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Abstract 
 
In this paper we present 10 rules that any customer would be wise to keep in mind when 
considering a database management system (DBMS) application that requires scalable 
performance, and that reads or writes a small number of objects in each transaction.  Such 
simple operation (SO) applications include on-line transaction processing (OLTP) and 
also interactive web applications such as social networking.  Some of our rules concern 
the underlying DBMS; the rest are guidelines for architecting scalable DBMS 
applications.  Most existing SO DBMSs satisfy only a few of our rules, so this paper also 
represents a mandate for future improvement.  
 
Introduction 
 
The relational model of data was proposed in 1970 by Ted Codd [1] as the desired 
solution for the DBMS problems of the day, namely business data processing.  Early 
relational systems included System R [2] and Ingres [3], and almost all commercial 
relational DBMS (RDBMS) implementations trace their roots to these two systems.  
 
As such, unless you squint, the dominant commercial vendors (Oracle, IBM, Microsoft) 
as well as the major open source systems (MySQL, PostgreSQL) all look about the same, 
and we term these systems general-purpose traditional row stores (GPTRS). They 
share the following features: 
 

• Disk-oriented storage 
• Tables stored row-by-row on disk (hence, a row store) 
• B-trees as the indexing mechanism 
• Dynamic locking as the concurrency control mechanism 
• A write-ahead log (WAL) for crash recovery 
• SQL as the access language 
• A “row-oriented” query optimizer and executor (pioneered in System R [4]) 

 
In the 1970’s and 1980’s, there was only a single major DBMS market, business data 
processing, now called On-Line Transaction Processing (OLTP).  More recently, DBMSs 
have come to be used in a wide variety of new markets, including data warehouses, 



scientific databases, social networking sites, and gaming sites.  We characterize the 
modern-day DBMS space in Figure 1. 
 
Here, there are two axes, with the horizontal axis indicating whether the application is 
read-focused or write-focused.  The vertical axis shows whether the application performs 
simple operations (read or write a few items) or complex operations (read or write 
thousands of items).  For example, the traditional OLTP market is write-focused with 
simple operations, while the data warehouse market is read-focused with complex 
operations.  Of course, many applications are somewhere in the middle; for example 
social networking applications involve mostly simple operations but have a balance of 
reads and writes.  Hence, one should view Figure 1 as a continuum in both directions, 
with any given applications placed somewhere in the interior of the figure. 
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FIGURE NEEDS TO BE REDRAWN 
 
The major commercial engines and open-source implementations of the relational model 
are positioned as “one-size-fits-all” systems.  In other words, their implementations are 
claimed to be appropriate for all locations in Figure 1. 
 
There is at least some dissatisfaction with one-size-fits-all in certain quarters.  Witness 
for example the commercial success of the so-called column stores in the data warehouse 
market.  Here, only those columns needed in the query are retrieved from disk, avoiding 
bandwidth for unused data.  In addition, superior compression can be obtained, since only 
one kind of object exists on each storage block, rather than several-to-many.  Finally, 
main memory bandwidth is economized by a query executor that operates on compressed 
data.  For these reasons columns stores are remarkably faster than row stores on typical 
data warehouse workloads, and we expect them to dominate this market over time. 
 
The focus of this paper is on simple operation (SO) applications, i.e. the lower portion of 
Figure 1.  In this market, there have been quite a number of new, non-GPTRS systems.  
Loosely speaking, we can classify these recent arrivals as follows: 
 



1. Key-value stores, including Dynamo, Voldemort, Tokyo Cabinet, Scalaris, and 
Riak.  These systems have the simplest data model: a collection of objects, each 
with a key and a payload.   They provide little or no ability to interpret the 
payload as a multi-attribute object, and there is no query mechanism for non-
primary attributes. 

2. Document stores, including CouchDB, MongoDB, and SimpleDB.  Here the data 
model consists of objects with a variable number of attributes; some allow nested 
objects.  Collections of objects can be searched via constraints on multiple 
attributes through a (non SQL) query language or procedural mechanism. 

