
Get It Done With MySQL 5&6, Chapter 20. Copyright © Peter Brawley and Arthur Fuller 2011. All rights reserved.

TOC    Previous    Next

Trees and Other Hierarchies in
MySQL

Graphs and SQL   Edge list   Edge-adjacency list model of a tree   Automate tree drawing 
   Nested sets model of a tree   Edge-list model of a network   Parts explosions

Most non-trivial data is hierarchical. Customers have orders, which have line items,
which refer to products, which have prices. Population samples have subjects, who
take tests, which give results, which have sub-results and norms. Web sites have
pages, which have links, which collect hits, which distribute across dates and times.
With such data, we know the depth of the hierarchy before we sit down to write a
query. The depth of the hierarchy of tables fixes the number of JOINs we need to write.

But if our data describes a family tree, or a browsing history, or a bill of materials,
hierarchical depth depends on the data. We no longer know how many JOINs it will
take to walk the tree. We need a different data model. 

That model is the graph (Fig 1), which is a set of nodes (vertices) and the edges (lines
or arcs) that connect them. This chapter is about how to model and query graphs in a
MySQL database.

Graph theory is a branch of topology. It is the study of geometric relations which
aren't changed by stretching and compression—rubber sheet geometry, some call it.
Graph theory is ideal for modelling hierarchies—like family trees, browsing histories,
search trees and bills of materials—whose shape and size we can't know in advance.

http://www.artfulsoftware.com/
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1.pdf
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch19.pdf
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1_appa.pdf
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#graphs_and_sql
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#edge_list
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#adjacency_list_model
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#draw_tree
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#nested_set_model
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#nodes_edges_paths_model
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#parts_explosion


Let the set of nodes in Fig 1 be N, the set of edges be L, and the graph be G. Then G is the
tuple or ordered pair {N,L}:

    N = {A,B,C,D,E,F}
    L = {AC,CD,CF,BE}
    G = {N,L}

If the edges are directed, the graph is a digraph or directed graph. A mixed graph has
both directed and undirected edges.

Examples of graphs are organisational charts; itineraries; route maps; parts
explosions; massively multiplayer games; language rules; chat histories; network and
link analysis in a wide variety of fields, for example search engines, forensics,
epidemiology and telecommunications; data mining; models of chemical structure
hierarchies; and biochemical processes.

Graph characteristics and models

Nodes and edges : Two nodes are adjacent if there is an edge between them. Two
edges are adjacent if they connect to a common node. In a complete graph, all nodes
are adjacent to all other nodes.

In a digraph, the number of edges entering a node is its indegree; the number leaving
is its outdegree. A node of indegree zero is a root node, a node of outdegree zero is a
leaf node.

In a weighted graph, used for example to solve the travelling salesman problem, edges
have a weight attribute. A digraph with weighted edges is a network. 

http://pueblo.lbl.gov/~olken/graphdm/graphdm.htm#graphDataModel


Table 1

Nodes Adjacent
nodes

A C
B E

Paths and cycles: A connected sequence of edges is a path, its length the number of
edges traversed. Two nodes are connected if there is a path between them. If there is a
path connecting every pair of nodes, the graph is a connected graph.

A path in which no node repeats is a simple path. A path which returns to its own
origin without crossing itself is a cycle or circuit. A graph with multiple paths between
at least one pair of nodes is reconvergent. A reconvergent graph may be cyclic or
acyclic. A unit length cycle is a loop.

If a graph's edges intersect only at nodes, it is planar. Two paths having no node in
common are independent.

Traversing graphs: There are two main approaches, breadth-first and depth-first.
Breadth-first traversal visits all a node's siblings before moving on to the next level,
and typically uses a queue. Depth-first traversal follows edges down to leaves and back
before proceeding to siblings, and typically uses a stack.

Sparsity: A graph where the size of E approaches the maximum N2 is dense. When
the multiple is much smaller than N, the graph is considered sparse. 

Trees: A tree is a connected graph with no cycles. It is also a graph where the indegree
of the root node is 0, and the indegree of every other node is 1. A tree where every
node is of outdegree <=2 is a binary tree.  A forest is a graph in which every connected
component is a tree. 

Euler paths: A path which traverses every edge in a graph exactly once is an Euler
path. An Euler path which is a circuit is an Euler circuit. 

If and only if every node of a connected graph has even degree, it has an Euler circuit
(which is why the good people of Königsberg cannot go for a walk crossing each of
their seven bridges exactly once). If and only if a connected graph has exactly 2 nodes
with odd degree, it has a non-circuit Euler path. The degree of an endpoint of a non-
cycle Euler path is 1 + twice the number of times the path passes through that node, so
it is always odd.

Models for computing graphs

Traditionally, computer science textbooks have offered edge lists, adjacency lists and
adjacency matrices as data structures for graphs, with algorithms implemented in
languages like C, C++ and Java. More recently other models and tools have been
suggested, including query languages customised for graphs.

Edge list: The simplest way to represent a graph is to list its edges: for Fig 1, the edge
list is {AC,CD,CF,BE}. It is easy to add an edge to the list; deletion is a little harder.

Adjacency list: An adjacency list is a ragged array: for each node it lists all
adjacent nodes. Thus it represents a directed graph of n nodes as a list of n
lists where list i contains node j if the graph has an edge from node i to node j.

An undirected graph may be represented by having node j in the list for node
i, and node i in the list for node j. Table 1 shows the adjacency list of the graph

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Konigsberg


C F,D,A
D C
E B
F C

in Fig 1 interpreted as undirected. 

Adjacency matrix: An adjacency matrix represents a graph with n nodes
as an n x n matrix, where the entry at (i,j) is 1 if there is an edge from node i
to node j, or zero if there is not.

An adjacency matrix can represent a weighted graph using the weight as the entry, and
can represent an undirected graph by using the same entry in both (i,j) and (j,i), or by
using an upper triangular matrix.

There are useful glossaries here and here.

Graphs and SQL

Often standard SQL has been thought cumbersome for graph problems. Craig Mullins
once wrote that "the set-based nature of SQL is not simple to master and is anathema
to the OO techniques practiced by Java developers."

A few years after Mullins wrote that, SQL is everywhere, and it is increasingly applied
to graph problems. DB2, Oracle and SQL Server have recursive operators for
processing recursive sets, though they all work a little differently. MySQL has no such
special tools, though the Open Query group has a graph engine under development.
Meanwhile Joe Celko and Scott Stephens, among others, have published general SQL
graph problem solutions that are simpler and smaller than equivalent C++, C# or Java
code. Here we implement some of these ideas in MySQL.

