS empty

2} #Notify all Threads (Producers and * If woken up (resume running at wait), make
22- /** Consumers) to check MessageBox sure to check if MessageBox is empty

23 * Takes message once it's there, leaving empty message

24 */

25¢ public synchronized String take() throws InterruptedException {

26 //check to see if message is null, might have been woken by take() notifyAll

27 while (message == null) {

28) waitQ); * It could be the case that many Producers
29

30 String m = message; were woken up and another Producer

31 message = null; :

32 notifyAll(); //wakes producers AND consumers alre_ady filled the Messa’geBO)f

33 return m; * An if statement wouldn’t suffice, need a
34 }

35 while to go back to sleep if box filled 22

MessageBox.java implements a semaphore

that holds one String
MessageBox.java Producer Q ,mumer

7 public class MessageBox {

8 private String message = null; MessageBox

9

10= /**

11 * Put m as message once it's okay to do so (current message has been taken)

12 */

13= public synchronized void put(String m) throws InterruptedException {

14 //check to see if message is not null, might have been woken by put() notifyAll

ig while (gt(a;sage = null) { Synchronized ensures only one Consumer
wait();

17 } can take message

18 message = m,;

19 notifyAll(); //wakes producers AND If woken up, check message:

20 } L.

21 * If empty, go back to waiting (another

eI Consumer already took it)

23 * Takes message once 1 there, leaving emptyséssage

24 */ * If not, return message and set to null

25¢ public synchronized String take() thr InterruptedException {

26 //check to see if message is , might have been woken by take() notifyAll

27 while (message == null) { MessageBox now empty, notify all

28 wait();

29 } Threads to wake up and check

30 String m = message;

31 message = null; MessageBox

32 notifyAllQ); wakes producers AND consumers

33 return m;

34 }

5 23

Producers use MessageBox to pass

messages to Consumers

Producer.java MessageBox as parameter Q , corsumet
If multiple Producers, all
6 public class Producer extends Thread would get the same MessageBox
7 private MessageBox box;
8 private int numberToSend; MessageBox
9
10= public Producer(MessageBox box, int numberToSend) { . .
11 this.box = box; . iﬁlﬁen Thread starts, wait random interval to
;lé) this.numberToSend = numberToSend; simulate doing work, then try to put a message
14 in the MessageBox using put()
A _ » put() will cause this Producer to wait() if there
16 * Wait for a while then S a message .
17 * Puts "EOF" when # Sages have been put IS already a message
18 oo * wait() will remove this Thread from put() and
219 public void run() { . -
>0 oy { add it to a pool of Threads waiting to run
21Send EO for (int 1 = @; 1 < numberToSend; i++) {
22when all sleep((int)(Math. random()*5000)); //sleep for random time up to 5 seconds
23 box.put("message #" + 1); //put a new message in MessageBox
g g g
,amessages
25 box.put("EOF"); //EOF means end of fj
Zesent } . When notifyAll() received, this Thread will wake
27 catch (InterruptedException e) { up and resume running in put() method of
28 System.err.println(e);
29 } MessageBox
g?) } * If MessageBox is empty it will store it’s message

and return here, else go back to waiting

Consumers retrieve messages from the

MessageBox

COnsumer.java Store same MessageBox that Producer Q , Consumer

Producers use

MessageBox

6 public class Consumer extends Thread

7
8
9_
10
11
12
13¢
14
15
A16_
17
18
19
20
21
22
23
24
25
26
27 }

private MessageBox box;

public Consumer(MessageBox box) {
this.box = box;

}

/**
* Takes messages from the box and prints them, until receiving EOF
*/

public void runQ) { Take message from MessageBox

try {
i (! - ())-equals("EOF")) {

System. out.println(message); Thread to wait
} } If this Thread retrieves message,
catch (InterruptedException e) { check for EOF and exit

System.err.println(e);

}

25

ProducerConsumer uses all three

components to pass messages

ProducerConsumer.java Create a MessageBox, a Producer, proucer Q , Consumer
and a Consumer

8 public class ProducerConsumer {

9 pu?lic static final int numMessages = 5; // how many messages to send from produc MessageBox
10 private Producer producer;
11 ivate C ; °
[Privere Tonsumer onsaner Pass the same MessageBox Object to
13« public ProducerConsumer() {
14 MessageBox box = new MessageBox(); both the Producer and the Consumer
15 producer = new Producer(box, numMessages);
16 = C b ;
16 consumer = new Consuner(box) (here 1 producer and 1 consumer)
18
19s /x*

