CS 10:

Problem solving via Object Oriented
Programming

Graphics

Key points:
1. | Mages 1. Images are made up of pixels

2.
3.

2. Video

3. Sample applications

Each pixel is a Color object
Color objects can manipulate
red, green, and blue components

I’'ve provided some code to handle the

messy parts of Java’s graphics “machinery”

Provides methods
* Joadimage

ImagelOLibrary . savelmage

Java Graphics

“Machinery”

e Java provides
GUI code ImageGUI

 Somewhat
complicated

* Learning the : Dlsplay one * Inherits from ImageGUI
specifics of Java’s image on screen * Sets up camera to take
GUI “machinery” i or two images snapshot every 100ms
not really the point i side by side * Displays camera image
of this course * setlmagel using ImageGUI

* Provides i o setlmage2 setimagel method

° Bufferedlmage P

* JFrame

CS10 code :

You inherit from
VideoGUI, get
video feed (and
more) :

Java provides the Bufferedimage class to

hold images in memory

NOTE Y axis counts downward!
800 x 600 image 012 .. 799

| | S
A

1 BB 0 eudl

ga : -@-4 (5:9,5 {‘["NLA R

; L P I % ¥ :

%

500 RS em—

* |'ve provided a simple ImagelOLibrary class to load and save Bufferedimages
* Use ImagelOLibrary.loadlmage to read images from disk into a Bufferedimage
* UseImagelOLibrary.savelmage to write a Bufferedimage to disk

* Bufferedimages are comprised of pixels at x,y locations on the image

* Pixels are represented by Java-provided Color objects

* Color objects tell Java what color to render at position x,y 4

Images are made up of pixels, each with a

(x,y) location and a color

NOTE Y axis counts downward!
800 x 600 image 012 .. 799

o I8k -
1 IIIIIIII
|

599 i e e e ey
Load image from disk into a Bufferedimage img
Note: working directory is the project directory!

intx=0,y=0; ~
Bufferedimage img = ImagelOLibrary.loadImage("pictures/baker.png");
Color colorBelow = new Color(img.getRGB(x,y+1));
img.setRGB(x,y,colorBelow.getRGB());

Images are made up of pixels, each with a

(x,y) location and a color

NOTE Y axis counts downward!
800 x 600 image 799

0 @IIIIII-
1 IIIIIIII
|

599 fEmEmecemeeceesmm—

intx=0,y=0;
Bufferedimage img = ImagelOLibrary.loadimage("pictures/baker.png");
Color colorBelow = new Color(img.getRGB(x,y+1)); <« Get color at location

img.setRGB(x,y,colorBelow.getRGB()); X,y+1 using getRGB

method of
Bufferedimage object
6

Images are made up of pixels, each with a

(x,y) location and a color

NOTE Y axis counts downward!
800 x 600 image 012 .. 799

o JEE
1

599 e eeee——

intx=0,y=0;
Bufferedimage img = ImagelOLibrary.loadImage("pictures/baker.png");
Color colorBelow = new Color(img.getRGB(x,y+1));

img.setRGB(x,y,colorBelow.getRGB()); See DrawSquare.java for demo on
'\ how to draw a square on the screen
Set color at x,y to new See Fadeln.java for copying colofs

color using setRGB from one image to another

Behind the scenes, Java represents colors

as a 24-bit integer

Bit 23 16 15

24

bits
Java uses a 24-bit integer to represent red, green, and blue color
component intensity

Each color component has 8 bits, so intensity range for each
component is 0-255:

O = no color
255 = max color

Java provides a convenient Color class to store color values

Pixel colors are made up of Red, Green,

and Blue components of varying intensity

Bit 23 16 15 87 0

Red Green Blue Result

Each R,G, or B components has 8

bits to control color intensity

24 bits 8 bits means intensity range 0-255

255 255 255 White <« All colors full on
0 0 0 Black - All colors off H

. * Human eye
255 0 0 Bright red is unIikeI;I to

. One color full on, notice a very
0 255 0 Bright green others off small change
0) 0 255 Bright blue __ in color