Beware that in ports of edge list and adjacency list methods to SQL, there has been
name slippage. What's often called the adjacency list model in the SQL world is
actually an edge list model. If you follow the now-common practice in the SQL world
of referring to edge lists as adjacency lists, don't be surprised to find that the model
isn't quite like the adjacency list in Table 1. Here we waffle. We call them edge-
adjacency lists.

There are also two newer kinds of models: what Joe Celko called the nested sets
model—also known as the interval model—which uses greater-than/less-than
arithmetic to encode tree relationships and modified preorder tree traversal (MPTT)
to query them, and Tropashko's materialised path model, where each node is stored
with its (denormalised) path to the root. So we have four main possibilities for
modelling graphs in MySQL:

edge-adjacency lists: based on an adaptation by EF Codd of
the logic of linked lists to table structures and queries,
adjacency matrices,
nested sets for trees simplify some queries, but insertion and
deletion are cumbersome, and
materialised paths.

Here we work out how to implement edge-adjacency, nested sets and materialised
path models— or parts of them—in MySQL 5&6.

http://en.wikipedia.org/wiki/Glossary_of_graph_theory
http://www.yworks.com/products/yfiles/doc/developers-guide/glossary.html
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Mullins_C
http://openquery.com/graph/doc
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Celko_J
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Stephens_S
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Codersource


The edge list

The edge list is the simplest possible representation of a graph: minimally, a single
edges table where each row specifies one node and its parent (which is NULL for the
root node), or more elaborately two tables, one for the nodes, the other a bridging
table for their edges.

In the real world, the nodes table might be a table of personnel, or assembly parts, or
locations on a map. It might have many other columms of data. The edges table might
also have additional columns for edge properties. The key integers of both tables might
be BIGINTs.

To model Fig 1, though, we keep things as simple as possible:

Listing 1
CREATE TABLE nodes(
  nodeID CHAR(1) PRIMARY KEY
);
CREATE TABLE edges(
  childID CHAR(1) NOT NULL,
  parentID CHAR(1) NOT NULL,
  PRIMARY KEY(childID,parentID)
);
INSERT INTO nodes VALUES('A'), ('B'), ('C'), ('D'), ('E'), ('F');
INSERT INTO edges VALUES ('A','C'), ('C','D'), ('C','F'), ('B','E');
SELECT * FROM edges;
+---------+----------+
| childID | parentID |
+---------+----------+
| A       | C        |
| B       | E        |
| C       | D        |
| C       | F        |
+---------+----------+

Now, without any assumptions whatever about whether the graph is connected,
whether it is directed, whether it is a tree, or whatever, how hard is it to write a
reachability procedure, a procedure which tells us where we can get to from here,
wherever 'here' is?

A simple approach is a breadth-first search:

1. Seed the list with the starting node,
2. Add, but do not duplicate, nodes which are children of nodes in the list,
3. Add, but do not duplicate, nodes which are parents of nodes in the list,
4. Repeat steps 2 and 3 until there are no more nodes to add.

Here it is as a MySQL stored procedure. It avoids duplicate nodes by defining
reached.nodeID as a primary key and adding reachable nodes with INSERT IGNORE:

Listing 2
DROP PROCEDURE IF EXISTS ListReached;
DELIMITER go

CREATE PROCEDURE ListReached( IN root CHAR(1) )
BEGIN
  DECLARE rows SMALLINT DEFAULT 0;
  DROP TABLE IF EXISTS reached;
  CREATE TABLE reached (
    nodeID CHAR(1) PRIMARY KEY

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#edge
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#fig1
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#breadth_first


  ) ENGINE=HEAP;
  INSERT INTO reached VALUES (root );
  SET rows = ROW_COUNT();
  WHILE rows > 0 DO
    INSERT IGNORE INTO reached
      SELECT DISTINCT childID
      FROM edges AS e
      INNER JOIN reached AS p ON e.parentID = p.nodeID;
    SET rows = ROW_COUNT();
    INSERT IGNORE INTO reached
      SELECT DISTINCT parentID
      FROM edges AS e
      INNER JOIN reached AS p ON e.childID = p.nodeID;
    SET rows = rows + ROW_COUNT();
  END WHILE;
  SELECT * FROM reached;
  DROP TABLE reached;
END;
go
DELIMITER ;
CALL ListReached('A');
+--------+
| nodeID |
+--------+
| A      |
| C      |
| D      |
| F      |
+--------+

To make the procedure more versatile, give it input parameters which tell it whether to
list child, parent or all connections, and whether to recognise loops (for example C to
C).

To give the model referential integrity, use InnoDB and make edges.childID and
edges.parentID foreign keys. To add or delete a node, add or delete desired single rows in
nodes and edges. To change an edge, edit it. The model does not require the graph to be
connected or treelike, and does not presume direction.

The edge list is basic to what SQLers often call the adjacency list model.

Edge-adjacency list model of a tree



Writers in the SQL graph literature often give solutions using single denormalised
tables. Denormalisation can cost, big time. The bigger the table, the bigger the cost.
You cannot edit nodes and edges separately. Carrying extra node information during
edge computation slows performance. With nodes and edges denormalised to one
table, you have to represent the root node with a NULL.

To avoid these difficulties, normalise trees like William Shakespeare's family tree (Fig
2) with two tables, a nodes table (family) containing information about individuals,
and an edges table (familytree)with a row for each parent-child link or edge. Later,
when we use a different tree model, we won't have to mess with the data being
modelled.

