CS 10:

Problem solving via Object Oriented
Programming

String Finding

» 1. Boyer-Moore algorithm

2. Tries

Matching/recognizing patterns in

sequences is a common CS problem

Example: Find pattern in DNA data

AGGACGCCGCATTGACCATCTATGAGATGCTCCAGAACATCTTTGCTATTTICAG
ACAAGATTCATCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCT
AATGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAACTGGAGA
AAGAAGATTTCACCAGGGGAAAACTCATGAGCAGTCTGCACCTGAAAAGATATTA
ATGACCAACAAGTGTCTCCTCCAAATTGCTCTCCTGTTGTGCTTCTCCACTACAG
CTCTTTCCATGAGCTACAACTTGCTTGGATTCCTACAAAGAAGCAGCAATTTTCA
GTGTCAGAAGCTCCTGTGGCAATTGAATGGGAGGCTTGAATACTGCCTCAAGCAC Task
AGGATGAACTTTGACATCCCTGAGGAGATTAAGCAGCTGCAGCAGTTCCAGAAGG

ATGACCAACAAGTGTCTCCTCCAAATTGCTCTCCTGTTGTGCTTCTCCACTACAG Find a substring
CTCTTTCCATGAGCTACAACTTGCTTGGATTCCTACAAAGAAGCAGCAATTTTCA L
GTGTCAGAAGCTCCTGTGGCAATTGAATGGGAGGCTTGAATACTGCCTCAAGCAC in this large

AGGATGAACTTTGACATCCCTGAGGAGATTAAGCAGCTGCAGCAGTTCCAGAAGG :
AGGACGCCGCATTGACCATCTATGAGATGCTCCAGAACATCTTTG CAG string
ACAAGATTCATCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTC
AATGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAACTGG
AAGAAGATTTCACCAGGGGAAAACTCATGAGCAGTCTGCACCTGAAAAGATATTA

TGGGAGGATTCTGCATTACCTGAAGGCCAAGGAGTACAGTCACTGTGCCTGGACC Query string of
ATAGTCAGAGTGGAAATCCTAAGGAACTTTTACTTCATTAACAGACTTACAGGTT leneth
AGGACGCCGCATTGACCATCTATGAGATGCTCCAGAACATCTTTGCTATTTTCAG ength m

ACAAGATTCATCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCT @ Text of length n
AATGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAACTGGAGA
AAGAAGATTTCACCAGGGGAAAACTCATGAGCAGTCTGCACCTGAAAAGATATTA I -
TGGGAGGATTCTGCATTACCTGAAGGCCAAGGAGTACAGTCACTGTGCCTGGACC J€nerally assumem << n
ATAGTCAGAGTGGAAATCCTAAGGAACTTTTACTTCATTAACAGACTTACAGGTT (but doesn’t have to3 be)

A brute force approach starts at index O

and works forward
Find query of length m=6, in text of length n=12

Index

Text| A B C Z E F A B C D E F

Try0O| A B C D E F

Brute force approach

e Start query string and text at index 0

* Loop over length of query string

e Look for match

* Move query string right one space if find mismatch

Compare each character in text and query

string, move right if match
Find query of length m=6, in text of length n=12

Index

Text

Try O

Brute force approach

e Start query string and text at index 0

* Loop over length of query string

e Look for match

* Move query string right one space if find mismatch

Compare each character in text and query

string, move right if match
Find query of length m=6, in text of length n=12

Index

Text [\ C Z E F A B C D E F

Try O .

Brute force approach

e Start query string and text at index 0

* Loop over length of query string

e Look for match

* Move query string right one space if find mismatch

Compare each character in text and query

string, move right if match
Find query of length m=6, in text of length n=12

Brute force approach

e Start query string and text at index 0

* Loop over length of query string

e Look for match

* Move query string right one space if find mismatch

If find characters that do not match, move

guery right one space in text and try again
Find query of length m=6, in text of length n=12

Mismatch, slide query one space right and try again

Brute force approach

Start query string and text at index 0

Loop over length of query string

Look for match

Move query string right one space if find mismatch

Another mismatch, move query right one

space again
Find query of length m=6, in text of length n=12

Index
Text| A C Z E F A B C D E F
Try0| A C D E F
1 B C D E F

Mismatch, slide query one space right and try again (and again...)

Brute force approach No need to keep checking
« Start query string and text at index 0 T auery string goes past
_ length of text
* Loop over length of query string
e Look for match
* Move query string right one space if find mismatch

Continue until hit end of text less length of

query string or find match
Find query of length m=6, in text of length n=12

Index

Text| A B C Z E F

Try0O| A B C D E F

1 A | B | C| D] E F

n-m A B C D E F

Here match found after n-m+1 checks
Each check of length m

Run time complexity?