207 Just starts the producer and consurer ruming . Producer run() will wait a random period, then put a message

22¢ public void communicate() {

23 producer stare(r; g =" iN MessageBox, then wait until MessageBox empty

24 consumer.start();

AR Consumer will wake up on notifyAll() from MessageBox and
6 P e ProducerConsunersy. commint cate(; take() message

29 System.out.pflint1ln("Peace out! (threads are still running but I'm done)™");
}

o take() issues notifyAll() after taking message, waking
Producer to put() next message

ProducerConsumer . . .
main() thread will complete after starting both

Object, call .
JEEL . Producer and Consumer Objects
G@m\ﬂﬂﬂlc%féiu ¢ Expressions f'>| EEwnwor Log [Console 82 Call Hierarchy

112.jdk/Contents/Home/bin/java (Feb 22, 2018, 11:55:46 AM)

Peace out! (threads are still running but I'm done)

message #0
message #1
message #2

message #3 main() ends, but Producers and Consumers threads run to
message #4 .
completion because daemon not set to true

After creating

26

1. Interleaving execution
2. Producer/consumer

» 3. Deadlock, starvation

27

Synchronization can lead to two problems:

deadlock and starvation

Deadlock Starvation

* Objects lock resources e Thread never gets

 Execution cannot proceed resource it needs
because object needs a * Thread A needs
resource another locked resource 1 to complete

* Object A locks resource 1 e Other threads always

 Object B locks resource 2 take resource 1 before

* A needs resource 2 to A can get it

proceed but B has it locked <+ We say A is starved
* B needsresources1to

proceed but A has it locked
* A and B are deadlocked

28

Dinning Philosophers explains deadlock

and starvation

Dinning Philosophers

Problem set up
* Five philosophers (P,-P,) sit at

F K a table to eat spaghetti
 There are forks between each
{' of them (five total forks)
¥ P e Each philosopher needs two
} forks to eat

e After acquiring two forks,
philosopher eats, then puts
P both forks down
* Another philosopher can then
pick up and use fork previously
put down (gross!)

29

Dinning Philosophers explains deadlock

and starvation

Dinning Philosophers

o

Naive approach
* Each philosopher picks up fork

on left

* Then picks up fork on right

* Deadlock occurs if all
philosophers get left fork, none
get right fork

30

For deadlock to occur four conditions must

be met

Deadlock conditions

1. Mutual exclusion
e Atleast one resource class must have non-sharable access. That is:

 Either one process is using a resource (and others wait), or
 Resourceis free

2. Hold and wait
 Atleast one process is holding a resource instance, while also waiting to be

granted another resource instance. (e.g., Each philosopher is holding on to
their left fork, while waiting to pick up their right fork)

3. No preemption
 Resources cannot be pre-empted; a resource can be released only voluntarily

by the process holding it (e.g., can't force philosophers to drop their forks.)

4. Circular wait
 There must exist a circular chain of at least two processes, each of whom is

waiting for a resource held by another one. (e.g., each Philosopherf(i] is
waiting for Philosopher[(i+1) mod 5] to drop its fork.) 31

From Coffman, 1971

Three ways to ensure deadlock does not

OCCUr

1. Ensure circular wait cannot occur by numbering Forks
and reaching for smallest numbered Fork first

2. Prevent circular wait by making one of the philosophers
wait until at least one other philosopher is finished

3. Prevent hold and wait by making Fork acquisition an
atomic operation (e.g., must get both Forks in one step)

32

We can break the deadlock by ensuring the

“circular wait” does not occur

Dinning Philosophers Eliminate circular wait

* Number each fork in circular
fashion

* Make each philosopher pick up
lowest numbered fork first

* All pick up right fork, except P,
who tries to pick up left fork O

* Either P,or P, get fork O

* If P,gets it, P, waits for fork O
before picking up fork 4, so P,
eats

* P, eventually releases both forks
and P, eats

* Others eat after P,

e Cannot deadlock

Could also force one of the

Philosophers to wait at first .

