
CS 10:
Problem solving via Object Oriented

Programming

Abstraction
Dartmouth CS10 Winter 2025

2

A note about inheritance: you can declare
base class and instantiate as subclass

Person bob = new Instructor("Bob", "f00000");
Person carol = new Student("Carol", "f11111");

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

Bob and Carol are declared as Person objects, but
instantiated as Instructor and Student respectively

An Instructor “is a” Person, a Student “is a” Person
so Java allows this declaration

Why would we ever do such insanity?!?!?

So we can store items in an array, or as we’ll see
today, in a List

We can declare a List of Person objects that will
allow us to hold Instructors and Students

3

You can cast to the instantiated type

Person bob = new Instructor("Bob", "f00000");
Person carol = new Student("Carol", "f11111");

((Instructor) bob).tenured = true;
((Student) carol).graduationYear = 2027;

To use subclass specific functionality, we must cast to the subclass

Cast bob as an Instructor to access tenured (Person doesn’t have tenured)
Cast carol as a Student to access graduationYear (Person doesn’t have graduationYear)

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

4

Cannot cast to a type outside the
inheritance chain

Person bob = new Instructor("Bob", "f00000");
Person carol = new Student("Carol", "f11111");

((Instructor) bob).tenured = true;
((Student) carol).graduationYear = 2027;

((Student) bob).graduationYear = 2028;

Output:
Exception: class Instructor cannot be cast to class Student

Can’t cast an object to a subclass outside its inheritance chain
bob is instantiated as an Instructor, can’t cast as a Student

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

5

Cannot cast down the inheritance chain

Person bob = new Instructor("Bob", "f00000");
Person carol = new Student("Carol", "f11111");

((Instructor) bob).tenured = true;
((Student) carol).graduationYear = 2027;

((GraduateStudent) carol).graduationYear = 2028;

Output:
class Student cannot be cast to class GraduateStudent

Cannot cast down the inheritance chain

A Student is not necessarily a GraduateStudent
(but a GraduateStudent is a Student!)

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

6

Can cast up the inheritance chain

Person bob = new Instructor("Bob", "f00000");
Person carol = new InternationGraduateStudent("Carol", "f11111");

((Instructor) bob).tenured = true;
((Student) carol).graduationYear = 2027;

((GraduateStudent) carol).graduationYear = 2028;

Can cast up the inheritance chain
If carol where an InternationalGraduateStudent, could
be cast to a GraduateStudent
An InternationalGraduateStudent is a GraduateStudent

Person

Instructor Student

Graduate Student
International

Student

International
Graduate Student

7

Agenda

1. ADTs

2. Generics

3. Java provided List implementation

4. Run-time complexity

5. Asymptotic notation

Key points:
1. ADTs say what needs to be done,

but not how do implement it
2. An interface describes methods

must be implemented for an ADT

8

OOP relies on four main pillars to create
robust, adaptable, and reusable code
Four “pillars” of OOP

Abstraction
• Name

functionality, not
how to
implement

• Leads to Abstract
Data Types
(ADTs)

Encapsulation
• Bind code and data into one thing called an

object
• Code called methods in OOP (not functions)

Inheritance
• Create specialty versions that

“inherit” functionality of parent
• Reduces code

Polymorphism
Same name,
many meanings

OOP Pillars

Abstraction Encapsulation Inheritance Polymorphism

9

Abstract Data Types specify operations on a
data set that defines overall behavior

• ADTs specify a set of operations (e.g., get, set, add, …) that define
how the ADT behaves on a collection of data elements

• At the ADT level we don’t know (and don’t really care) what data
structure is used to store elements (e.g., linked list or array or
something else, it doesn’t matter at an abstract level)

• Also do not care about what kind of data the ADT holds (e.g.,
Strings, integers, Objects) – the ADT works the same way
regardless of what type of data it holds

• Big idea: hide the way data is represented and manipulated while
allowing others to work with the data in a consistent manner

Abstract Data Types (ADTs)

10

The List ADT defines required operations,
but not how to implement them
List ADT

Operation Description

size() Return number of items in List

isEmpty() True if no items in List, otherwise false

get(i) Return the item at index i

set(i,e) Replace the item at index i with item e

add(e) Add item e to end of the list

add(i,e) Insert item e at index i, moving all subsequent items
one index larger

remove(i) Remove and return item at index i, move all
subsequent items one index smaller