3. Extensible record stores, including BigTable, PNUTs, HBase, HyperTable, and 
Cassandra.  These provide variable-width tables that can be partitioned vertically 
and horizontally across multiple nodes.  They are generally not accessed through 
SQL. 

4. SQL DBMSs focused on SO application scalability, including MySQL Cluster 
and other MySQL derivatives, VoltDB, NimbusDB, and Clustrix.  These systems 
retain SQL and ACID transactions, but often have very different implementations 
than GPTRS systems. 

 
We do not claim this classification is precise nor exhaustive, however we believe it 
covers the major classes of newcomers. Readers seeking a more thorough discussion and 
references for these systems can consult [10]. 
 
The NoSQL movement is largely driven by the systems in the first three categories. 
These systems restrict the traditional notion of ACID (A: Atomic,  C: consistent,  I: 
Isolated, and D: Durable) transactions [5],  either by allowing only single-record 
operations to be transactions and/or by relaxing ACID semantics, for example by 
supporting only “eventual consistency” or multiple versions of data. 
 
There are a variety of motivations for the above systems.  In some cases, it is 
dissatisfaction with the relational model or the “heaviness” of RDBMSs. In other cases, 
these new solutions are motivated by the needs of large web properties, which have some 
of the most demanding SO problems around.  Frequently, a large web property was a 
start-up lucky enough to see explosive growth; the so-called “hockey stick” effect.  
Typically, they used an open source DBMS, because it was free or already understood by 
the staff.  A single node DBMS solution was built for Version 1, which quickly exhibited 
scalability problems.  The conventional wisdom was then to “shard” the application so 
that data could be stored on multiple nodes.  In this way, a table is partitioned, for 
example, employee names could be partitioned onto 26 nodes by putting all of the “A’s” 
on node 1, and so forth.  It is now up to application logic to direct every query and update 
to the correct node.  Such sharding in application logic has a number of severe 
drawbacks: 
 

• If a cross-shard filter or join must be performed, then it must be coded in the 
application. 



• If updates are required inside a transaction to multiple shards, then it is the 
responsibility of the application to somehow guarantee data consistency across 
nodes. 

• Node failures become more common as the system scales.  It is a hard problem to 
maintain consistent replicas, detect failures, fail over to replicas, and replace 
failed nodes in a running system. 

• Making schema changes without taking shards “off line” is a challenge. 
• Reprovisioning the hardware to add additional nodes or change the configuration 

is extremely tedious.  Again, this is much harder if the shards cannot be take 
offline. 

 
As such, many developers of these sharded web applications are in severe pain because 
they must perform these functions in application-level logic.  Much of the NoSQL 
movement seems to be directed at this pain point.  However, with the large number of 
new systems and the wide range of approaches they take, it can be very difficult for 
clients to understand and choose a system to meet their application requirements. 
 
In this paper, we present 10 rules, which we would advise any client to consider who has 
an SO application and is examining non-GPTRS systems.  The rules are a mix of DBMS 
requirements and guidelines concerning good SO application design.  Moreover, we state 
these rules in the context of clients running software in their own environment; however 
most of the rules also apply to software-as-a-service (SaaS) environments. 
 
In each case, we present the rule and then indicate why we believe it is necessary. 
 
Rule #1:  Look for shared-nothing scalability 
 
There are three hardware architectures on which a DBMS can run.  The oldest one, 
shared-memory multiprocessing (SMP), means the DBMS runs on a single node, 
consisting of a collection of cores sharing a common main memory and disk system.  
SMP will be limited by main memory bandwidth to a relatively small number of cores.  
Clearly, the number of cores will increase in future systems, but it remains to be seen if 
main memory bandwidth will increase commensurately.  Hence, multi-core systems will 
face performance limitations with DBMS software.  Clients who chose an SMP system 
were forced to perform sharding themselves in order to obtain scalability across SMP 
nodes, and they face the painful problems noted above.  Popular systems that currently 
run on SMP configurations are MySQL, PostgreSQL, and Microsoft SQL Server.  
 