O(nm)

A brute force approach is inefficient, O(nm)

BoyerMoore.java oyerall O(nm)

17=

18
19
20
Z21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

We can do better!

public static int findBruteForce(char[] text, char[] pattern) {
System.out.println("Brute force looking for " + String.valueOf(pattern) +
int n = text.length;
int m = pattern.length;

// Test for empty string
if (m == @) return @;

//brute force it -- loop over all char in text 0(n)
for (int i=0;i<=n-m;i++) { /& into the text
//loop over all characters in pattern while characters match 0(m)
int k = @; //index into the pattern
while (k<m && text[i+k] == pattern[k]) {

k++;
} [}
//if at end of pattern, then found match sta at index i in text
if (k==m) {

System.out.println("\tFound match at index " + 1i);

return i;
}

}
//match not found

System.out.println("\tNo match found");
return -1;

A\

Return -1 if loop over text
and do not find pattern

Look for pattern in text

" in " + String.valueOf(text));

Loop over all characters in
text where pattern can fit
No need to check beyond
n-m, pattern of length m
can’t fit in remaining text
O(n-m+1) =0O(n)ifn>>m

Loop over all characters in
pattern O(m)

If pattern matches text, then
found match, return indexin
text where pattern found

11

Boyer-Moore algorithm is more efficient

and works backwards
Find query of length m=6, in text of length n=12

Index

Text| A B C Z E

Try0O| A B C D E

Check text at index i=m-1=5, query at k=m-1=5

Boyer-Moore
e Start at index m-1
* Loop backward
* If mismatch:
* |If text not in query string, move query past current index
* If text in query string, move query to last occurrence of text 1

2

Boyer-Moore algorithm is more efficient

and works backwards
Find query of length m=6, in text of length n=12

Index

Text| A B C Z

Try0O| A B C D

Check text at index i=m-1=5, query at k=m-1=5
If match, then decrement i=4 and k=4

Boyer-Moore
e Start at index m-1
* Loop backward
* If mismatch:
* |If text not in query string, move query past current index
* If text in query string, move query to last occurrence of text 1

3

Boyer-Moore algorithm is more efficient

and works backwards
Find query of length m=6, in text of length n=12

Index

Text| A B C

Try0O| A B C

Z not in query, so any matches prior
to Z must all fail

* No need to check those

* Move query string one space past
Boyer-Mogre character not in query string (Z here)
* Startatindex m-1 * Avoids checks at indices 0-2

* Loop backward e Movetoi+m = 3+6 =9 and k=m-1=5
* If mismatch:

* |If text not in query string, move query past current index
* If text in query string, move query to last occurrence of text 1

4

On mismatch, slide query to last

occurrence of text, or past mismatch
Find query of length m=6, in text of length n=12

Index

Text| A B C

Try0O| A B C

1 A B C D E F

Check text at i=9 with query string at k=5
Boyer-Moore

e Start at index m-1
* Loop backward
* If mismatch:
* |If text not in query string, move query past current index
* If text in query string, move query to last occurrence of text 1

5

On mismatch, slide query to last

occurrence of text, or past mismatch

Find query of length m, in text of length n

Index
Text| A B C Z E F A B C E F

Try0O| A B C D E F

1 A B C D E

Boyer-Moore Mismatch, but D. isin query.strmg SO m.ove the last

e Start atind 1 occurrence of D in query string to text index (e.g.,
art at inaex m- move query so D is at index 9)

* Loop backward Don’t go backward!

* If mismatch:
* |If text not in query string, move query past current index
* If text in query string, move query to last occurrence of text

On mismatch, slide query to last

occurrence of text, or past mismatch
Find query of length m=6, in text of length n=12

Index

Text| A B C Z E F A B C D E

Try0O| A B C D E F

1 A B C D E

:
ﬁ

Boyer-Moore
e Startatindex m-1
* Loop backward

If had moved to first occurrence
of text in query string, might
) cause a move too far right, have
* If mismatch: to move to last occurrence

* |If text not in query string, move query past current index

* If text in query string, move query to last occurrence of text 1

7

On mismatch, slide query to last

occurrence of text, or past mismatch
Find query of length m=6, in text of length n=12

Index

Text| A B C Z E F

Try0O| A B C D E F

1 A B C D E F

2

Match found

Boyer-Moore
e Start atindex m-1 3 checks vs. 7 for brute force
Not greatly different for small strings,

* Loop backward
P but very different for large strings!

* If mismatch:
* |If text not in query string, move query past current index
* If text in query string, move query to last occurrence of text 1

8

Boyer-Moore can be O(n)

* Our version is simplified version of original Boyer-Moore

* Full Boyer-Moore algorithm is O(m+n), but since normally
n>>m, O(n) on “reasonable” text (e.g., not long strings of
same character)

* Does require pre-processing step to store last index of
each character in query. Easy way:
* Loop over each character in query string
e Store characters in Map with current index as value
* At end, Map will have the last index for each character