Listing 3
-- Base data:
CREATE TABLE family (
  ID smallint(6) PRIMARY KEY AUTO_INCREMENT,
  name char(20) default '',
  siborder tinyint(4) default NULL,
  born smallint(4) unsigned default NULL,
  died smallint(4) unsigned default NULL
);
INSERT INTO family VALUES (1, 'Richard Shakespeare', NULL, NULL, 1561);
INSERT INTO family VALUES (2, 'Henry Shakespeare', 1, NULL, 1569);
INSERT INTO family VALUES (3, 'John Shakespeare', 2, 1530, 1601);
INSERT INTO family VALUES (4, 'Joan Shakespeare', 1, 1558, NULL);
INSERT INTO family VALUES (5, 'Margaret Shakespeare', 2, 1562, 1563);
INSERT INTO family VALUES (6, 'William Shakespeare', 3, 1564, 1616);



INSERT INTO family VALUES (7, 'Gilbert Shakespeare', 4, 1566, 1612);
INSERT INTO family VALUES (8, 'Joan Shakespeare', 5, 1568, 1646);
INSERT INTO family VALUES (9, 'Anne Shakespeare', 6, 1571, 1579);
INSERT INTO family VALUES (10, 'Richard Shakespeare', 7, 1574, 1613);
INSERT INTO family VALUES (11, 'Edmond Shakespeare', 8, 1580, 1607);
INSERT INTO family VALUES (12, 'Susana Shakespeare', 1, 1583, 1649);
INSERT INTO family VALUES (13, 'Hamnet Shakespeare', 1, 1585, 1596);
INSERT INTO family VALUES (14, 'Judith Shakespeare', 1, 1585, 1662);
INSERT INTO family VALUES (15, 'William Hart', 1, 1600, 1639);
INSERT INTO family VALUES (16, 'Mary Hart', 2, 1603, 1607);
INSERT INTO family VALUES (17, 'Thomas Hart', 3, 1605, 1670);
INSERT INTO family VALUES (18, 'Michael Hart', 1, 1608, 1618);
INSERT INTO family VALUES (19, 'Elizabeth Hall', 1, 1608, 1670);
INSERT INTO family VALUES (20, 'Shakespeare Quiney', 1, 1616, 1617);
INSERT INTO family VALUES (21, 'Richard Quiney', 2, 1618, 1639);
INSERT INTO family VALUES (22, 'Thomas Quiney', 3, 1620, 1639);
INSERT INTO family VALUES (23, 'John Bernard', 1, NULL, 1674);

-- Table which models the tree:
CREATE TABLE familytree (
  childID smallint NOT NULL,
  parentID smallint NOT NULL,
  PRIMARY KEY (childID, parentID);
);
INSERT INTO familytree VALUES
  (2, 1), (3, 1), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2),
  (10, 2), (11, 2), (12, 6), (13, 6), (14, 6), (15, 8), (16, 8),
  (17, 8), (18, 8), (19, 12), (20, 14), (21, 14), (22, 14), (23, 19);

(The family PK is auto-increment, but the listing is more reader-friendly when the ID
values are shown.)

It will be useful to have a function that returns family.name for a parent or child ID in
familytree:

Listing 4
-- 5.0.16 OR LATER:
SET GLOBAL log_bin_trust_function_creators=TRUE;

DROP FUNCTION IF EXISTS PersonName;
DELIMITER go

CREATE FUNCTION PersonName( personID SMALLINT )
RETURNS CHAR(20)
BEGIN
  DECLARE pname CHAR(20) DEFAULT '';
  SELECT name INTO pname FROM family WHERE ID=personID;
  RETURN pname;
END;
go
DELIMITER ;

SELECT PersonName( parentID ) AS 'Parent of William'
FROM familytree
WHERE childID = 6;
+-------------------+
| Parent of William |
+-------------------+
| Henry Shakespeare |
+-------------------+
SELECT PersonName( childID ) AS 'Children of William'
FROM familytree
WHERE parentID = ( SELECT ID FROM family WHERE name = 'William Shakespeare' );
+---------------------+
| Children of William |
+---------------------+
| Susana Shakespeare  |
| Hamnet Shakespeare  |
| Judith Shakespeare  |



+---------------------+
SELECT PersonName(childID) AS child, PersonName(parentID) AS parent
FROM familytree;
+----------------------+---------------------+
| child                | parent              |
+----------------------+---------------------+
| Henry Shakespeare    | Richard Shakespeare |
| John Shakespeare     | Richard Shakespeare |
| Joan Shakespeare     | Henry Shakespeare   |
| Margaret Shakespeare | Henry Shakespeare   |
| William Shakespeare  | Henry Shakespeare   |
| Gilbert Shakespeare  | Henry Shakespeare   |
| Joan Shakespeare     | Henry Shakespeare   |
| Anne Shakespeare     | Henry Shakespeare   |
| Richard Shakespeare  | Henry Shakespeare   |
| Edmond Shakespeare   | Henry Shakespeare   |
| Susana Shakespeare   | William Shakespeare |
| Hamnet Shakespeare   | William Shakespeare |
| Judith Shakespeare   | William Shakespeare |
| William Hart         | Joan Shakespeare    |
| Mary Hart            | Joan Shakespeare    |
| Thomas Hart          | Joan Shakespeare    |
| Michael Hart         | Joan Shakespeare    |
| Elizabeth Hall       | Susana Shakespeare  |
| Shakespeare Quiney   | Judith Shakespeare  |
| Richard Quiney       | Judith Shakespeare  |
| Thomas Quiney        | Judith Shakespeare  |
| John Bernard         | Elizabeth Hall      |
+----------------------+---------------------+

A same-table foreign key can simplify tree maintenance:

Listing 4a
create table edges ( 
  ID int PRIMARY KEY, 
 parentid int, 
  foreign key(parentID) references edges(ID) ON DELETE CASCADE ON UPDATE CASCADE
) engine=innodb; 
insert into edges(ID,parentID) values (1,null),(2,1),(3,1),(4,2);
select * from edges;
+----+----------+
| ID | parentid |
+----+----------+
|  1 |     NULL |
|  2 |        1 |
|  3 |        1 |
|  4 |        2 |
+----+----------+
delete from edges where id=2;
select * from edges;
+----+----------+
| ID | parentid |
+----+----------+
|  1 |     NULL |
|  3 |        1 |
+----+----------+

Simple queries retrieve basic facts about the tree, for example GROUP_CONCAT()
collects parent nodes with their children in correct order:

Listing 5
SELECT parentID AS Parent, GROUP_CONCAT(childID ORDER BY siborder) AS Children
FROM familytree t
JOIN family f ON t.parentID=f.ID 
GROUP BY parentID;
+--------+-------------------+
| Parent | Children          |
+--------+-------------------+
|      1 | 3,2               |



|      2 | 4,5,6,7,8,9,10,11 |
|      6 | 12,13,14          |
|      8 | 18,17,16,15       |
|     12 | 19                |
|     14 | 22,21,20          |
|     19 | 23                |
+--------+-------------------+

Iterate over those comma-separated lists with a bit of application code and you have a
hybrid treewalk. The paterfamilias is the root node, individuals with no children are
the leaf nodes, and queries to retrieve subtree statistics are straightforward:

Listing 6
SELECT
  PersonName(ID) AS Paterfamilias,
  IFNULL(born,'?') AS Born,
  IFNULL(died,'?') AS Died
FROM family AS f
LEFT JOIN familytree AS t ON f.ID=t.childID
WHERE t.childID IS NULL;
+---------------------+------+------+
| Paterfamilias       | Born | Died |
+---------------------+------+------+
| Richard Shakespeare | ?    | 1561 |
+---------------------+------+------+

SELECT
  PersonName(ID) AS Childless,
  IFNULL(born,'?') AS Born,
  IFNULL(died,'?') AS Died
FROM family AS f
LEFT JOIN familytree AS t ON f.ID=t.parentID
WHERE t.parentID IS NULL;
+----------------------+------+------+
| Childless            | Born | Died |
+----------------------+------+------+
| John Shakespeare     | 1530 | 1601 |
| Joan Shakespeare     | 1558 | ?    |
| Margaret Shakespeare | 1562 | 1563 |
| Gilbert Shakespeare  | 1566 | 1612 |
| Anne Shakespeare     | 1571 | 1579 |
| Richard Shakespeare  | 1574 | 1613 |
| Edmond Shakespeare   | 1580 | 1607 |
| Hamnet Shakespeare   | 1585 | 1596 |
| William Hart         | 1600 | 1639 |
| Mary Hart            | 1603 | 1607 |
| Thomas Hart          | 1605 | 1670 |
| Michael Hart         | 1608 | 1618 |
| Shakespeare Quiney   | 1616 | 1617 |
| Richard Quiney       | 1618 | 1639 |
| Thomas Quiney        | 1620 | 1639 |
| John Bernard         | ?    | 1674 |
+----------------------+------+------+

SELECT ROUND(AVG(died-born),2) AS 'Longevity of the childless'
FROM family AS f
LEFT JOIN familytree AS t ON f.ID=t.parentID
WHERE t.parentID IS NULL;
+----------------------------+
| Longevity of the childless |
+----------------------------+
|                      25.86 |
+----------------------------+

In striking contrast with Celko's nested sets model, inserting a new item in this model
requires no revision of existing rows. We just add a new family row, then a new
familytree row with IDs specifying who is parent to whom. Deletion is also a two-step:
delete the familytree row for that child-parent link, then delete the family row for that

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#nested_set_model


child.

Walking an edge list tree

Traversing subtrees is what gives the edge-adjacency list model its reputation for
difficulty. We can't know in advance, except in the simplest of trees, how many levels
of parent and child have to be queried, so we need recursion or a logically equivalent
loop.

It's a natural problem for a stored procedure. Earlier editions showed a brute force
breadth-first algorithm that needed three intermediary tables (it can be found in
Appendix E). Here is a simpler algorithm that just seeds a result table with first-found
parent-child pairs, then uses MySQL’s INSERT IGNORE to add remaining pairs:

Listing 7
DROP PROCEDURE IF EXISTS famsubtree;
DELIMITER go
CREATE PROCEDURE famsubtree( root INT )
BEGIN
  DROP TABLE IF EXISTS famsubtree;
  CREATE TABLE famsubtree
    SELECT childID, parentID, 0 AS level
    FROM familytree
    WHERE parentID = root;
  ALTER TABLE famsubtree ADD PRIMARY KEY(childID,parentID);
  REPEAT
    INSERT IGNORE INTO famsubtree
      SELECT f.childID, f.parentID, s.level+1
      FROM familytree AS f
      JOIN famsubtree AS s ON f.parentID = s.childID;
  UNTIL Row_Count() = 0 END REPEAT;
END ;
go
DELIMITER ;
call famsubtree(1);       -- from the root you can see forever
SELECT Concat(Space(level),parentID) AS Parent, Group_Concat(childID ORDER BY childID) AS Child
FROM famsubtree
GROUP BY parentID;
+--------+-------------------+
| Parent | Child             |
+--------+-------------------+
| 1      | 2,3               |
|  2     | 4,5,6,7,8,9,10,11 |
|   6    | 12,13,14          |
|   8    | 15,16,17,18       |
|    12  | 19                |
|    14  | 20,21,22          |
|     19 | 23                |
+--------+-------------------+

Simple and quick. The logic ports to any edge list. We can prove that right now by
writing a generic version. GenericTree() just needs parameters for the name of the
target table, the names of its child and parent ID columns, and the parent ID whose
descendants are sought:

Listing 7a: General-purpose edge list tree walker
DROP PROCEDURE IF EXISTS GenericTree;
DELIMITER go
CREATE PROCEDURE GenericTree(
  edgeTable CHAR(64), edgeIDcol CHAR(64), edgeParentIDcol CHAR(64), ancestorID INT
)
BEGIN
  DECLARE r INT DEFAULT 0;

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#breadth_first
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1_appe.html


  DROP TABLE IF EXISTS subtree;
  SET @sql = Concat( 'CREATE TABLE subtree ENGINE=MyISAM SELECT ',
                     edgeIDcol,' AS childID, ',
                     edgeParentIDcol, ' AS parentID,',
                     '0 AS level FROM ',
                     edgeTable, ' WHERE ', edgeParentIDcol, '=', ancestorID );
  PREPARE stmt FROM @sql;
  EXECUTE stmt;
  DROP PREPARE stmt;
  ALTER TABLE subtree ADD PRIMARY KEY(childID,parentID);
  REPEAT
    SET @sql = Concat( 'INSERT IGNORE INTO subtree SELECT a.', edgeIDcol,
                       ',a.',edgeparentIDcol, ',b.level+1 FROM ',
                       edgeTable, ' AS a JOIN subtree AS b ON a.',edgeParentIDcol, '=b.childID' );
    PREPARE stmt FROM @sql;
    EXECUTE stmt;
    SET r=Row_Count();  -- save row_count() result before DROP PREPARE loses the value
    DROP PREPARE stmt;
  UNTIL r < 1 END REPEAT;
END ;
go
DELIMITER ;

To retrieve details like names and other data associated with node IDs, write a
frontend query to join the subtree result table with the required detail table(s), for
example:

CALL GenericTree('familytree','childID','parentID',1);
SELECT Concat(Repeat( ' ', s.level), a.name ) AS Parent, b.name AS Child
FROM subtree s
JOIN family a ON s.parentID=a.ID
JOIN family b ON s.childID=b.ID;
+-----------------------+----------------------+
| Parent                | Child                |
+-----------------------+----------------------+
| Richard Shakespeare   | Henry Shakespeare    |
| Richard Shakespeare   | John Shakespeare     |
|  Henry Shakespeare    | Joan Shakespeare     |
|  Henry Shakespeare    | Margaret Shakespeare |
|  Henry Shakespeare    | William Shakespeare  |
|  Henry Shakespeare    | Gilbert Shakespeare  |
|  Henry Shakespeare    | Joan Shakespeare     |
|  Henry Shakespeare    | Anne Shakespeare     |
|  Henry Shakespeare    | Richard Shakespeare  |
|  Henry Shakespeare    | Edmond Shakespeare   |
|   William Shakespeare | Susana Shakespeare   |
|   William Shakespeare | Hamnet Shakespeare   |
|   William Shakespeare | Judith Shakespeare   |
|   Joan Shakespeare    | William Hart         |
|   Joan Shakespeare    | Mary Hart            |
|   Joan Shakespeare    | Thomas Hart          |
|   Joan Shakespeare    | Michael Hart         |
|    Susana Shakespeare | Elizabeth Hall       |
|    Judith Shakespeare | Shakespeare Quiney   |
|    Judith Shakespeare | Richard Quiney       |
|    Judith Shakespeare | Thomas Quiney        |
|     Elizabeth Hall    | John Bernard         |
+-----------------------+----------------------+

Is GenericTree() fast? You bet. On standard hardware it processes a 5,000-node tree
in less than 0.5 secs—much faster than a comparable nested sets query on the same
tree! It has no serious scaling issues. And its logic can be used to prune: call
GenericTree() then delete the listed rows. Better still, write a generic tree pruner from
Listing 7a and a DELETE command. To insert a subtree, prepare a table of new rows,
point its top edge at an existing node as parent, and INSERT it.

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#nested_set_model


The edge list treewalk is logically recursive, so how about coding it recursively? Here is
a recursive depth-first PHP treewalk for the  familytree and family tables:

Listing 7b: Recursive edge list subtree in PHP
$info = recursivesubtree( 1, $a = array(), 0 );
foreach( $info as $row )
  echo str_repeat( "&nbsp;", 2*$row[4] ), ( $row[3] > 0 ) ? "<b>{$row[1]}</b>" : $row[1], "<br/>";

function recursivesubtree( $rootID, $a, $level ) {
  $childcountqry = "(SELECT COUNT(*) FROM familytree WHERE parentID=t.childID) AS childcount";
  $qry = "SELECT t.childid,f.name,t.parentid,$childcountqry,$level " .
         "FROM familytree t JOIN family f ON t.childID=f.ID " .
         "WHERE parentid=$rootID ORDER BY childcount<>0,t.childID";
  $res = mysql_qry( $qry );
  while( $row = mysql_fetch_row( $res )) {
    $a[] = $row;
    if( $row[3] > 0 ) $a = recursivesubtree( $row[0], $a, $level+1 );    // down before right
  }
  return $a;
}

A query with a subquery, a fetch loop, and a recursive call--that's all there is to it. A
nice feature of this algorithm is that it writes result rows in display-ready order. To
port this to MySQL, you must have set maximum recursion depth in my.cnf/ini or in
your client:

Listing 7c: Recursive edge list subtree in MySQL
SET @@SESSION.max_sp_recursion_depth=25;
DROP PROCEDURE IF EXISTS recursivesubtree;
DELIMITER go
CREATE PROCEDURE recursivesubtree( iroot INT, ilevel INT )
BEGIN
  DECLARE irows,ichildid,iparentid,ichildcount,done INT DEFAULT 0;
  DECLARE cname VARCHAR(64);
  SET irows = ( SELECT COUNT(*) FROM familytree WHERE parentID=iroot );
  IF ilevel = 0 THEN
    DROP TEMPORARY TABLE IF EXISTS _descendants;
    CREATE TEMPORARY TABLE _descendants (
      childID INT, parentID INT, name VARCHAR(64), childcount INT, level INT
  );
  END IF;
  IF irows > 0 THEN
    BEGIN
      DECLARE cur CURSOR FOR
        SELECT
          childid,parentid,f.name,
          (SELECT COUNT(*) FROM familytree WHERE parentID=t.childID) AS childcount
        FROM familytree t JOIN family f ON t.childID=f.ID
        WHERE parentid=iroot
        ORDER BY childcount<>0,t.childID;
      DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
      OPEN cur;
      WHILE NOT done DO
        FETCH cur INTO ichildid,iparentid,cname,ichildcount;
        IF NOT done THEN
          INSERT INTO _descendants VALUES(ichildid,iparentid,cname,ichildcount,ilevel );
          IF ichildcount > 0 THEN
            CALL recursivesubtree( ichildid, ilevel + 1 );
          END IF;
        END IF;
      END WHILE;
      CLOSE cur;
    END;
  END IF;
  IF ilevel = 0 THEN
    -- Show result table headed by name that corresponds to iroot:
    SET cname = (SELECT name FROM family WHERE ID=iroot);
    SET @sql = CONCAT('SELECT CONCAT(REPEAT(CHAR(32),2*level),IF(childcount,UPPER(name),name))',

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#depth_first


                      ' AS ', CHAR(39),'Descendants of ',cname,CHAR(39),' FROM _descendants');
    PREPARE stmt FROM @sql;
    EXECUTE stmt;
    DROP PREPARE stmt;
  END IF;
END;
go
DELIMITER ;
CALL recursivesubtree(1,0);
+------------------------------------+
| Descendants of Richard Shakespeare |
+------------------------------------+
| HENRY SHAKESPEARE                  |
|   Joan Shakespeare                 |
|   Margaret Shakespeare             |
|   WILLIAM SHAKESPEARE              |
|     SUSANA SHAKESPEARE             |
|       ELIZABETH HALL               |
|         John Bernard               |
|     Hamnet Shakespeare             |
|     JUDITH SHAKESPEARE             |
|       Shakespeare Quiney           |
|       Richard Quiney               |
|       Thomas Quiney                |
|   Gilbert Shakespeare              |
|   JOAN SHAKESPEARE                 |
|     William Hart                   |
|     Mary Hart                      |
|     Thomas Hart                    |
|     Michael Hart                   |
|   Anne Shakespeare                 |
|   Richard Shakespeare              |
|   Edmond Shakespeare               |
| John Shakespeare                   |
+------------------------------------+

In MySQL this recursive treewalk can be up to 100 times slower than GenericTree().
Its slowness is comparable to that of a MySQL version of Kendall Willet's depth-first
edge list subtree algorithm: 