. ful f

128 0 0 Not-as-bright-red — ;’ZZ" >
0 128 0 Not-as-bright green |__ One color half on,

others off

0 0 128 Not-as-bright-blue ’

Java’s Color class makes it easy to

manipulate pixel colors

public class ImageDimmer { ImageDimmer.java
public Bufferedimage dimimage(Bufferedimage originallmage) {
//create blank image of the same size as the original

Bufferedlmage dimmedimage = new Bufferedimage(originallmage.getWidth(), originallmage.getHeight(), BufferedImage.TYPE_INT_ARGB);

//dim each pixel
for (inty = 0; y < originallmage.getHeight(); y++) {
for (int x = 0; x < originallmage.getWidth(); x++) {
// Get current color; scale each channel (but don't exceed 255); put new color
Color color = new Color(originallmage.getRGB(x, y));
int red = color.getRed()/2;
int green = color.getGreen()/2;
int blue = color.getBlue()/2;
Color newColor = new Color(red, green, blue);

dimmedimage.setRGB(x, y, newColor.getRGB());
}
}

return dimmedimage;

\ Load Bufferedimage

from image on disk
public static void main(String[] args) {

. . . using ImagelOLibrary
//load image and dim each pixel

BufferedImage originalimage = ImagelOLibrary./oadimage("pictures/baker.png"); . .
ImageDimmer dimmer = new ImageDimmer(); — Dim each plxel on the
Bufferedimage dimmedimage = dimmer.dimimage(originallmage); <

loaded image

//display results side by side

ImageGUI gui = new ImageGUI("Dimmed", originallmage, dimmedimage); 10

Java’s Color class makes it easy to

manipulate pixel colors

public class ImageDimmer { ImageDimmer.java
public Bufferedimage dimimage(Bufferedimage originallmage) {
//create blank image of the same size as the original

Bufferedlmage dimmedimage = new Bufferedimage(originallmage.getWidth(), originallmage.getHeight(), BufferedImage.TYPE_INT_ARGB);
J/dim each pixel Create a blank image of the same
for (inty = 0; y < originallmage.getHeight(); y++) { size as the original so we don’t
for (int x = 0; x < originallmage.getWidth(); x++) { . . .
// Get current color; scale each channel (but don't exceed 2 ut new color alter the orlglnal Image, use
getWidth and getHeight

Color color = new Color(originallmage.getRGB(x, y));
int red = color.getRed()/2;

int green = color.getGreen()/2; Loop over every piXEl (nested |00p)
int blue = color.getBlue()/2;
Color newColor = new Color(red, green, blue); Get color at each x,y location in original
dimmedimage.setRGB(x, y, newColor.getRGB()); . . e ge
| Dim by dividing red, green, blue
} components by 2
t di dl ; . e o o
oo 'mmr<nage Decimal component after division?
Returned dimmed image Dropped! Cast double to integer
public static void main(String[] args) { . . .
//load image and dim each pixel Set location x,y on image copy to dimmed color

BufferedImage originalimage = ImagelOLibrary./oadimage("pictures/baker.png");
ImageDimmer dimmer = new ImageDimmer();

Bufferedimage dimmedimage = dimmer.dimimage(originallmage);

//display results side by side

ImageGUI gui = new ImageGUI("Dimmed", originallmage, dimmedimage); 11

Java’s Color class makes it easy to

manipulate pixel colors

lic cl Di H .
public class ImageDimmer { ImageDlmmer.java
public Bufferedimage dimimage(Bufferedimage originallmage) {
//create blank image of the same size as the original

Bufferedlmage dimmedimage = new Bufferedimage(originallmage.getWidth(), originallmage.getHeight(), BufferedImage.TYPE_INT_ARGB);