The second option is to choose a DBMS that runs on disk clusters.  Here, a collection of 
CPUs with private main memories share a common disk system.  This architecture was 
popularized in the 1980’s and 90’s by Sun, DEC, and HP, but it has serious scalability 
problems in a DBMS context.  Because there is a private buffer pool in the main memory 
of each node, it is possible for the same disk block to be in multiple buffer pools.  Hence, 
careful synchronization of these buffer pool blocks is required.  Similarly there is a 
private lock table in the main memory of each node.  Again, careful synchronization is 



required.  Such synchronization issues limit the scalability of a shared disk configuration 
to a small number of nodes (typically less than 10).   
 
The main example of a DBMS running shared disk is Oracle RAC, and it is difficult to 
find RAC configurations with a double-digit number of nodes.  Recently, Oracle 
announced Exadata and Exadata 2, which run shared disk at the top level of a two-tier 
hierarchy, but run shared-nothing at the bottom level.  Hence, Exadata is a blended 
architecture that does not fall neatly into one of our buckets. 
 
The final architecture is a shared-nothing configuration, where each node shares neither 
main memory nor disk.  Rather, a collection of self-contained nodes are connected to 
each other by networking.  Essentially all DBMSs oriented toward the data warehouse 
market built in the last two decades run shared-nothing, including Greenplum, Vertica, 
Asterdata, Paraccel, Netezza, and Teradata.   Moreover, DB2 runs shared-nothing, as do 
many NoSQL engines .  Shared-nothing engines normally perform automatic sharding 
(partitioning) of data to achieve parallelism. Shared-nothing systems will only scale if 
data objects are partitioned across the nodes in the system in a manner that balances the 
load.  If there is data skew or “hot spots”, then a shared-nothing system will degrade in 
performance to the speed of the overloaded node.  In addition, the application must make 
the overwhelming majority of transactions “single-sharded”, a point we discuss further in 
Rule 6. 
 
Unless limited by application data/operation skew, well-designed shared-nothing systems 
should continue to scale until networking bandwidth is exhausted or until the needs of the 
application are met.  Many NoSQL systems are reported to run a hundred nodes or more.  
BigTable is reported to run on thousands of nodes.   
 
The DBMS needs of web applications may drive DBMS scalability upward in a hurry.  
For example, Facebook is presently sharding 4000 MySQL instances in application logic.  
If they choose to consider a DBMS, it would have to scale at least to this number of 
nodes.  An SMP or shared disk DBMS has no chance at this level of scalability.  Hence, 
shared-nothing DBMSs are the only game in town. 
 
Rule #2:  High-level languages are good and need not hurt performance 
 
The work in a SQL transaction may include the following five pieces: 
 

a) overhead resulting from the optimizer choosing an inferior execution plan 
b) overhead of communicating with the DBMS 
c) overhead inherent in coding in a high-level language 
d) overhead for services such as concurrency control, crash recovery and data 

integrity 
e) truly useful work, which must be performed no matter what 

 
We discuss the first three components in this rule, leaving the last two for the next rule.  
 



In the 1960’s and 1970’s, hierarchical and network systems were the dominant DBMS 
solutions, offering a low-level procedural interface to data.  The high-level language of 
RDBMSs were instrumental in displacing these DBMSs because: 
 

• A high-level language system requires the programmer to write less code that is 
easier to understand.   

• A user states what he wants instead of writing a disk-oriented algorithm on how to 
access the data he needs.  A programmer does not need to understand complex 
storage optimizations. 

• A high-level language system has a better chance of allowing a program to 
survive a change in the schema without maintenance or recoding.  As such, low-
level systems require far more maintenance. 

 
One of the charges leveled at RDBMSs in the 1970s and 80’s was that they would not be 
as efficient as low-level systems.  The claim was made that automatic query optimizers 
could not do as good a job as smart programmers.  Although early optimizers were 
primitive, they quickly became as good as all but the best human programmers. 
Moreover, most clients cannot attract and retain this level of talent.  Hence, this source of 
overhead has largely disappeared, and is only an issue on very complex queries, which 
are rarely found in SO applications. 
 