Fork.java models forks in the Dining

Philosophers problem

Fork.java available tracks if this Fork

Object is being used
6 public class Fork { j{//////

7
8
9_

10

11

12

13

14

15

16+

17

18

19

20 }

private boolean available = true;

public synchronized void acquire() throws InterruptedException {
while (l!available) {
wait();

) \ Synchronized acquire() causes
available = false wait if Fork is not available

¥ If acquire Fork, set available false

public synchronized void release() {
available = true;
notifyAll(Q);

} * release() makes Fork available to others
* Use notifyAll() to tell Philosophers a Fork is
free

34

Philosophers try to eat by getting both the

left and right Forks

Philosopher.java Philosopher runs on a Thread and is
P rivate int e e T message pr passed left and right Fork (also passed a
8 private Fork left, right; // the resources .
13 public_Philosopher‘(int num, Fork left, Fork right) { phllosopher number)
12 this left - Teft;
13 this.right = right;
14 }
15
12 /* Waits a bit -- 1 to 5 seconds
ig pr'{vate void randPause() throws InterruptedException {
g?) sleep(1000 + (int)(Math.random()*4000)); .
2 Philosophers try to eat three meals
23 /**
24 * Start the rounds of resource acquisition
25 */
EZ pUbl;EerlEE;:_:agl{e; meal < 3; meal++) {/
29 Syster;'l.out.print'ln(num + " finished meal " + meal); . . .
30] ctenout.orintlncoum + * all done®: * eat() tries to acquire() the left and right fork
i% i (after universe contemplation of course)
B e round / * Always tries to get Fork on left first (could be
37= public void eat() { -
gg £ gystem.out.println(num + " contemplating the universe, working up an appetite"); a prObIem If Forks nOt numbered properly)
40 randPause(); . . oy ®
jé iy;:em.ou't.pril:!tln(num + " hungry; going for left fork"); ® GCQU”'E() WI" Ca use a Walt If Fork nOt
43 S;sté;?g:::g;tln(num + " got left fork"); availa ble
44 randPause();) v oing for ri .
0 Montacasire(o; | oot for rien fors « Once philosopher has both Forks, he can eat
47 System.out.println(num + " got right fork; chowing down"); . .
jg ;;Egz:l:‘zzg?;rintln(num + " finished eating; dropping forks"); e Phllosopher releases bOth FOrkS after eatlng
st eft-retease0),
52 35

53 catch (InterruptedException e) {
54 System.err.println(e);

DiningPhilosophers.java uses five

Philosophers and five Forks

DiningPhilosopher.java : : : : x P 1
g pher,) Will hold multiple Philosophersin .
- / ArraylList P, P,
8 public class DiningPhilosophers
9 private ArraylList<Philosopher> philosophers; R L
10 L R
11= SE*
12 * Creates the forks and philosophers H
A Set up five Fork P, R L Ps
14= public DiningPhilosophers() { 1 H
15 ArrayList<Fork> forks = new Ar‘r‘ayList<For‘k>/ ObJeCts n
16 for (int fork = @; fork < 5; fork++) { ArrayList
17 forks.add(new Fork());
18 }
19
20 philosophers = new ArrayList<Philosopher>();
21 for (int phil = @; phil < 5; phil++) {
22 philosophers.add(new Philosopher(phil, forks.get(phil), forks.get({phil+1)%5)));
23 }
24 . .
o \ Create five Philosophers and pass the left
26_ /** . .
27 * Gets each philosopher started at the table and rlght Fork ObJeCts
28 */ — H —_
29- public void dine() { P left = F,, right = F,
30 for (Philosopher phil : philosophers) { —_ : —
31 phil.start(); P4 Ieft - F4’ rlght - Fo
z) } Could deadlock!
34 _ S Reverse Forks for P, and won’t deadlock
35= public static void main(String[] args) {
36 new DiningPhilosophers().dine();
o) ¥ Start each Philosopher dining

(calls run() on previous slide) 36

DiningPhilosophers.java

e Run several times
e Sometimes deadlocks

* Try adjusting pause time to longer to make
it less likely to deadlock

37

Another approach is to prevent “hold and

wait” by picking up both forks atomically

Dinning Philosophers

P ity

.0

Eliminate hold and wait

Make picking up both forks an
atomic operation

Forks no longer control their
destiny as in prior code

Now we lock both with a mutex
Could lead to starvation if one
philosopher always picks up
before another

In this case starvation will
eventually end because the
philosophers only eat a limited
number of meals

38

Prevent deadlocks by making getting both

Forks an atomic operation

MonitoredDiningPhilosopher.java

9 public class MonitoredDiningPhilosophers {

10 private ArraylList<MonitoredPhilosopher> philosophers;

11

12- 74

13 * Creates the forks and philosophers

14 */

15 public MonitoredDiningPhilosophers() {

16 ArraylList<MonitoredFork> forks = new ArraylList<MonitoredFork>();

17 for (int fork = @; fork < 5; fork++) {

18 forks.add(new MonitoredFork());

19 }

20

21 philosophers = new ArrayList<MonitoredPhilosopher>();

22 for (int phil = @; phil < 5; phil++) {

23 philosophers.add(new MonitoredPhilosopher(this, phil, forks.get(phil), forks.get((phil+1)%5)));

24 } ° .