19

Boyer-Moore algorithm

BoyerMoore.java Look for pattern in text
49¢= public static int findBoyerMoore(char[] text, char[] pattern) {
50 System. out.println("Boyer-Moore looking for " + String.valueOf(pattern) + " in " + String.valueOf(text));
51 int n = text.length;
52 int m = pattern.length;
B /) Test for empty string Preprocess: create Map /ast
2 1f (m =) return 0; and set all distinct characters
57 // Initialization, create Map of last position of each chara =T(n) .
58 Map<Character, Integer> last = new HashMap<>(); / in M to -1
59 for (int i = @; 1 < n; i++) {
60 last.put(text[i], -1); // set all chars, by default, to -1
6l
62 For Cint 1= 03 1 <m; e L € Update to hold last occurrence
63 last.put(pattern[i], i); // update last seen positions .
61 } of character in pattern
65
66 // Start with the end of the pattern aligned at index m-1 in the text.
67 int i =m-1; // index into the text
68 int k =m - 1; // index into the pattern s Loop backward over pattern
69 while (i < n) {
70 if (text[i] == pattern[k]) 16// match! return i if complete match; otherwise, keep checking.
71 if (k == @) {
72 System.out.println("\tFound match at index " + i); . . .
73 ,retrn i /7 donel e Return index in text if
75 , ke pattern found
77 else { // jump step + restart at end of pattern
78 i 4=m - Math.minCk, 1 + last.get(text[i])); //move in text
5 y 7Moo /move toend of pattern \ Jump past character not in pattern (i += m-0)
81 } [[[
82 System. out.println("\tNo match found"); or move bV min of index into query (k) and
PR '"“”"“Ti" / not found last position of text character in pattern so
- Return -1 if not found 20

do not go backward

From Goodrich, Tamassia, Goldwasser

1. Boyer-Moore algorithm

» 2. Tries

21

How would you implement autocomplete?

* Consider autocomplete text boxes GO g|€

* A user starts typing, autocomplete compu
shows possible words user might computors for change
want given only a couple of computershars
characters EEEEEE sclence

compulsory
computer barn
computer monitor
computer games

* How would you implement that?

Typed in “compu” into Google,

* One way is with a Tri
One way is a lrie Google guesses what | want

(pronounced “try” to differentiate
from Tree, comes from “retrieve”)

22

Tries can find all substrings in text that

begin with a prefix string

Alphabet of d characters, and string length n * Trie is a multi-way tree

where each node is a letter
e Store set of words S in Trie

B b] with one node per letter
A N and one leaf for each word
* To match prefix, start at
S 0 B root and follow children
O $ 1] [m W until find stop character ($)
. <1 Ty : 7 51 ¢ Example: type “ca” and find
% é cart, car, and cat
T e To find string of length m,
T Height is length of longest string must go down m levels
T« Can be used to implement Set or ° |falphabethasd = |2]
5 characters, then O(dm) to

Map, not just autocomplete . _
find or insert 2

Compressed tries save memory

Alphabet of d characters, and string length n _
 Compressed trie stores

substrings if no branches (e.g.,
no branches after “ant” so put
“ibody” in one node, not five)
* Number of nodes reduced
from O(|n|) — total number of
letters in S, to O(|s|) — number
of wordsin S
e Saves memory, book shows
how to store indices to make
each node constant size
e Can be used for sorting
* Add all words into trie
* Do apre-order traversa2!l

Tries works on prefixes, we can also work

on suffixes with a Suffix trie

I

| mississippis }p\ A

I ppis l | ssippis ‘ ppisS l [ssippis | ppis l 55issippis

Suffix tries

» Store data by suffixes (end of words)

Add node for each substring X[j..n-1], for j=0,1,..n-1

Use compressed trie (algorithm complicated, stores in O(n) time)
Search for suffixes; start at root and work downward

See course web page for more details 25

26

	Slide 1
	Slide 2: Agenda
	Slide 3: Matching/recognizing patterns in sequences is a common CS problem
	Slide 4: A brute force approach starts at index 0 and works forward
	Slide 5: Compare each character in text and query string, move right if match
	Slide 6: Compare each character in text and query string, move right if match
	Slide 7: Compare each character in text and query string, move right if match
	Slide 8: If find characters that do not match, move query right one space in text and try again
	Slide 9: Another mismatch, move query right one space again
	Slide 10: Continue until hit end of text less length of query string or find match
	Slide 11: A brute force approach is inefficient, O(nm)
	Slide 12: Boyer-Moore algorithm is more efficient and works backwards
	Slide 13: Boyer-Moore algorithm is more efficient and works backwards
	Slide 14: Boyer-Moore algorithm is more efficient and works backwards
	Slide 15: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 16: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 17: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 18: On mismatch, slide query to last occurrence of text, or past mismatch
	Slide 19: Boyer-Moore can be O(n)
	Slide 20: Boyer-Moore algorithm
	Slide 21: Agenda
	Slide 22: How would you implement autocomplete?
	Slide 23: Tries can find all substrings in text that begin with a prefix string
	Slide 24: Compressed tries save memory
	Slide 25: Tries works on prefixes, we can also work on suffixes with a Suffix trie
	Slide 26