The second source of overhead is communicating with the DBMS.  Currently, RDBMSs 
insist on the application being run in a separate address space for security reasons, and 
use ODBC or JDBC for DBMS interaction.  The overhead of these communication 
protocols is high; running a SQL transaction requires several back-and-forth messages 
over TCP/IP.   
 
Consequently, anybody seriously interested in performance runs transactions using a 
stored procedure interface, rather than SQL commands over ODBC/JDBC.  In this case, a 
transaction is a single over-and-back message.  The DBMS can further reduce 
communication overhead by batching multiple transactions in one call.  In summary, the 
communication cost is a function of the interface selected, can be minimized, and has 
nothing to do with the language level of the interaction. 
 
Third, there is the overhead of coding in SQL rather than a low-level procedural 
language.  Since most serious SQL engines compile to machine code, or at least to a 
Java-style intermediate representation, this overhead is not large. Put differently, standard 
language compilation converts a high level specification into a very efficient low-level 
run-time executable. 
 
Hence, one of the key lessons in the DBMS field during the last quarter of a century is 
that high level languages are good and do not hurt performance.  Some of the new 
systems do provide SQL or a more limited higher-level language.  Others provide only a 
“database assembly language” − individual index and object operations.  For very simple 
applications this may be adequate, but in all other cases we believe that a high-level 
language provides compelling advantages.  



 
Rule #3:  Plan to carefully leverage main memory databases 
 
Consider a cluster of 16 nodes, each with 64 Gbytes of main memory.  Any shared-
nothing DBMS thereby has access to about 1 Tbyte of main memory.  Such a hardware 
configuration would have been considered extreme a few years ago, but is now 
commonplace.  Moreover, memory per node will obviously increase in the future, and the 
number of nodes in a cluster is also likely to rise.  Hence, typical clusters of the future 
will have increasing terabytes of main memory. 
 
As a result, if your database is a couple of terabytes or less (a very large SO database), 
you should consider main memory deployment.  If your database is larger you should 
consider main memory deployment when practical in the future.  In addition, flash 
memory and other technologies have become a promising alternative to disk as prices 
have decreased. 
 
Given the random access speed of RAM versus disk, a DBMS can potentially run 
thousands of times faster.  However, the DBMS must be architected properly to utilize 
main memory efficiently: only modest improvements will be achieved simply by running 
a DBMS on a machine with more memory.   
 
To understand why, consider the CPU overhead in DBMSs.  In [6] we measured 
performance using part of one of the major SO benchmarks, TPC-C, on the Shore open 
source DBMS.  This DBMS was chosen because the source code was available for 
instrumentation, and because it is a typical GPTRS implementation. From simple 
measures of some other GPTRS systems, we believe the Shore results are representative 
of them as well.  
 
We used a database size that allowed all data to fit in main memory, since that is 
consistent with most SO applications.  Since Shore, like other GPTRS systems, is disk-
based, that means all of the data resides in the main memory buffer pool.   Our goal was 
to categorize DBMS overhead on TPC-C.  We ensured that a good query plan was chosen 
by the optimizer, and ran the DBMS in the same address space as the application driver, 
thereby avoiding any TCP/IP cost. We then looked at the components of CPU usage, 
which perform useful work or deliver DBMS services. 
 
In [6] some shortcomings of the Shore B-tree implementation are noted, which have been 
fixed in most commercial GPTRS implementations.  Therefore, the following results 
were scaled to assume removal of this source of overhead.  We report actual cycles used, 
rather than CPU instruction counts, for the new-order transaction on TPC-C: 
 

Useful work:  13%.  This is the CPU cost for actually finding relevant records 
and performing retrieval or update of relevant attributes. 
 
Locking:  20%.  This is the CPU cost of setting and releasing locks, detecting 
deadlock, and managing the lock table. 