5 3 * Move acquire() and release() to main program,
26

27 /** . Ld .o

o/~ Gets sach philosopher started at the table not controlled by individual Forks now

29 */ . . .
% public void dine { . * Synchronized only allows one Philosopher in
31 for (MonitoredPhilosopher phil : philesopher,

= g e acquire() at a time, wait if left and right Forks
34 ¥

35 H

2 not available

37 * Simultaneously ac S both resources ° °

B Y * Pick up both Forks while here

39 public synchronized void acquire(MonitoredFork left, MonitoredFork right) throws InterruptedExteption {

40 while (!left.available || !right.available) {

41 wait(Q);

42 }

43 left.available = false;

44 right.available = false; .

5ot * release() also synchronized

47+ /** .

48 * Releases both resources o DrOp both Forks Whlle here

49 */

g@li publ%gfi)-fz\cfr‘;ri'e{zblzd:v:iﬂer;elease(Mon'i.tor‘edFork left, MonitoredFork right) { ¢ noti‘fyAII() Whe n Fo rks are ava ila b Ie

52 right.available = true;

53 notifyAll();

54 ¥

55

56 public static void main(String[] args) { 39

57 new MonitoredDiningPhilosophers().dine();

40

	Slide 1
	Slide 2: Agenda
	Slide 3: Threads are a way for multiple processes to run “concurrently”
	Slide 4: Concurrent threads can access the same resources; this can cause problems
	Slide 5: Let’s make it interesting, what is the final value of total?
	Slide 6: Move to next slide only after running Incrementer.java
	Slide 7: Threads can be interrupted at any point, this can cause unexpected behavior
	Slide 8: Threads can be interrupted at any point, this can cause unexpected behavior
	Slide 9: IncrementerInterleaving.java demonstrates interruptions (sometimes)
	Slide 10: DEMO: IncrementerInterleaving.java
	Slide 11: Java provides the keyword synchronized to make some operations “atomic”
	Slide 12: IncrementerSync.java uses atomic operations to ensure desired behavior
	Slide 13: Agenda
	Slide 14: Producers tell Consumers when ready, Consumers tell Producers when done
	Slide 15: Producers and Consumers synchronized with wait, notify or notifyAll
	Slide 16: Scenario: Producers produce messages for Consumers, need to keep in sync
	Slide 17: We can use a semaphore to keep Producers and Consumers in sync
	Slide 18: Producer passing messages to Consumer using semaphore
	Slide 19: Producer passing messages to Consumer using semaphore
	Slide 20: Producer passing messages to Consumer using semaphore
	Slide 21: Producer passing messages to Consumer using semaphore
	Slide 22: MessageBox.java implements a semaphore that holds one String
	Slide 23: MessageBox.java implements a semaphore that holds one String
	Slide 24: Producers use MessageBox to pass messages to Consumers
	Slide 25: Consumers retrieve messages from the MessageBox
	Slide 26: ProducerConsumer uses all three components to pass messages
	Slide 27: Agenda
	Slide 28: Synchronization can lead to two problems: deadlock and starvation
	Slide 29: Dinning Philosophers explains deadlock and starvation
	Slide 30: Dinning Philosophers explains deadlock and starvation
	Slide 31: For deadlock to occur four conditions must be met
	Slide 32: Three ways to ensure deadlock does not occur
	Slide 33: We can break the deadlock by ensuring the “circular wait” does not occur
	Slide 34: Fork.java models forks in the Dining Philosophers problem
	Slide 35: Philosophers try to eat by getting both the left and right Forks
	Slide 36: DiningPhilosophers.java uses five Philosophers and five Forks
	Slide 37: DEMO: DiningPhilosophers.java
	Slide 38: Another approach is to prevent “hold and wait” by picking up both forks atomically
	Slide 39: Prevent deadlocks by making getting both Forks an atomic operation
	Slide 40