//dim each pixel
for (inty = 0; y < originallmage.getHeight(); y++) {
for (int x = 0; x < originallmage.getWidth(); x++) {
// Get current color; scale each channel (but don't exceed 255); put new color
Color color = new Color(originallmage.getRGB(x, y));
int red = color.getRed()/2;
int green = color.getGreen()/2;
int blue = color.getBlue()/2;
Color newColor = new Color(red, green, blue);
dimmedimage.setRGB(x, y, newColor.getRGB());

}
} . i . .
return dimmedimage; Display images side by side
) ImageGUI can display one or
public static void main(String[] args) { two images (CS].O code, hot
//load image and dim each pixel .
BufferedImage originalimage = ImagelOLibrary./oadimage("pictures/baker.png"); prov!ded by Java) .
ImageDimmer dimmer = new ImageDimmer(); * Provide one Bufferedlmage In

Bufferedimage dimmedimage = dimmer.dimimage(originallmage); constructor to see one image

//display results side by side * Provide two Bufferedlmages
ImageGUI gui = new ImageGUI("Dimmed", originallmage, dimmedimage); to see both side by side 12

Java’s Color class makes it easy to
manipulate pixel colors

public class ImageDimmer {

public static void main(String[] args) {
//load image and dim each pixel

BufferedImage originalimage = ImagelOLibrary./oadimage("pictures/baker.png");
ImageDimmer dimmer = new ImageDimmer();

Bufferedimage dimmedimage = dimmer.dimimage(originallmage); Dlsplay both original and dimmed

//display results side by side Images with ImageGUI
ImageGUI gui = new ImageGUI("Dimmed", originallmage, dimmedimage);

Blurimage averages around each pixel in

the image using two nested loops

public static void main(String[] args) {
int radius = 1; //average r row above to r rows below, r cols left to r cols right

//load image and create a blank image called result Load image and make blank called result
Bufferedimage image = ImagelOLibrary./loadImage("pictures/baker.png"); &
Bufferedimage result = new Bufferedimage(image.getWidth(), image.getHeight(), Bufferedimage.TYPE_INT_ARGB);

Blurimage.java

// Nested loop over every pixel in original image
for (inty = 0; y < image.getHeight(); y++) {
for (int x = 0; x < image.getWidth(); x++) {

Loop over each pixel in image using a nested loop

mosum =0, sugs 0 umB =0 Sum red, green, and blue components for this pixel’s

// Nested loop over neighbors neighbors, also count neighbors Double nested loops
// but be careful not to go outside image (max, min stuff).

for (int ny = Math.max(0, y - radius); ny < Math.min(image.getHeight(), y + 1 + radius); ny++) { useful for PS-1

for (int nx = Math.max(0, x - radius); nx < Math.min(image.getWidth(), x + 1 + radius); nx++) {

// Add all the neighbors (& self) to the running totals LOOp radius rows above to radius rows
Color ¢ = new Color(image.getRGB(nx, ny));

sumR += c.getRed(); below, and radius rows left to radius rows
sumG += c.getGreen(); right using second nested loop
sumB += c.getBlue(); Don’ £ .
} N+ R, Sum color components, ontgoo S%'}i;';t(:‘:/"' max)
| increment neighbor count Tl x o x+l
Color newColor = new Color(sumR / n, sumG/n, sumB/ n);
result.setRGB(x, y, newColor.getRGB()); y-1 ®| O

b | R I\ Calculate average color Py
} Display original and result Fill result with averaged color y
//display images \ v+t1 | ®@|® | @ 14

ImageGUI gui = new ImageGUI("Blurred image", image, result);
1

Blurimage averages around each pixel in
the image using two nested loops

public static void main(String[] args) { Blurlmage.java

int radius = 1; //average r row above to r rows below, r cols left to r cols right

[NON] Blurred image

"CoTor Com ponents,
increment neighbor count

Color newColor = new Color(sumR / n, sumG/n, sumB/ n);
result.setRGB(x, y, newColor.getRGB());

} \ Calculate average color

} Display original and result

//display images \

ImageGUI gui = new ImageGUI("Blurred image", image, result);

Fill result with averaged color

1. Images

Key points:
. 1. Video can be thought of as a sequence of images
» 2 . Vld €0 2. Each image can be altered (just be done before next

image arrives)

3. Sample applications

16

Previously we manipulated a single image,

video is just a stream of images over time

n images form a video

<

| - l\' . ; \!
| PRI T g

K - H -

0 1 n-2 n-1

e Canindividually process each image (called a frame in video)

* Just need to be done processing before the next image arrives!