 
Logging:  23%.  When a record is updated, the before image and after image of 
the change must be written to a log.  Shore then groups transactions together in a 
“group commit” that forces the relevant portions of the log to disk.  The CPU cost 
of this activity is noted here. 
 
Buffer pool overhead: 33%.  Since all data resides in the buffer pool, any 
retrievals or updates require the relevant block to be found in the buffer pool.  
Then, the appropriate record(s) must be located and relevant attributes in the 
record found.  Blocks on which there is an open database cursor must be “pinned” 
in main memory.  Moreover, an LRU or other replacement algorithm will be used, 
requiring additional information to be recorded.   
 
Multi-threading overhead: 11%.  Since most DBMSs are multi-threaded, there 
are multiple operations going on in parallel.  Unfortunately, the lock table is a 
shared data structure, which must be “latched” to serialize access by the various 
parallel threads.  In addition, B-tree indexes and resource management 
information must be similarly protected.  Latches (mutexes) must be set and 
released when shared data structures are accessed. 

 
The interested reader is directed to [6] for a more detailed discussion, including a 
commentary on why the latching overhead may be understated.   
 
Clearly a conventional disk-based DBMS spends the overwhelming majority of its cycles 
on overhead activity.  To go a lot faster, one must deal with all of the overhead 
components noted above.   For example, a main memory DBMS with conventional multi-
threading, locking and recovery will be only marginally faster than its disk-based 
counterpart.  Put differently, a NoSQL or other database engine will not dramatically 
outperform a GPTRS implementation, unless: 
 

1. all of these overhead components are addressed, or 
 

2. the GPTRS solution has not been properly architected, for example by using 
conversational SQL rather than a stored procedure interface. 

 
Of course, we are looking at single-machine performance in our analysis, but this will 
have a direct effect on the multi-machine scalability discussed in Rule 1 and our other 
rules. 
 
Rule #4: High availability (HA) and automatic recovery are essential for SO 
scalability 
 
A quarter of a century ago, a typical DBMS application would run on what we would 
now consider very expensive hardware.   If the hardware failed, the client would restore 
working hardware, reload the operating system and DBMS, and then recover the database 
to the state of the last completed transaction by performing an undo of incomplete 



transactions and a redo of completed ones, using a DBMS log.  This process could take a 
while (several minutes to an hour or more), and the application would be unavailable for 
this period of time.   
 
Few clients today are willing to accept down time in their SO applications.  Instead, most 
everyone wants to run redundant hardware and use data replication to have a second copy 
of all objects.  On a hardware failure, the system switches over to the backup and 
continues operation.  Effectively, people want “non-stop” operation, as pioneered in the 
1980’s by Tandem Computers.   
 
Furthermore, many large web properties are running large numbers of shared-nothing 
nodes in their configurations.  In such worlds, the probability of failure rises as the 
number of “moving parts” increases.  Effectively, this renders human intervention 
impractical in the recovery process: instead, shared-nothing DBMS software must 
automatically detect and repair failed nodes. 
 
Any DBMS acquired for SO applications should have built-in high availability (HA), so 
that non-stop operation can be supported.  Three HA caveats should be clearly noted.  
First, there are a multitude of kinds of failures, including:  
 

• Application failures (where the application corrupts the database) 
• DBMS failures where the bug can be recreated (so called Bohr bugs) 
• DBMS failures where the bug cannot be recreated (so called Heisenbugs) 
• Hardware failures of all kinds 
• Lost network packets 
• Denial of service attacks 
• Network partitions  

 
Any DBMS will continue operation for some but not all of the failure modes above.  The 
cost of recovering from all possible failure modes is very high.  Hence, high availability 
is a statistical effort, namely how much availability is desired against what classes of 
failures. 
 
The second caveat is the so-called CAP theorem [7].  In the presence of certain of the 
above failures, this theorem states that you can have any two of:  Consistency, 
Availability, and Partition-tolerance.  Hence, there are theoretical limits on what is 
possible in the high-availability arena. 
 