These operations MUST be implemented to complete the ADT
Free to implement other methods, but must have these
We never say how many items the list can hold; it grows as needed

Big idea: List
works the same
regardless of
what data
structure it
uses to store
data or what
type of data it
holds

11

Example: List ADT defines a set of
operations

Bob Elvis Alice Denise Charlie

0 1 2 3 4Index

List holds multiple elements (items) referenced by position in List

12

Example: List ADT defines a set of
operations

Bob Elvis Alice Denise Charlie

0 1 2 3 4Index

get(3) returns Denise

List holds multiple elements (items) referenced by position in List

AliceAbby

13

Example: List ADT defines a set of
operations

Bob Elvis Denise Charlie

0 1 2 3 4Index

get(3) returns Denise

set(2,Abby) replaces
Alice with Abby

List holds multiple elements (items) referenced by position in List

14

Example: List ADT defines a set of
operations

Bob Elvis Abby Denise Charlie

0 1 2 3 4Index

add(5,Falcon) adds
to end of List

Falcon

get(3) returns Denise

set(2,Abby) replaces
Alice with Abby

List holds multiple elements (items) referenced by position in List

15

Example: List ADT defines a set of
operations

Bob Elvis Abby Denise Charlie

0 1 2 3 4Index

add(5,Falcon) adds
to end of List

Falcon

get(3) returns Denise

set(2,Abby) replaces
Alice with Abby

List holds multiple elements (items) referenced by position in List

• ADT defines these operations (and others)
• What data structure does it use? Array? Linked List?

• We don’t know and don’t care at the abstract level, we just care that
the operations (get, set, add, remove, size, isEmpty) work as expected

• What type of elements are these? Strings, Integers, Student Objects?
• See answer above – we don’t care
• The type of element does not affect how the ADT works!

16

ADTs can be implemented differently, but
must provide common functionality

List ADT

ArrayList LinkedList

Java Interface:
• Defines set of ADT operations

(e.g., get, set, add, remove,…)
• Interface says what to

implement, but not how to
implement

Elements stored
in an Array

Elements stored
in a Linked List

Implementation:
• Code to implement

operations that are
defined by interface

• Can be written using
different data structures

• MUST implement all
functionality defined by
interface

• But you can include
other functionality

Java has both ArrayList and LinkedList implementations of List
Both implementations provide the same functionality as
required by interface, but store data differently
We will implement the List interface using both approaches

17

Interfaces go in one file, implementations
go in another file(s)

Interface file
Specifies required
operations
SimpleList.java

Uses keyword
interface

Implementation file
Actually implements
required operations
using a specific data
structure

Same interface could
be implemented in
different ways (e.g.,
linked list or array)

Use keyword
implements to
implement an
interface

Linked list
implementation

Array
implementation

OR

public interface SimpleList<T> {
 /**
 * Returns # elements in the List (they are indexed 0..size-1)
 */
 public int size();

 /**
 * Returns true if there are no elements in the List, false otherwise
 * @return true or false
 */
 public boolean isEmpty();

 /**
 * Adds the item at the index, which must be between 0 and size
 */
 public void add(int idx, T item) throws Exception;

 /**
 * Add item at end of List
 */
 public void add(T item) throws Exception;

 /**
 * Removes and returns the item at the index, which must be between 0 and size-1
 */
 public T remove(int idx) throws Exception;

 /**
 * Returns the item at the index, which must be between 0 and size-1
 */
 public T get(int idx) throws Exception;

 /**
 * Replaces the item at the index, which must be between 0 and size-1
 */
 public void set(int idx, T item) throws Exception;

18

SimpleList.java is an interface that specifies
what operations MUST be implemented

Interface keyword tells Java this is
an interface

• Standby for what “T” and
“throws Exception” mean

• Methods defined to include
parameters and return types
(called a “signature”), no
implementation code! here

• If you are going to implement
SimpleList, then you MUST
implement these methods

• How you implement (use array,
linked list, …) is your business

• Java’s List interface has a few
more methods, ours simplifies
things a little

• Why bother with an interface?