* (Can do some tricks if we realize most of the image is the same
from frame to frame

17

Image: https://www.elmedia-video-player.com/frame-by-frame-video-player-mac.html

I’'ve provided a VideoGUI class to try to

make handling video easier

Conceptual
} ImageGUI }

Java Graphics

“Machinery”

}

e Java provides °* Wrapper that inherits * Inher mageGU|*
GUI code from JFrame “machinery”e Sets up camera to take
 Somewhat * Constructor takes one or snapshot every 100ms *
complicated two images * Provides methods we

* Learning the * If one image display override:
specifics of that image * handlelmage()
Java’s GUI * If twoimages display * handleMousePress() *
“machinery” not both images side by ¢ handleKeyPress()
really the point side e By default, displays new
of this course ¢ Update displayed images camera image by calling
* setimagel setimagel and passing °

* setimage2 latest camera shot

Inherit from
VideoGUI
Override
handlelmage() to
handle frames as
captured

Can also override
handleMousePress
and
handleKeyPress
Get ImageGUI's

methods too!
18

Last image from camera is stored in

instance variable image

VideoGUIl.java
Inherit from ImageGUI which inherits

Camera set up different for Macs vs Windows

from Java’s graphics machinery \é Downsize sample (for faster processing)
pUb“C class VldeOGUI eXtendS Ima Here we make image half size
protected boolean mac = true; /s thls computer a mac?

private static final double scale = 0.5; // to downsize the image (for speed)
private static final boolean mirror = true; // mirror so image “looks right”

protected Bufferedimage image; rabbed from webcam (if any)
Mirror swaps left
and right, makes

* Last camera image
& things “look right

stored here
* Updated every 100 ms
as new images captured

14

19

handlelmage allows image processing; also

available handleMousePress and KeyPress
VideoGUIl.java

/**
* Draws image instance variable filled by camera as left image on ImageGUI
*/
public void handlelmage() { * handlelmage called by VideoGUI each time a new frame arrives
setimagel(image); € e« By default it makes no changes to image

} * Setsimagel on ImageGUI, which updates window with new image
on * We can override it to apply our changes

* Called back when the mouse is pressed.

¥/

public void handleMousePress(int x, int y) { .
System.out.printin("Got mouse "+ x+ ", " +y);* handleMousePress called by VideoGUI

)

Inherit from VideoGUI and override these methods for you own code

} LN when the mouse is pressed
* Returns mouse’s x and y location on screen
/** when pressed
* Called back when a key is pressed
*/
public void handleKeyPress(char key) { * handleKeyPress called by VideoGUI when

System.out.printin("Key pressed: " + key); the key is pressed

} e Returns the key that was pressed i,

1. Images
2. Video

» 3. Sample applications

21

Demo: VideoProcessing

Java Graphics

“Machinery” ImageGUI VideoGUI

Notes:

* Alters each image taken by camera

* Acts after camera takes image and before image is displayed by
overriding handleImage

* Brightens blue color component, dims red and green

22

VideoProcessing alters each image taken by

the camera before it is displayed

public .cIas.s VideoProcgssing extends VideoGUI { VidEOPrOCESSi ng.java
public VideoProcessing() {
super("VideoProcessing");
} * Inherits from VideoGUI
public void scaleColor(double scaleR, double scaleG, double scaleB) { * This class’s constructor passes title to
//safety check super’s constructor (VideoGUI)

if (image ==null || scaleR <0 || scaleG <0 || scaleB <0) {return;} i
* VideoGUI constructor starts camera
// Nested loop over every pixel

for (inty = 0; y < image.getHeight(); y++) { and fills image instance variable on
for (int x = 0; x < image.getWidth(); x++) { each shot
// Get current color; scale each channel (but don't exceed 255); put new coloy . .
Color color = new Color(image.getRGB(x, y)); * Image instance variable from
int red = (int)(Math.min(255, color.getRed()*scaleR)); VideoGUI available to this subclass
int green = (int)(Math.min(255, color.getGreen()*scaleG)); . .
int blue = (int)(Math.min(255, color.getBlue()*scaleB)); due to inheritance

Color newColor = new Color(red, green, blue);
image.setRGB(x, y, newColor.getRGB());

} .