Lastly, every site administrator wants to guard against disasters (earthquakes, floods, 
etc.).  Although these are rare, continued operation is still desirable.  Hence, disaster 
recovery (DR) should be considered as an extension of HA, supported by replication over 
a wide area network. 
 
Rule #5:  On-line everything 
 



An SO DBMS should have a single state: “up”.  From a user’s point of view, it should 
never fail and should never have to be taken offline.  In addition to failure recovery just 
discussed, we need to consider operations that require the database to be taken offline in 
many current implementations: 
 

• Schema changes:  attributes must be added to an existing database without 
interruption in service. 

• Index changes:  Indexes should be added or dropped without interruption in 
service. 

• Reprovisioning:  It should be possible to increase the number of nodes that are 
used to process transactions without interruption in service.  For example a 
configuration might go from 10 nodes to 15 to accommodate an increase in load. 

• Software upgrade:  It should be possible to move from version I of a DBMS to 
version I + 1 without interruption of service. 

 
Obviously some of the above capabilities are challenging to support.  However, 100% 
uptime should be the goal.  As an SO system scales to dozens of nodes and/or millions of 
users on the Internet, downtime and manual interventions are simply not practical. 
 
Rule #6:  Avoid multi-node operations 
 
Two things are necessary to achieve SO scalability over a cluster of servers: 
 

1. The database and application load must be split evenly over the servers.  Read-
scalability can be simply achieved by replicating data, but general read/write 
scalability requires sharding (partitioning) the data over nodes according to a 
primary key. 

2. Applications must rarely perform operations that span more than one server or 
shard.  If a large number of servers are involved in processing an operation the 
scalability advantages may be lost, either because of redundant work, cross-server 
communication or required operation synchronization. 

 
For example, suppose you have an employee table, and partition it on employee age.  If 
you want to know the salary of a specific employee, you must then send the query to all 
nodes, requiring a slew of messages.  Only one will find the desired data; the others will 
run a redundant query that finds nothing.  Furthermore, if you perform an update that 
crosses shards, for example giving a raise to all employees in the shoe department, then 
you must pay all of the synchronization overhead of ensuring that the transaction is 
performed on every node.  
 
Hence, one should choose a sharding key to make as many operations single-sharded as 
possible. Fortunately, most applications naturally involve single-shard transactions, if the 
data is partitioned properly.  For example, if purchase orders and their details are both 
sharded on PO number, then the vast majority of transactions (new PO, update a specific 
PO, …) go to a single node.   
 



The percentage of single node transactions can be further increased by replicating read-
only data.  For example, a list of customers and their addresses can be replicated at all 
sites.  In many business-to-business environments, customers are added, deleted or 
change their address very infrequently.  Hence, complete replication will allow inserting 
the address of a customer into a new purchase order as a single node operation.  
Therefore, selective replication of read-mostly data can be advantageous. 
 
In summary: avoid multi-shard operations to the greatest extent possible.  This includes 
queries that must go to multiple shards, and also multi-shard updates requiring ACID 
properties.  Carefully think through your application and database design to accomplish 
this goal.  If this goal is unachievable with your current application design, then consider 
a redesign that achieves higher “single-shardedness”. 
 
Rule #7:  Don’t try to build ACID consistency yourself  
 
In general, the key-value stores, document stores, and extensible record stores we 
mentioned have abandoned transactional ACID semantics for a weaker form of atomicity, 
isolation, and consistency.  They provide one or more of the following mechanisms: 
 

• Some create new versions of objects on every write, resulting in parallel versions 
when there are multiple asynchronous writes.  It is up to application logic to 
resolve the resulting conflict. 

• Some provide an “update if current” operation, changing an object only if it 
matches a specified value.  In this way, an application can read an object that it 
plans to later update and then make changes only if the value is still current. 

• Some provide ACID semantics, but only for read and write operations of a single 
object, attribute, or shard.   

• Some provide “quorum” read and write operations that guarantee the latest 
version among “eventually consistent” replicas. 