19

The List ADT could be implemented with a
singly linked list OR an array; either works
Examples of List implementation

data next

head

“Alice”

data next

“Bob”

data next

“Charlie”

Singly linked list

Array

0 1

“Alice” “Bob” “Charlie”

2 n-1

…

• We will implement
List ADT both ways

• Each
implementation
has pros and cons

• Java has built-in
version of the List
ADT – ArrayList and
LinkedList

• We will create our
own two versions
to contrast
approaches

20

Agenda

1. ADTs

2. Generics

3. Java provided List implementation

4. Run-time complexity

5. Asymptotic notation

Key points:
1. Generics allow us to write an ADT one time,

irrespective of the data types involved

21

Generics allow a variable to stand in for a
Java type

• T stands for whatever object type we instantiate
• With SimpleList<Student> list = new ArrayList<Student>(); then T

always stands for Student
• SimpleList<Point> then T always stands for Point
• Allows us to write one implementation that works regardless of

what kind of object we store in our data set
• Must use autobox version of primitives (Integer, Double, etc)
• By convention we name type of variables with a single uppercase

letter, often T for “type”, later we’ll use K for key and V for value

public interface SimpleList<T> {
 public T get(int idx) throws Exception;
 public void add(int idx, T item) throws Exception;

22

Agenda

1. ADTs

2. Generics

3. Java provided List implementation

4. Run-time complexity

5. Asymptotic notation

Key points:
1. Java provides two implementations

of the List ADT, an ArrayList and a
Linked List

2. Each implementation provides the
same ADT operations, but work
differently

3. We will soon implement both
ourselves to see how they work

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 23

ArrayListDemo.java: ArrayLists can hold
multiple objects; provide useful methods

• Declare object of type List on left hand side
• On right hand side, new instantiates an object of

type ArrayList
• Later if we decide a LinkedList implementation

of the List ADT would be better, we simply
change from ArrayList to LinkedList

• In following code, we just call methods defined
by the List ADT

• Here Java will use the ArrayList implementation
• If we changed ArrayList to LinkedList, Java would

use the LinkedList implementation, but the
result would be the same

Java provides the ArrayList
We will write our own version
of the List ADT using:
• Array
• Linked list

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 24

ArrayListDemo.java: ArrayLists can hold
multiple objects; provide useful methods

Must import Arraylist (code is not in our project)
• IntelliJ Settings/Preferences
• Select Editor->General->Auto Import
• Check the "Add unambiguous imports on the fly"

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 25

ArrayListDemo.java: ArrayLists can hold
multiple objects; provide useful methods

• Provide type of objects ArrayList will
hold in <> brackets (can’t be primitive)

• Integer is the object version of int
• Lists can hold only one type of object

(unlike Python)
• Lists are called generic containers

because they can hold any type of
object (Integers, Doubles, Strings,
Students)

• Don’t need to specify length of List, it
can grow as need (unlike an array)

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 26

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

• add(E elmt) appends item to end of
List
• E = type (Integer here)
• elmt = object (element) to add to

the end of the List
• Note: this call does not specify an

index to the new item, so add at the
end

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 27

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

• add(E elmt) appends item to end of
List
• E = type (Integer here)
• elmt = object (element) to add to

the end of the List
• Note: this call does not specify an

index to the new item, so add at the
end

ArrayList list

1

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 28

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

• add(E elmt) appends item to end of
List
• E = type (Integer here)
• elmt = object (element) to add to

the end of the List
• Note: this call does not specify an

index to the new item, so add at the
end

ArrayList list

1 2

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 29

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

• add(int i, E elmt) adds item at index i
• Lists are zero indexed (start at index 0,

unlike Matlab)
• Items slide right to make room

31 2

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 30

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

• add(int i, E elmt) adds item at index i
• Lists are zero indexed (start at index 0,

unlike Matlab)
• Items slide right to make room
• add method is overloaded (two versions

that take different parameters)

3 21

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 31

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Printing a List calls toString behind the scenes
The designers of Java have already written this
method for the ArrayList class

3 21

Output
[1, 3, 2]

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 32

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

3 21

Output
[1, 3, 2]

• ArrayLists provide random access (can
get item from anywhere)

• get(int i) returns item at index i
• Remember zero-based indexing!

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 33

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

3 21

Output
[1, 3, 2]
3

• ArrayLists provide random access (can
get item from anywhere)

• get(int i) returns item at index i
• Remember zero-based indexing!