} handlelmage called every time camera takes
} a shot, override it here to alter behavior
@Override e Calls scaleColor to emphasize blue

public void handlelmage() {
scaleColor(0.5, 0.5, 1.5);
setlmagel(image);

}

public static void main(Strine[] args) {

new VideoProcessing(); — Call VideoProcessing constructor on start up °
}

component

VideoProcessing alters each image taken by

the camera before it is displayed

public class VideoProcessing extends VideoGUI {

public VideoProcessing() { Vld eoProcessi ng.java

super("VideoProcessing");

}

public void scaleColor(double scaleR, double scaleG, double scaleB) {
//safety check

if (image ==null || scaleR <0 || scaleG <0 || scaleB <0) {return;}

Loop over all pixels in image
// Nested loop over every pixel

for (inty = 0; y < image.getHeight(); y++) {
for (int x = 0; x < image.getWidth(); x++) {
// Get current color; scale each channel (but don't exceed 255); put new color
Color color = new Color(image.getRGB(x, y)); Scale each color component
int red = (int)(Math.min(255, color.getRed()*scaleR));

int green = (int)(Math.min(255, color.getGreen()*scaleG)); / independently toem phasize blue
int blue = (int)(Math.min(255, color.getBlue()*scaleB));

(don’t go over 255!)
Color newColor = new Color(red, green, blue); .
image.setRGB(x, y, newColor.getRGB()); Cast double to int
}
| } \ Update image pixel with new “bluer” color
@Override

public void handlelmage() {

scaleColor(0.5, 0.5, 1.5); Show altered, now “bluer”, image on screen instead
setimagel(image); /

\ of the original image captured by the camera

public static void main(String[] args) {

new VideoProcessing(); 24
}

Demo: WebcamColorTracking

Java Graphics

“Machinery” ImageGUI VideoGUI

Notes:

Tracks a color over time

* Click mouse to pick up color from image (use finger tip)

* Will find point with closest color match

* Draws oval around that point as new images arrive
(move finger to demonstrate)

* Not too sophisticated, but generally works (Autofocus
sometimes causes inaccurate tracking)

25

WebcamTracking tracks a point from frame

to frame

WebcamTracking.java
public class WebcamColorTracking extends VideoGUI {

private Color trackColor=null; // point-tracking target color instance variable

/**
* Constructor, calls super constructor passing title for window
*/ °
oublic WebcamColorTracking() { WebcamCoIor.Track.lng con:structor calls super
super("WebcamCOlorTracking"); / COﬂSthCtOf W|th WlndOW tltle
} What is the super class here?
VideoGUI — sets up camera, starts taking pictures

<snip>
every 100 ms

@Override When mouse is pressed, save the color under

public void handleMousePress(int x, int y) { / the mouse pointer in instance variable

System.out.printIn("Got mouse press"); trackColor (if the camera is running)
if (image !=null) {

trackColor = new Color(image.getRGB(x, y));

System.out.println("tracking " + trackColor);

}
}
oublic static void main(String[] args) { Create object, calls WebcamColorTracking constructor
new WebcamColorTracking(); 26

}

WebcamTracking tracks a point from frame

to frame

Called when camera takes a shot, WebcamTracking.java

override it from VideoGUI to run
@Override / this code

public void handleimage() { ___ super.handlelmage shows image
super.handlelmage(); €—

, instance variable on screen
if (trackColor != null) {

// Draw circle at point with color closest to trackColor, then draw circle border in the inverse color
Point p = track(); o