 
It is possible to build your own ACID semantics on any of these systems, with enough 
additional code.  However, this is a difficult task we wouldn’t wish on our worst enemy.  
If you need ACID semantics, you want to use a DBMS that provides them: it is much 
easier to deal with this at the DBMS level than the application level.   
 
Any operation that requires coordinated updates to two objects is likely to need ACID 
guarantees.  For example, consider a transaction that moves $10 between two user 
accounts.  With an ACID system, one can simply write: 
 

Begin transaction 
Decrement account A 
Increment account B 
Commit transaction 

 
Without an ACID system, there is no easy way to perform this coordinated action.  Other 
examples requiring ACID semantics would include charging a customer’s account only if 
their order ships, or synchronously updating bilateral “friend” references.  Standard 



ACID semantics give you the all-or-nothing guarantee you need to maintain data integrity 
in these cases.  Although there are some applications that do not need such coordination 
right now, a commitment to a non-ACID system precludes extending such an application 
in the future in a way that requires coordination.  DBMS applications often live a long 
time, and are subject to unknown future requirements. 
 
We understand the NoSQL movement’s motivation for abandoning transactions, given 
their belief that transactional updates are expensive in traditional GPTRS systems.  
However, newer SQL engines can offer both ACID and high performance, by carefully 
eliminating all overhead in Rule #3, at least for applications that obey Rule #6 (avoid 
multi-node operations).   If you need ACID transactions and cannot follow Rule #6, then 
you will likely incur substantial overhead, no matter whether you code the ACID yourself 
or let the DBMS do it. It is a no-brainer to let the DBMS do it. 
 
We have also seen arguments to abandon ACID transactions based on the CAP theorem 
[7], which states that you can only have two of C: consistency, A: availability, P: 
partition-tolerance.  The argument is that partitions happen; hence one must abandon 
consistency to get high availability.   We take issue with this argument for three reasons.  
First, some applications really need consistency, and cannot give it up.  Second, the CAP 
theorem only deals with a subset of possible failures, as noted in Rule 4, and one is left 
with the problem of coping with the rest.  Third, we are not convinced that partitions are 
a substantial issue for data sharded on a LAN, particularly with redundant LANs and 
applications on the same site.  In this case, partitions may be rare and one is better off 
choosing consistency (all the time) over availability during a very rare event.   
 
It is true that WAN partitions are much more likely than LAN partitions.  However, 
WAN replication is normally used for read-only copies or disaster recovery, e.g. an entire 
data center going offline; WAN latency is too high for synchronous replication or 
sharding.  Few users expect to recover from major disasters without short availability 
“hiccups”.  As such, the CAP theorem may be less relevant to this situation. 
 
In summary, we advise clients who have a need for ACID to seek a DBMS that provides 
ACID rather than coding it themselves, and keep the overhead of distributed transactions 
to a minimum through good database and application design.  
 
Rule #8:  Look for administrative simplicity 
 
One of our favorite complaints about relational DBMSs is their poor “out-of-box” 
behavior.  Most products have numerous tuning knobs that can adjust DBMS behavior.  
Moreover, our experience is that a DBA, skilled in a particular vendor’s product, can 
make it go a factor of two or more faster than one who is unskilled in the given product.   
 
As such, it is a daunting task to bring in a new DBMS, especially one that is distributed 
over many nodes.  This requires installation, schema construction, application design, 
data distribution, tuning, and monitoring.  Even getting a high performance version of 
TPC-C running on a new engine is a several week task, even though code and schema are 



readily available.  Moreover, once one has an application in production, it still requires 
substantial DBA resources to keep it running.  
 
Hence, when considering a new DBMS, you should carefully consider the out-of-box 
experience.  Never let the vendor do a proof-of-concept exercise for you.  Do the proof of 
concept yourself, so you can see the out-of-box situation “up-close and personal”.  Also, 
carefully consider application monitoring tools in your decision. 
 
Lastly, pay particular attention to Rule #5.  Some of the most difficult administrative 
issues require human intervention in most systems, such as schema changes, 
reprovisioning, etc. 
 