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 34

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Output
[1, 3, 2]
3

• Can remove item from anywhere in List
• remove(int i) removes item at index i and

“pushes” remaining items left

3 21

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 35

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Output
[1, 3, 2]
3
[1, 2]

• Can remove item from anywhere in List
• remove(int i) removes item at index i and

“pushes” remaining items left

21

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 36

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Output
[1, 3, 2]
3
[1, 2]

21

set(int i, E elmt) sets the item at index i to elmt
Overwrites value at index i

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 37

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Output
[1, 3, 2]
3
[1, 2]

41

set(int i, E elmt) sets the item at index i to elmt
Overwrites value at index i

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 38

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Output
[1, 3, 2]
3
[1, 2]
[1, 4]

41

import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<Integer>();
 list.add(1);
 list.add(2);
 list.add(1,3);
 System.out.println(list);
 Integer b = list.get(1);
 System.out.println(b);
 list.remove(1);
 System.out.println(list);
 list.set(1,4);
 System.out.println(list);
 System.out.println(list.size());
 }
} 39

ArrayListDemo.java: ArrayLists can hold
multiple objects, provide useful methods

ArrayList list

Output
[1, 3, 2]
3
[1, 2]
[1, 4]
2

41

• size() returns the number of items
stored in the List

• What index does the last item have?
• size()-1 due to zero-based indexing

40

Lists can hold any kind of object, not just
autoboxed versions of primitive data types

• List to hold multiple Student objects
• Add Student to List with add method
• Remember because a

GraduateStudent is a Student, this
List can also hold GraduateStudents
and any other subclasses of Student

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student[] students = new Student[numberOfStudents];
 students[0] = new Student("Alice", "f00xyz");
 students[1] = new GraduateStudent("Bob”, "f00123"));
 students[2] = new InternationalStudent("Charlie", "f00abc"));

41

Lists do not declare a maximum size unlike
arrays

• Example from prior class that stored Student
objects in an array

• Using arrays we had to declare the maximum
number of Students the array could hold

• With a List there is no maximum number (as long
as there is memory available)

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student[] students = new Student[numberOfStudents];
 students[0] = new Student("Alice", "f00xyz");
 students[1] = new GraduateStudent("Bob”, "f00123"));
 students[2] = new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

42

For-each loops are available for Lists, like
they are with arrays

For-each loop available for arrays and Lists

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student[] students = new Student[numberOfStudents];
 students[0] = new Student("Alice", "f00xyz");
 students[1] = new GraduateStudent("Bob”, "f00123"));
 students[2] = new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students[index].study(time);
 }

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int) (Math.random() * students.size());

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students.get(index).study(time);
 }

43

Use size to get the number of items in a
List

Use size to get number of items in List (vs. predefined number with array)
Note the cast between double and int
Also note where the parenthesis are! Don’t cast Math.random or you’ll always get 0!
Why?
Math.random gives number exclusive of 1, so casting drops decimal part

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student[] students = new Student[numberOfStudents];
 students[0] = new Student("Alice", "f00xyz");
 students[1] = new GraduateStudent("Bob”, "f00123"));
 students[2] = new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students[index].study(time);
 }

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int) (Math.random() * students.size());

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students.get(index).study(time);
 }

44

Use get to retrieve an item at a given index

Use get to get an item in List (vs. square brackets with array)

public class StudentTrackerApp {
 public static void main(String[] args) {
 int numberOfStudents = 3;
 Student[] students = new Student[numberOfStudents];
 students[0] = new Student("Alice", "f00xyz");
 students[1] = new GraduateStudent("Bob”, "f00123"));
 students[2] = new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int)(Math.random() * numberOfStudents);

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students[index].study(time);
 }

 //print students using C-style for loop
 System.out.println("After studying");
 for (int i = 0; i < students.size(); i++) {
 System.out.println(students[i]);
 }

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int) (Math.random() * students.size());

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students.get(index).study(time);
 }

 //print students using C-style for loop
 System.out.println("After studying");
 for (int i = 0; i < students.size(); i++) {
 System.out.println(students.get(i));
 }

45

C-style for loops are also available, use get
with them

List use get to
retrieve item at
index (vs. square
brackets with
array)

public class StudentTrackerAppList {
 public static void main(String[] args) {
 List<Student> students = new ArrayList<Student>();
 students.add(new Student("Alice", "f00xyz"));
 students.add(new GraduateStudent("Bob”, "f00123"));
 students.add(new InternationalStudent("Charlie", "f00abc"));

