
CS61: Database Systems - Dartmouth College

This	is	a	true	story.

 
Aaron	was	well-known	as	a	superb	algorithms	guy	who	had	solved	some	of	the	most	
complicated,	messy	network	design	problems	there	were.		He	had	even	applied	his	skills	in	
other	kinds	of	combinatorial	optimization,	such	as	…	but	making	sense	out	of	large	scale	
complicated	masses	of	interdependent	data,	occasionally	of	dubious	veracity,	were	his	
favorite.	

So	it	came	as	no	surprise	when	the	researchers	at	a	neighboring	University	approached	him	
for	help.

They	were	working	on	finding	drugs	to	fight	certain	kinds	of	cancer.		They	were	primarily	
chemists	and	geneticists,	and	not	programmers	or	very	sophisticated	computer	users.		They	
were	trying	something	new:	crowd	sourcing	their	lab	data.		They	were	a	small	informal	
consortium	of	like-minded	researchers	scattered	around	the	world.		Everyone	knew	and	
respected	each	other,	so	they	didn't	have	to	worry	much	about	the	quality	of	the	contributed	
data.	Having	started	small,	with	just	one	other	research	group,	they	had	tossed	together	
some	simple	tools	for	collecting	a	member’s	contributed	lab	data.			They	also	had	built	some	
rudimentary	tools	for	searching	the	data	for	matches	against	some	simple	templates	
representing	genes	and	chemical	compounds	that	they	had	found	to	have	some	effect	on	
them.		As	their	work	progressed,	they	needed	new	ways	to	search	for	new	templates	they	
wanted	to	try.		Every	time	they	needed	a	new	search,	they	had	to	find	a	grad	student	
somewhere	to	write	special	code.		But	grad	students	were	plentiful	across	the	consortium,	
especially	as	it	grew	larger,	so	the	consortium	just	continued	to	focus	on	their	research.

All	the	members	contributed	code	from	time	to	time,	using	a	growing	collection	of	user	
interfaces	and	not	always	fully	debugged.	Typically	it	would	work	fine	for	the	particular	
group	that	had	developed	it	...	the	code	found	what	they	wanted	it	to	find	...	But	the	code	
didn't	always	work	as	well	for	others.		But	no	matter,	they	had	their	own	growing	libraries	of	
search	code	that	was	more	tuned	to	their	needs.

As	the	consortium	had	some	early	successes,	the	membership	grew.	Accordingly,	the	data	
began	pouring	in	from	everywhere.		The	crowd	sourcing	of	lab	data	data	was	working!	Soon	
they	had	to	abandon	the	two	PC's	running	their	project	and	move	up	to	mid-range	servers	
with	terabytes	of	storage	and	real	backups	in	the	cloud.	Soon	after	that,	their	membership	in	
Russia	and	Asia	spiked,	and	so	they	had	some	more	grad	students	cobble	together	a	mirror	
of	their	data	servers	in	Beijing.	Of	course,	the	servers	there	were	fantastic	machines	from	a	
Chinese	manufacturer,	but	they	ran	a	different	operating	system	from	the	original	ones	and	
some	accommodations	(and	more	code)	had	to	be	made.

That's	when	things	began	to	fail. 

Page of 1 3

• There	were	synchronization	problems	between	the	sites.	

• The	searches	were	taking	longer	and	longer	to	run	because	of	the	huge	amount	of	data.

• The	same	search	didn't	always	produce	the	same	result.	Data	that	had	been	updated	in	one	
part	of	the	network	sometimes	existed	in	other	parts	which	still	had	the	old	values.	
Similarly,	some	data	that	had	been	deleted	by	one	team	still	persisted	in	other	parts	of	the	
network.

• The	vast	collection	of	customized	search	tools	being	used	by	the	dozens	of	researchers	
would	sometimes	conflict	with	each	other,	resulting	in	more	errors	or	full	system	failures.

• As	the	membership	grew,	the	conflicts	over	data	updates	also	increased.		One	researcher’s	
application	might	be	trying	to	update	some	shared	data	while	another	was	trying	to	read	it	
or	even	update	it	differently.	