Rule #9:  Pay attention to node performance 
 
A common refrain heard these days is “go for linear scalability; that way you can always 
provision to meet your application needs; node performance is less important.   It is true 
that linear scalability is important, but we believe it a big mistake to ignore node 
performance.  One should always remember that linear scalability means that overall 
performance is a multiple of the number of nodes times node performance.  The faster the 
node performance; the less nodes you will need. 
 
It is quite common for solutions to differ in node performance by an order of magnitude 
or more.  For example, in DBMS-style queries parallel DBMSs outperform Hadoop by 
more than order of magnitude [8].   Similarly H-store (the prototype predecessor to 
VoltDB) has been shown to have even higher throughput on TPC-C when compared to 
the products from major vendors [9].   
 
Consider an example in which a customer is choosing between two solutions, each 
offering linear scalability.  If solution A offers node performance that is a factor of 20 
better than solution B, the customer might require 50 hardware nodes with solution A, 
versus 1000 nodes with solution B.   
 
Obviously, this is a non-trivial difference in hardware cost, rack space, cooling and power 
consumption between the two solutions.  More importantly, if a node fails on average 
every 3 years, then solution B will see a failure every day, while solution A will see 
failures less than once a month.  This dramatic difference will heavily influence how 
much redundancy is installed and how much administrative time is required to deal with 
reliability.   
 
In short, node performance makes everything else easier. 
 
Rule #10:  Open source gives you more control over your future 
 
This last rule is not a technical point, but we felt it important to mention. Hence, perhaps 
this should be a suggestion rather than a rule.  The landscape is littered with situations 
where a client acquired a vendor’s product, only to face expensive upgrades in later 



years, large maintenance bills for often inferior technical support, and an inability to 
avoid these fees because the cost of switching to a different product required extensive 
recoding. The best way we see to avoid “vendor malpractice” is to use an open source 
product.  Open source eliminates expensive licenses and upgrades, and often provides 
multiple alternatives for support, new features, and bug fixes, including doing these in-
house. 
 
For these reasons many newer web-oriented shops are adamant about using only open 
source systems.  Also, several vendors have proved that it is possible to make a viable 
business with an open source model.  As such, we expect it will become more popular 
over time, and clients would be well advised to consider its advantages. 
 
Summary 
 
In this paper we have presented 10 rules which we believe specify the desirable 
properties for any SO data store.  Clients looking at distributed data storage solutions 
would be well advised to look at systems they are considering in the context of our rule 
set as well as their unique application requirements.  There are a large number of systems 
now available, and they range considerably in their capabilities and limitations. 
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SIDEBAR: System References 
 
 Sources for more information 
Asterdata asterdata.com 
BigTable labs.google.com/papers/bigtable.html 
Clustrix clustrix.com 
CouchDB couchdb.apache.org 
DB2  ibm.com/software/data/db2 
Dynamo portal.acm.org/citation.cfm?id=1294281 
Exadata oracle.com/exadata 
Greenplum greenplum.com 
Hadoop hadoop.apache.org 
HBase hbase.apache.org 
HyperTable hypertable.org 
MongoDB mongodb.org 
MySQL mysql.com/products/enterprise 
MySQL Cluster mysql.com/products/database/cluster 
Netezza netezza.com 
NimbusDB nimbusdb.com 
Oracle oracle.com 
Oracle RAC oracle.com/rac 
Paraccel paraccel.com 
PNUTs research.yahoo.com/pub/2304 
PostgreSQL postgresql.org 
Riak basho.com/Riak.html 
Scalaris code.google.com/p/scalaris 
SimpleDB amazon.com/simpledb 



SQL Server microsoft.com/sqlserver 
Teradata teradata.com 
Terrastore code.google.com/p/terrastore 
Tokyo Cabinet 1978th.net/tokyocabinet 
Vertica vertica.com 
Voldemort project-voldemort.com 
VoltDB voltdb.com 

 
 
 