 //print students using for-each loop
 System.out.println("Before studying");
 for (Student student : students) {
 System.out.println(student);
 }

 //randomly select students to study to simulate an actual application
 for (int i = 0; i < 10; i++) {
 //pick random student
 int index = (int) (Math.random() * students.size());

 //add random studying time between 0 and 5 hours
 double time = Math.random() * 5;
 students.get(index).study(time);
 }

 //print students using C-style for loop
 System.out.println("After studying");
 for (int i = 0; i < students.size(); i++) {
 System.out.println(students.get(i));
 }

46

C-style for loops are also available, use get
with them

Output
Before studying
Name: Alice (f00xyz)
 Graduation year: null
 Hours studying: 0.0
 Hours in class: 0.0
Name: Bob (f00123)
 Graduation year: null
 Hours studying: 0.0
 Hours in class: 0.0
 Hours in the lab: 0.0
 Department: null
 Advisor: null
Name: Charlie (f00abc)
 Graduation year: null
 Hours studying: 0.0
 Hours in class: 0.0
 Home country: null
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Charlie. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Alice. I'm studying!
Hi Mom! It's Bob. I'm studying!
Hi Mom! It's Alice. I'm studying!
After studying
Name: Alice (f00xyz)
 Graduation year: null
 Hours studying: 6.590768116487223
 Hours in class: 0.0
<snip>

47

Agenda

1. ADTs

2. Generics

3. Java provided List implementation

4. Run-time complexity

5. Asymptotic notation

Key points:
1. We’d like a way to compare

different approaches to solving the
same problem in a principled
manner

2. Considering the number of
operations helps us do that

48

How long does it take to find an item in a
List?

Bob Elvis Abby Denise Charlie

0 1 2 3 4 n-2 n-1Index

Yancy Zephyr…

Assume there are n items in the List (index 0 … n-1)
Find index of “Paula” in List
What pseudo code would you use:

for i = 0 … n-1
 get item at index i

if item is equal to search value
 return index i

return -1 (or otherwise indicate search term not in List)
How long to find the item? Should we time how long it takes?
Time would depend on

• Hardware
• Where Paula was located in the List

What is the best case?
What is the worst case?
What is the average case?

49

How long does it take to find an item in a
List?

Bob Elvis Abby Denise Charlie

0 1 2 3 4 n-2 n-1Index

Yancy Zephyr…

Instead of timing execution we will count how many operations are needed in the
worst case
• Doesn’t depend on hardware or software environment
• Could use average case, but average is hard to define sometimes because it

would be based on the input’s distribution
• Worst case tells us it won’t take longer to execute
• Allows language-independent analysis based on number of elements

Operations to count
• Assign value to variable
• Following an object reference to heap memory
• Performing arithmetic operation (e.g., add two numbers)
• Compare two values (if statement)
• Access element in array
• Calling or returning from a method

50

Often run-time will depend on the number
of elements an algorithm must process

Constant time – does not depend on number of items
• Returning the first element of a list takes a constant amount of

time irrespective of the number of elements in the list
• Just return the first item
• No need to march down list to find the first element (head)
• Array get() implementation is also constant time (array get() is

constant time everywhere, linked list only constant at head)

Linear time – directly depends on number of items
• Example: searching for a particular value stored in a list
• Start at first item, compare value with value trying to find
• Keep going until find item, or end up at end of list
• Could get lucky and find item right away, might not find it at all
• Worst case is we check all n items

51

Often run-time will depend on the number
of elements an algorithm must process

Polynomial time – depends on a function of number of
items
• Example: nested loop in image and graphic methods
• If changing all pixels in n by n image, must do a total of n2

operations because inner and outer loops each run n times
• Normally runs slower than a constant or linear time algorithm

Logarithm time – avoids operations on some items
• Soon we will look at binary search
• Reduces the number of items algorithm must process (don’t

process all n items)
• Runs faster than linear or polynomial time (slower than constant)

Exponential time – base raised to power
• Combination problems: all possible bit combinations in n bits = 2n

• SLOW!