Find the closest color to the pixel that was clicked

//draw circle around point to highlight (track method code on next slide)

Graphics g = panel. getWindowReference(); Return type of Point
g.setColor(trackColor);

g.fillOval(p.x, p.y, 15, 15);
((Graphics2D)g).setStroke(new BasicStroke(4)); // thick border

g.setColor(new Color(255-trackColor.getRed(), 255-trackColor.getGreen(), 255-trackColor.getBlue()));
g.drawOval(p.x, p.y, 15, 15);

} \ Draw a circle around pixel that most closely
matches color

27

WebcamTracking tracks a point from frame

to frame

Loop over all pixels and return x,y location of \WebcamTracking.java
private Point track() { pixel with closest color match to trackColor

int cx =0, cy = 0; // coordinates with best matching cafor
int closest = 10000; // start with a too-high numper so that everything will be smaller

// Nested loop over every pixel

for (inty = 0; y < image.getHeight(); y++) { * Get Color for each pixel
for (int x = 0; x < image.getWidth(); x++) { « Compare with trackColor
// Euclidean distance squared between colors . s ith cl t col
Color ¢ = new Color(image.getRGB(x,y)); ave X,y with closest color

int d = (c.getRed() - trackColor.getRed()) * (c.getRed() - trackColor.getRed())
+ (c.getGreen() - trackColor.getGreen()) * (c.getGreen() - trackColor.getGreen())
+ (c.getBlue() - trackColor.getBlue()) * (c.getBlue() - trackColor.getBlue());

//track point with closest color to trackColor (so far)
T\

if (d < closest) {

* Could we just use
closest =d;

Math.abs(c-trackColor)?

X=X Cy =Y, Keep track of closest color and)

} its x,y location * No, because a color is

}) really a 24-bit number
//return point that had the closest color * Red IS. IeftmOSt.s bits
return new Point(cx,cy); - * A1l-bit change in red
} color would lead to a

Return closest point as

large difference in d
variable of type Point & 28

Demo: WebcamBg.java

Java Graphics

“Machinery” ImageGUI VideoGUI

Notes:

Makes a “green screen” type of effect

 Load a scenery image (Baker tower)

* Click to capture background image from camera

* Now move around

 Compare current and background image color at each x,y location

* |f not much color difference, color pixel at x,y with scenery color
(e.g., Baker tower)

* Else, color pixel with current image

* Result is you appear to be in front of Baker tower
29

WebcamBg.java uses three images to make
you appear to be somewhere else

oo ol il O

8wl
scenery background image
* Static image Static snapshot of Live image as it
* This is where we want the camera’s view comes from the
you to appear to be without you in it camera
located

* This portion of the background and
live image are the same (mostly)
* Show scenery (Baker tower) there

* This portion of the background
and live image are the different
e Show live camera image there

30

WebcamBg.java uses three images to make
you appear to be somewhere else

scenery background image

* Static image Static snapshot of Live image as it

* This is where we want the camera’s view comes from the
you to appear to be without you in it camera

Iocated [NON " Webcam

* Why is this part
Baker instead of
my arm?

e Background is
close to my shirt
color there

31

WebcamBg.java: Replace background with

image we choose (green screen effect)

WebCamBg.java Define threshold, if color difference less than \WehcamBg.java

this, use scenery image, else camera image
public class WebcamBg extends VideoGUI {
private static final int backgroundDiff=250; // setup: threshold for considering a pixel to be background

private Bufferedimage background; // the stored background grabbed from the webcam
private Bufferedimage scenery; // the replacement background (e.q., Baker)

public WebcamBg(Bufferedimage scenery) { .
this.scenery = scenery; — Load scenery image (Baker tower) to show
} if small color differences with background

o image (taken on mouse click)
* VideoGUI method, here setting background as a copy of the current image.
*/
@Override
public void handleMousePress(int x, int y) {
if (image !=null) {
//save background image that we will subtract out
background = new Bufferedimage(image.getColorModel(), image.copyData(null), image.getColorModel().isAlphaPren