Listing 7d: Depth-first edge list subtree
CREATE PROCEDURE depthfirstsubtree( iroot INT )
BEGIN
  DECLARE ilastvisited, inxt, ilastord INT;
  SET ilastvisited = iroot;
  SET ilastord = 1;
  DROP TABLE IF EXISTS descendants;
  CREATE TABLE descendants SELECT childID,parentID,-1 AS ord FROM familytree;
  UPDATE descendants SET ord=1 WHERE childID=iroot;
  this: LOOP
    SET inxt = NULL;
    SELECT MIN(childID) INTO inxt FROM descendants   -- go down
    WHERE parentID = ilastvisited AND ord = -1 ;
    IF inxt IS NULL THEN                             -- nothing down, so go right
      SELECT MIN(d2.childID) INTO inxt
      FROM descendants d1
      JOIN descendants d2 ON d1.parentID = d2.parentID AND d1.childID < d2.childID
      WHERE d1.childID = ilastvisited;
    END IF;
    IF inxt IS NULL THEN                             -- nothing right. so go up
      SELECT parentID INTO inxt FROM descendants
      WHERE childID = ilastvisited AND parentID IS NOT NULL;
    END IF;
    UPDATE descendants SET ord = ilastord + 1
    WHERE childID = inxt AND ord = -1;
    IF ROW_COUNT() > 0 THEN
      SET ilastord = ilastord + 1;
    END IF;
    IF inxt IS NULL THEN
      LEAVE this;



    END IF;
    SET ilastvisited = inxt;
  END LOOP;
END;

One reason Willet's is slower is that MySQL does not permit multiple references to a
temporary table in a query. When all algorithms are denied temp tables, though, this
algorithm is still slower than recursion, and both are much slower than GenericTree().

Edge list subtree queries perform faster and are easier to write than their reputation
suggests. And edge tables are flexible. For a tree describing a parts explosion rather
than a family, just add columns for weight, quantity, assembly time, cost, price and so
on. Reports need only aggregate column values and sums. We'll revisit this near the
end of the chapter. 

Enumerating paths in an edge-adjacency list

Path enumeration in an edge list tree is almost as easy as depth-first subtree traversal:

create a table for paths,
seed it with paths of unit length from the tree table,
iteratively add paths till there are no more to add.

MySQL's INSERT IGNORE command simplifies the code by removing the need for a NOT
EXISTS(...) clause in the INSERT ... SELECT statement. Since adjacencies are logically
symmetrical, we make path direction the caller's choice, UP or DOWN:

Listing 8
DROP PROCEDURE IF EXISTS ListAdjacencyPaths;
DELIMITER go
CREATE PROCEDURE ListAdjacencyPaths( IN direction CHAR(5) )
BEGIN
  DROP TABLE IF EXISTS paths;
  CREATE TABLE paths(
    start SMALLINT,
    stop SMALLINT,
    len SMALLINT,
    PRIMARY KEY(start,stop)
  ) ENGINE=HEAP;
  IF direction = 'UP' THEN
    INSERT INTO paths
      SELECT childID,parentID,1
      FROM familytree;
  ELSE
    INSERT INTO paths
      SELECT parentID,childID,1
      FROM familytree;
  END IF;
  WHILE ROW_COUNT() > 0 DO
    INSERT IGNORE INTO paths
      SELECT DISTINCT
        p1.start,
        p2.stop,
        p1.len + p2.len
      FROM paths AS p1 INNER JOIN paths AS p2 ON p1.stop = p2.start;
  END WHILE;
  SELECT start, stop, len
  FROM paths
  ORDER BY start, stop;
  DROP TABLE paths;
END;
go

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#listing7a
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#shorter_and_sweeter


DELIMITER ;

To find the paths from just one node, seed the paths table with paths from the starting
node, then iteratively search a JOIN of familytree and paths for edges which will extend
existing paths in the user-specified direction:

Listing 8a
DROP PROCEDURE IF EXISTS ListAdjacencyPathsOfNode;
DELIMITER go
CREATE PROCEDURE ListAdjacencyPathsOfNode( IN node SMALLINT, IN direction CHAR(5) )
BEGIN
  TRUNCATE paths;
  IF direction = 'UP' THEN
    INSERT INTO paths
      SELECT childID,parentID,1
      FROM familytree
      WHERE childID = node;
  ELSE
    INSERT INTO paths
      SELECT parentID,childID,1
      FROM familytree
      WHERE parentID = node;
  END IF;
  WHILE ROW_COUNT() > 0 DO
    IF direction = 'UP' THEN
      INSERT IGNORE INTO paths
        SELECT DISTINCT
          paths.start,
          familytree.parentID,
          paths.len + 1
        FROM paths
          INNER JOIN familytree ON paths.stop = familytree.childID;
    ELSE
      INSERT IGNORE INTO paths
        SELECT DISTINCT
          paths.start,
          familytree.childID,
          paths.len + 1
        FROM paths
          INNER JOIN familytree ON paths.stop = familytree.parentID;

    END IF;
  END WHILE;
    SELECT start, stop, len
    FROM paths
    ORDER BY start, stop;
END;
go
DELIMITER ;

CALL ListAdjacencyPathsOfNode(1,'DOWN');
+-------+------+------+
| start | stop | len  |
+-------+------+------+
|     1 |    2 |    1 |
|     1 |    3 |    1 |
|     1 |    4 |    2 |
|     1 |    5 |    2 |
|     1 |    6 |    2 |
|     1 |    7 |    2 |
|     1 |    8 |    2 |
|     1 |    9 |    2 |
|     1 |   10 |    2 |
|     1 |   11 |    2 |
|     1 |   12 |    3 |
|     1 |   13 |    3 |
|     1 |   14 |    3 |
|     1 |   15 |    3 |
|     1 |   16 |    3 |
|     1 |   17 |    3 |



|     1 |   18 |    3 |
|     1 |   19 |    4 |
|     1 |   20 |    4 |
|     1 |   21 |    4 |
|     1 |   22 |    4 |
|     1 |   23 |    5 |
+-------+------+------+

These algorithms don't bend the brain. They perform acceptably with large trees.
Querying edge-adjacency lists for subtrees and paths is less daunting than their
reputation suggests.

Automate tree drawing!

Tables of numbers may be the most boring objects on earth. How to bring them alive?
The Google Visualization API library has an ‘OrgChart’ module that can make edge list
trees look like Fig 2, but each instance needs fifty or so lines of specific JavaScript
code, plus an additional line of code for each row of data in the tree. Could we
autogenerate that code? Mais oui! The module needs child node and parent node
columns of data, and accepts an optional third column for info that pops up when the
mouse hovers. Here is such a query for the Shakespeare family tree ...