52

For small numbers of items, run time does
not differ by much

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Logarithm

Linear

Polynomial

Exponential

Notice
Exponential and
Polynomial
cross each
other a few
times early on

log2n

n

n2

2n

53

As n grows, number of operations between
different algorithms begins to diverge

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

Logarithm

Linear

Polynomial

Exponential

After n=4
Exponential is
always greater
than
Polynomial

We will use that
soon to define
n0 (standby for
more info)

log2n

n

n2

2n

54

Even with only 60 items, there is a large
difference in number of operations

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s Logarithm

Linear

Polynomial

Exponential

log2n

n

n2

2n

55

Eventually, even with speedy computers,
some algorithms become impractical

n

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s

log2n

n

n2

2n

Logarithm

Linear

Polynomial

Exponential

56

Sometimes complexity can hurt us,
sometimes it can help us

Hurts us
Can’t brute force chess
algorithm 2n

Helps us
Can’t crack password
algorithm 2n

Images: thechessstore.com; studyoffice.org

57

Agenda

1. ADTs

2. Generics

3. Java provided List implementation

4. Run-time complexity

5. Asymptotic notation

Key points:
1. Big-Oh provides an upper bound

on run-time complexity
2. Big-Omega provides a lower

bound on run-time complexity
3. Big-Theta provides a tight bound

on run-time complexity

58

Computer scientists describe upper bounds
on orders of growth with “Big Oh” notation
O gives an asymptotic upper bounds

Run-time complexity is
O(n) if there exists
constants n0 and c such
that:
• ∀n ≥ n0

• run time of size n is at
most cn, upper bound

• O(n) is the worst case
performance for large
n, but actual
performance could be
better

• O(n) is said to be
“linear” time

• O(1) means constant
time

Example: find specific item in a list
• Might find item on first try
• Might not find it at all (must check

all n items in list)
• Worst case (upper bound) is O(n)

“Big Oh of n”, and “Oh of n”, and “order n”
all mean the same thing!

59

We can extend Big Oh to any, not
necessarily linear, function
O gives an asymptotic upper bounds Run-time complexity is

O(f(n)) if there exists
constants n0 and c such
that:
• ∀n ≥ n0

• run time of size n is at
most cf(n), upper
bound

• O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

• f(n) can be a non-
linear function such as
n2 or log(n)

• In that case O(n2) or
O(log n)

60

Run time can also be Ω (Big Omega), where
run time grows at least as fast
Ω gives an asymptotic lower bounds

Run-time complexity is
Ω(f(n)) if there exists
constants n0 and c1 such
that:
• ∀n ≥ n0

• run time of size n is at
least c1f(n), lower
bound

• Ω(n) is the best case
performance for large
n, but actual
performance can be
worse

Example: find largest item in a list
• Must check each n items
• Largest item could be at end of

list, can’t stop early
• Can’t do better than Ω (n)

61

We use Θ (Big Theta) for tight bounds
when we can define O and Ω
Θ gives an asymptotic tight bounds

Run-time complexity is
Θ(f(n)) if there exists
constants n0 and c1 and
c2 such that:
• ∀n ≥ n0

• run time of size n is at
least c1f(n) and at
most c2f(n)

• Θ(n) gives a tight
bound, which means
run time will be within
a constant factor

• Generally we will use
either O or Θ

• O, Ω, Θ called
asymptotic notation

Example: find largest item in a list
• Best case: already seen it is Ω(n)
• Worst case: must check each item, so O(n)
• Because Ω(n) and O(n) we say it is Θ(n)

We can also apply these concepts to how
much memory an algorithm uses (not just
run-time complexity)

62

We ignore constants and low-order terms
in asymptotic notation

Constants don’t matter, just adjust c1 and c2

• Constant multiplicative factors are absorbed into c1 (and c2)
• Example: 1000n2 is O(n2) because we can choose c1 to be 1000

(remember bounded by c1n)
• Do care in practice – if an operation takes a constant time, O(1),

but more than 24 hours to complete, can’t run it everyday

Low order terms don’t matter either
• If n2+1000n, then choose c1 = 1, so now n2 +1000n ≥ c1n2

• Now must find c2 such that n2 +1000n ≤ c2n2

• Subtract n2 from both sides and get 1000n ≤ c2n2 - n2 = (c2-1)n2

• Divide both sides by (c2-1)n gives 1000/(c2-1) ≤ n
• Pick c2 = 2 and n0 = 1000, then ∀n ≥ n0, 1000 ≤ n
• So, n2 +1000n ≤ c2n2, try with n=1000 get n2 + 10002 = 2*n2