System.out.printin("background set"); \ On mouse press, copy current

} image as background

}

32

WebcamBg.java: Replace background with

image we choose (green screen effect)

WebCamBg.java WebcamBg.java
@Override If background is set, loop over

public void handlelmage() {
if (background !=null) {
// Nested loop over every pixel
for (inty = 0; y < Math.min(image.getHeight(), scenery.getHeight()); y++) {
for (int x = 0; x < Math.min(image.getWidth(), scenery.getWidth()); x++) {
// Euclidean distance squared between colors Compa re color of

Color c1 = new Color(image.getRGB(x,y)); camera image with
Color c2 = new Color(background.getRGB(x,y)); / background image

int d = (cl.getRed() - c2.getRed()) * (c1.getRed() - c2.getRed())
+ (cl.getGreen() - c2.getGreen()) * (cl.getGreen() - c2.getGreen())
+ (c1.getBlue() - c2.getBlue()) * (c1.getBlue() - c2.getBlue());
//check if distance less than threshold to replace image with scenery, otherwise, keep image
if (d < backgroundDiff) {
// Close enough to background, so replace
image.setRGB(x,y,scenery.getRGB(x,y));

}
}
}

} . i
/Jupdate image on screen If not much color difference between current image and

setimagel(image); background image (e.g., no change from background),
} show scenery color for this pixel, else don’t change live
camera image at this pixel

each x,y location

33

Key points

1.
2.
3.
4.
5.

Images are made up of pixels

Each pixel is a Color object

Color objects can manipulate red, green, and blue components
Video can be thought of as a sequence of images

Each image can be altered (just be done before next image

arrives)

34

	Slide 1
	Slide 2: Agenda
	Slide 3: I’ve provided some code to handle the messy parts of Java’s graphics “machinery”
	Slide 4: Java provides the BufferedImage class to hold images in memory
	Slide 5: Images are made up of pixels, each with a (x,y) location and a color
	Slide 6: Images are made up of pixels, each with a (x,y) location and a color
	Slide 7: Images are made up of pixels, each with a (x,y) location and a color
	Slide 8: Behind the scenes, Java represents colors as a 24-bit integer
	Slide 9: Pixel colors are made up of Red, Green, and Blue components of varying intensity
	Slide 10: Java’s Color class makes it easy to manipulate pixel colors
	Slide 11: Java’s Color class makes it easy to manipulate pixel colors
	Slide 12: Java’s Color class makes it easy to manipulate pixel colors
	Slide 13: Java’s Color class makes it easy to manipulate pixel colors
	Slide 14: BlurImage averages around each pixel in the image using two nested loops
	Slide 15: BlurImage averages around each pixel in the image using two nested loops
	Slide 16: Agenda
	Slide 17: Previously we manipulated a single image, video is just a stream of images over time
	Slide 18: I’ve provided a VideoGUI class to try to make handling video easier
	Slide 19: Last image from camera is stored in instance variable image
	Slide 20: handleImage allows image processing; also available handleMousePress and KeyPress
	Slide 21: Agenda
	Slide 22: Demo: VideoProcessing
	Slide 23: VideoProcessing alters each image taken by the camera before it is displayed
	Slide 24: VideoProcessing alters each image taken by the camera before it is displayed
	Slide 25: Demo: WebcamColorTracking
	Slide 26: WebcamTracking tracks a point from frame to frame
	Slide 27: WebcamTracking tracks a point from frame to frame
	Slide 28: WebcamTracking tracks a point from frame to frame
	Slide 29: Demo: WebcamBg.java
	Slide 30: WebcamBg.java uses three images to make you appear to be somewhere else
	Slide 31: WebcamBg.java uses three images to make you appear to be somewhere else
	Slide 32: WebcamBg.java: Replace background with image we choose (green screen effect)
	Slide 33: WebcamBg.java: Replace background with image we choose (green screen effect)
	Slide 34: Key points