• As	the	number	of	researchers	grew,	the	complexities	of	managing	Access	Control	to	the	
data	also	grew.		There	were	times	when	researchers	needed	to	have	access	to	some,	but	
not	all,	of	the	data.		As	the	number	and	type	of	data	files	exploded,	this	became	
unmanageable.

• Some	members	lost	their	graduate	students	to	graduation,	and	so	some	of	them	began	to	
try	to	use	other	members'	search	tools	...	inconsistent	interfaces	resulted	in	frustration	and	
missed	paper	deadlines.	

• Some	members	even	began	withdrawing	from	the	consortium.

That's	when	they	called	in	Aaron

What	followed	was	weeks	of	painful	discovery.		Aaron	discovered	all	of	the	inconsistencies	
and	poor	practices		mentioned	above,	and	other	problems	that	even	raised	doubts	about	
some	of	the	consortium	member’s	published	results.

•	There	was	no	database,	per	se,	but	really	just	several	enormous	sequential	"flat"	files	built	
directly	within	a	system’s	file	system.		No	consistent	software	or	hardware	was	used.

•	There	were	different	representations	for	the	same	kinds	of	data.	Different	chemical	
compounds	had	their	constituent	parts	listed	in	different	orders,	depending	on	the	
researcher’s	academic	background.

•	There	was	no	way	to	lock	access	to	a	particular	set	of	data	during	a	program’s	execution	
even	if	it	was	updating	the	data.

•		There	were	HUGE	data	redundancies	across	the	project’s	servers.		The	same	results	
duplicated	many	times	over,	stored	and	sorted	in	a	variety	of	ways	to	suit	individual	
researcher’s	needs.

•	As	a	result,	there	were	data	inconsistencies	everywhere.		One	researcher	would	create	a	
copy	of	a	data	file,	make	some	“what	if”	changes	to	the	data,	and	rerun	his/her	research.		If	
the	results	were	promising,	the	researcher	would	continue	to	work	with	the	updated	copy.		

If	a	researcher	found	an	error	and	corrected	it,	it	was	typically	only	corrected	in	his/her	own	
copy!

•	Sometimes	a	researcher	would	find	an	error	in	his/her	lab	work	and	then	want	to	remove	
some	related	data	he	had	contributed.		He	would	simply	go	to	where	he	had	put	the	data	and	
delete	it,	unaware	of	any	copies	or	updates	that	might	have	been	made	to	these	100-MByte	
files.

•	The	wide	variety	of	programs	written	to	access	all	this	data	were	of	wildly	variable	quality	
and	didn’t	always	play	nice	with	the	other	programs.		This	resulted	in	system	hangs,	
deadlocks	when	accessing	common	data,	and	all	sorts	of	data	integrity	problems.	

Aaron	had	never	seen	such	a	disaster	of	a	system.

Like	many	projects,	this	one	was	based	on	a	brilliant	idea:	crowdsourcing	of	quality	lab	data	
from	like-minded	researchers.			It	was	the	execution	and	scale-up	that	bit	them.

A	database	system	would	have	saved	them	a	whole	lot	of	trouble.		A	modern	database…

•	has	a	consistent	user	interface	for	queries	and	updates

•	can	easily	handle	ad	hoc	queries

•	provides	built-in	consistency	checks	that	insure	the	ACID	properties	of	transactions:

• Atomicity	-	either	all	the	effects	of	a	transaction	persist	after	completion,	or	none	of	
them	do.

• Consistency	-	every	transaction	leaves	the	database	in	a	consistent	and	correct	state	-	
i.e.,	the	resulting	data	doesn’t	represent	a	system-defined	impossibility	(like	a	
negative		molecular	weight	for	a	compound).	

• Isolation	-	transactions	cannot	interfere	with	one	another.

• Durability	-	the	result	of	a	successful	transaction	must	persist	after	the	transaction	
completes,	and	even	across	system	crashes	or	other	events.	

•	often	provide	extremely	efficient	query	optimization	capabilities.

•	are	designed	with	multi-user	and	highly	distributed	systems	in	mind.

•	provide	data	models	at	the	logical	level,	hiding	away	the	physical	implementation	
underneath,	improving	portability	and	reducing	errors,	while	enabling	sophisticated	
optimization	techniques	“underneath”.

This is why we study database systems in CS61 !

Page of 3 3