• In practice, we simply ignore constants and low order terms

63

Pierson’s field guide to spotting run-time
complexity

Constant time
O(1)

Linear time
O(n)

Polynomial time
O(n2)

64

Key points

1. ADTs say what needs to be done, but not how do implement it
2. An interface describes methods must be implemented for an ADT
3. Generics allow us to write an ADT one time, irrespective of the

data types involved
4. Java provides two implementations of the List ADT, an ArrayList

and a LinkedList
5. Each implementation provides the same ADT operations, but work

differently
6. We will soon implement both ourselves to see how they work
7. We’d like a way to compare different approaches to solving the

same problem in a principled manner
8. Considering the number of operations helps us do that
9. Big-Oh provides an upper bound on run-time complexity
10.Big-Omega provides a lower bound on run-time complexity
11.Big-Theta provides a tight bound on run-time complexity

	Slide 1
	Slide 2: A note about inheritance: you can declare base class and instantiate as subclass
	Slide 3: You can cast to the instantiated type
	Slide 4: Cannot cast to a type outside the inheritance chain
	Slide 5: Cannot cast down the inheritance chain
	Slide 6: Can cast up the inheritance chain
	Slide 7: Agenda
	Slide 8: OOP relies on four main pillars to create robust, adaptable, and reusable code
	Slide 9: Abstract Data Types specify operations on a data set that defines overall behavior
	Slide 10: The List ADT defines required operations, but not how to implement them
	Slide 11: Example: List ADT defines a set of operations
	Slide 12: Example: List ADT defines a set of operations
	Slide 13: Example: List ADT defines a set of operations
	Slide 14: Example: List ADT defines a set of operations
	Slide 15: Example: List ADT defines a set of operations
	Slide 16: ADTs can be implemented differently, but must provide common functionality
	Slide 17: Interfaces go in one file, implementations go in another file(s)
	Slide 18: SimpleList.java is an interface that specifies what operations MUST be implemented
	Slide 19: The List ADT could be implemented with a singly linked list OR an array; either works
	Slide 20: Agenda
	Slide 21: Generics allow a variable to stand in for a Java type
	Slide 22: Agenda
	Slide 23: ArrayListDemo.java: ArrayLists can hold multiple objects; provide useful methods
	Slide 24: ArrayListDemo.java: ArrayLists can hold multiple objects; provide useful methods
	Slide 25: ArrayListDemo.java: ArrayLists can hold multiple objects; provide useful methods
	Slide 26: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 27: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 28: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 29: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 30: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 31: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 32: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 33: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 34: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 35: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 36: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 37: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 38: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 39: ArrayListDemo.java: ArrayLists can hold multiple objects, provide useful methods
	Slide 40: Lists can hold any kind of object, not just autoboxed versions of primitive data types
	Slide 41: Lists do not declare a maximum size unlike arrays
	Slide 42: For-each loops are available for Lists, like they are with arrays
	Slide 43: Use size to get the number of items in a List
	Slide 44: Use get to retrieve an item at a given index
	Slide 45: C-style for loops are also available, use get with them
	Slide 46: C-style for loops are also available, use get with them
	Slide 47: Agenda
	Slide 48: How long does it take to find an item in a List?
	Slide 49: How long does it take to find an item in a List?
	Slide 50: Often run-time will depend on the number of elements an algorithm must process
	Slide 51: Often run-time will depend on the number of elements an algorithm must process
	Slide 52: For small numbers of items, run time does not differ by much
	Slide 53: As n grows, number of operations between different algorithms begins to diverge
	Slide 54: Even with only 60 items, there is a large difference in number of operations
	Slide 55: Eventually, even with speedy computers, some algorithms become impractical
	Slide 56: Sometimes complexity can hurt us, sometimes it can help us
	Slide 57: Agenda
	Slide 58: Computer scientists describe upper bounds on orders of growth with “Big Oh” notation
	Slide 59: We can extend Big Oh to any, not necessarily linear, function
	Slide 60: Run time can also be Ω (Big Omega), where run time grows at least as fast
	Slide 61: We use Θ (Big Theta) for tight bounds when we can define O and Ω
	Slide 62: We ignore constants and low-order terms in asymptotic notation
	Slide 63: Pierson’s field guide to spotting run-time complexity
	Slide 64: Key points