Listing 9
select concat( node.ID,' ', node.name) as node,
       if( edges.parentID is null, '', concat(parent.ID, ' ',parent.name)) as parent,
       if( node.born is null, 'Birthdate unknown', concat( 'Born ', node.born )) as tooltip 
from      family     as node
left join familytree as edges  on node.ID=edges.childID
left join family     as parent on edges.parentID=parent.ID;

and here is a PHP function which generates the HTML and JavaScript needed to paint
an OrgChart for any tree query that returns string columns for node, parent and
optionally tooltips:

Listing 9a
function orgchart( $qry ) {
  $cols = array(); $rows = array();
  $res = mysql_query( $qry ) or exit( mysql_error() );
  $colcount = mysql_num_fields( $res );
  if( $colcount < 2 ) exit( "Org chart needs two or three columns" );
  $rowcount = mysql_num_rows( $res );
  for( $i=0; $i<$colcount; $i++ ) $cols[] = mysql_fetch_field( $res, $i );
  while( $row = mysql_fetch_row( $res )) $rows[] = $row;
  echo "<html>\n<head>\n",
       "  <script type='text/javascript' src='https://www.google.com/jsapi'></script>\n",
       "  <script type='text/javascript'>\n",
       "    google.load('visualization', '1', {'packages':['orgchart']});\n",
       "    google.setOnLoadCallback(drawChart);\n",
       "    function drawChart() {\n",
       "      var data = new google.visualization.DataTable();\n";
  for( $i=0; $i<$colcount; $i++ ) echo "      data.addColumn('string','{$cols[$i]->name}')\n";
  echo "      data.addRows([\n";
  for( $j=0; $j<$rowcount; $j++ ) {
    $row = $rows[$j];
    $c = (( $j < $rowcount-1 ) ? "," : "" );
    echo "        ['{$row[0]}','{$row[1]}','{$row[2]}']$c\n"; 
  }
  echo "      ]);\n",
       "      var chart = new google.visualization.OrgChart(document.getElementById('chart_div'));\n",
       "      var options = {'size':'small','allowHtml':'true','allowCollapse':'true'};\n",
       "      chart.draw(data, options);\n", 
       "    }\n",
       "  </script>\n/head>\n<body>\n",

http://code.google.com/apis/visualization/documentation/gallery/orgchart.html
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#fig2


       "  <div id='chart_div'></div>\n",
       "</body>\n</html>";
}

Nested sets model of a tree

Imagine an oval drawn round every leaf and every subtree in Fig 2, and a final oval
round the entire tree. The tree is a set. Each subtree is a subset. That's the basic idea of
the nested sets model.

The advantage of the nested sets model is that root, leaves, subtrees, levels, tree
height, ancestors, descendants and paths can be retrieved without recursion or
application language code. The disadvantages are:

initial setup of the tree table can be difficult,
queries for parents (immediate superiors) and children
(immediate subordinates) are more complicated than with an
edge list model,
insertion, updates and deletion are extremely cumbersome
since they may require updates to much of the tree.

The nested sets model depends on using a modified preorder tree traversal (MPTT)
depth-first algorithm to assign each node left and right integers which define the
node's tree position. All nodes of a subtree have

left values greater than the subtree parent's left value, and
right values smaller than that of the subtree parent's right
value.

so queries for subtrees are dead simple. If the numbering scheme is integer-sequential
as in Fig 3, the root node receives a left value of 1 and a right value equal to twice the
item count.

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Van_Tulder_G
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#depth_first


To see how to code nested sets using MPTT, trace the ascending integers in Fig 3,
starting with 1 on the left side of the root node (Richard Shakespeare). Following edges
downward and leftward, the left side of each box gets the next integer. When you reach
a leaf (Joan, left=3), the right side of that box gets the next integer (4). If there is
another node to the right on the same level, continue in that direction; otherwise
continue up the right side of the subtree you just descended. When you arrive back at
the root on the right side, you're done. Down, right and up.

A serious problem with this scheme jumps out right away: after you've written the Fig
3 tree to a table, what if historians discover an older brother or sister of Henry and
John? Every row in the tree table must be updated!

Celko and others have proposed alternative numbering schemes to get round this
problem, but the logical difficulty remains: inserts and updates can invalidate many or
all rows, and no SQL CHECK or CONSTRAINT can prevent it. The nested sets model is not
good for trees which require frequent updates, and is pretty much unsupportable for
large updatable trees that will be accessed by many concurrent users. But as we'll see
in a moment, it can be very useful indeed for reporting a tree.

How to build a nested sets representation from an edge list



Obviously, numbering a tree by hand would be error-prone, seriously impractical for
large trees, so it's usually best to code the tree initially as an edge list, then use a stored
procedure to translate the edge list representation to nested sets. Celko 's depth-first
pushdown stack method will translate any edge list tree into a nested sets tree, though
slowly:

1. Create a table nestedsettree for the tree: node, leftedge, rightedge, and a
stack pointer (top),

2. Seed that table with the root node of the edge list tree,
3. Set a nextedge counter to 1 plus the left value of the root node, i.e. 2,
4. While that counter is less than the rightedge value of the root node ...

insert a row for this parent's smallest unwritten child, and
drop down a level, or
if we're out of children, increment rightedge , write it to the
current row, and back up a level.

This version has been improved to handle edge list trees with or without a row
containing the root node and its NULL parent:

Listing 10
DROP PROCEDURE IF EXISTS EdgeListToNestedSet;
DELIMITER go
CREATE PROCEDURE EdgeListToNestedSet( edgeTable CHAR(64), idCol CHAR(64), parentCol CHAR(64) )
BEGIN
  DECLARE maxrightedge, rows SMALLINT DEFAULT 0;
  DECLARE trees, current SMALLINT DEFAULT 1;
  DECLARE nextedge SMALLINT DEFAULT 2;
  DECLARE msg CHAR(128);
  -- create working tree table as a copy of edgeTable
  DROP TEMPORARY TABLE IF EXISTS tree;
  CREATE TEMPORARY TABLE tree( childID INT, parentID INT );
  SET @sql = CONCAT( 'INSERT INTO tree SELECT ', idCol, ',', parentCol, ' FROM ', edgeTable );
  PREPARE stmt FROM @sql; EXECUTE stmt; DROP PREPARE stmt;
  -- initialise result table
  DROP TABLE IF EXISTS nestedsettree;
  CREATE TABLE nestedsettree (
    top SMALLINT, nodeID SMALLINT, leftedge SMALLINT, rightedge SMALLINT,
    KEY(nodeID,leftedge,rightedge) 
  ) ENGINE=HEAP;
  -- root is child with NULL parent or parent which is not a child 
  SET @nulls = ( SELECT Count(*) FROM tree WHERE parentID IS NULL );
  IF @nulls>1 THEN SET trees=2;
  ELSEIF @nulls=1 THEN
    SET @root = ( SELECT childID FROM tree WHERE parentID IS NULL );
    DELETE FROM tree WHERE childID=@root;
  ELSE
    SET @sql = CONCAT( 'SELECT Count(DISTINCT f.', parentcol, ') INTO @roots FROM ', edgeTable, 
                       ' f LEFT JOIN ', edgeTable, ' t ON f.', parentCol, '=', 't.', idCol, 
                       ' WHERE t.', idCol, ' IS NULL' );
    PREPARE stmt FROM @sql; EXECUTE stmt; DROP PREPARE stmt;
    IF @roots <> 1 THEN SET trees=@roots; 
    ELSE
      SET @sql = CONCAT( 'SELECT DISTINCT f.', parentCol, ' INTO @root FROM ', edgeTable, 
                         ' f LEFT JOIN ', edgeTable, ' t ON f.', parentCol, '=', 't.', 
                         idCol, ' WHERE t.', idCol, ' IS NULL' );
      PREPARE stmt FROM @sql; EXECUTE stmt; DROP PREPARE stmt;
    END IF;
  END IF;
  IF trees<>1 THEN
    SET msg = IF( trees=0, "No tree found", "Table has multiple trees" );
    SELECT msg AS 'Cannot continue';
  ELSE    -- build nested sets tree
    SET maxrightedge = 2 * (1 + (SELECT + COUNT(*) FROM tree));
    INSERT INTO nestedsettree VALUES( 1, @root, 1, maxrightedge );

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Celko_J


    WHILE nextedge < maxrightedge DO
      SET rows=(SELECT Count(*) FROM nestedsettree s JOIN tree t ON s.nodeID=t.parentID AND s.top=current);
      IF rows > 0 THEN
        BEGIN
          INSERT INTO nestedsettree
            SELECT current+1, MIN(t.childID), nextedge, NULL
            FROM nestedsettree AS s
            JOIN tree AS t ON s.nodeID = t.parentID AND s.top = current;
          DELETE FROM tree
          WHERE childID = (SELECT nodeID FROM nestedsettree WHERE top=(current+1));
          SET nextedge = nextedge + 1, current = current + 1;
         END;
       ELSE
         UPDATE nestedsettree SET rightedge=nextedge, top = -top WHERE top=current;
         SET nextedge=nextedge+1, current=current-1;
      END IF;
    END WHILE;
    -- show result
    IF (SELECT COUNT(*) FROM tree) > 0 THEN
      SELECT 'Orphaned rows remain' AS 'Error';
    END IF;
    DROP TEMPORARY TABLE tree;
  END IF;
END;
go
DELIMITER ;
CALL EdgeListToNestedSet( 'familytree', 'childID', 'parentID' );
SELECT
  nodeID, PersonName(nodeID) AS Name,
  ABS(top) AS 'Tree Level', leftedge AS 'Left', rightedge AS 'Right'
FROM nestedsettree
ORDER BY nodeID;
+--------+----------------------+------------+------+-------+
| nodeID | Name                 | Tree Level | Left | Right |
+--------+----------------------+------------+------+-------+
|      1 | Richard Shakespeare  |          1 |    1 |    46 |
|      2 | Henry Shakespeare    |          2 |    2 |    43 |
|      3 | John Shakespeare     |          2 |   44 |    45 |
|      4 | Joan Shakespeare     |          3 |    3 |     4 |
|      5 | Margaret Shakespeare |          3 |    5 |     6 |
|      6 | William Shakespeare  |          3 |    7 |    24 |
|      7 | Gilbert Shakespeare  |          3 |   25 |    26 |
|      8 | Joan Shakespeare     |          3 |   27 |    36 |
|      9 | Anne Shakespeare     |          3 |   37 |    38 |
|     10 | Richard Shakespeare  |          3 |   39 |    40 |
|     11 | Edmond Shakespeare   |          3 |   41 |    42 |
|     12 | Susana Shakespeare   |          4 |    8 |    13 |
|     13 | Hamnet Shakespeare   |          4 |   14 |    15 |
|     14 | Judith Shakespeare   |          4 |   16 |    23 |
|     15 | William Hart         |          4 |   28 |    29 |
|     16 | Mary Hart            |          4 |   30 |    31 |
|     17 | Thomas Hart          |          4 |   32 |    33 |
|     18 | Michael Hart         |          4 |   34 |    35 |
|     19 | Elizabeth Hall       |          5 |    9 |    12 |
|     20 | Shakespeare Quiney   |          5 |   17 |    18 |
|     21 | Richard Quiney       |          5 |   19 |    20 |
|     22 | Thomas Quiney        |          5 |   21 |    22 |
|     23 | John Bernard         |          6 |   10 |    11 |
+--------+----------------------+------------+------+-------+

Verify the function with a query that generates an edge list tree from a nested sets tree:

Listing 10a:
SELECT a.nodeID, b.nodeID AS parent 
FROM nestedsettree AS a
LEFT JOIN nestedsettree AS b ON b.leftedge = (
  SELECT MAX( leftedge ) 
  FROM nestedsettree AS t 
  WHERE a.leftedge > t.leftedge AND a.leftedge < t.rightedge
) 



ORDER BY a.nodeID;

For a multi-tree version of Listing 10, implementing edge list and nested sets tree
models in a single table, see “Multiple nested sets trees in one table” on our Queries
page.

Finding a node's parent and children

In an edge list, the parent of a node is the row's parentID, and its children are the rows
where that nodeID is parentID. What could be simpler? In comparison, nested sets
queries for parents and their children are tortuous and slow. One way to fetch the
child nodes of a given node is to INNER JOIN the nested sets tree table AS parent to
itself AS child ON child.leftedge BETWEEN parent.leftedge AND
parent.rightedge, then scope on the target row's leftedge and rightedge values. In
the resulting list, child.nodeID values one level down occur once and are children,
grandkids are two levels down and occur twice, and so on:

Listing 11
SELECT PersonName(child.nodeID) AS 'Descendants of William', COUNT(*) AS Generation
FROM nestedsettree AS parent
JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
WHERE parent.leftedge > 7 AND parent.rightedge < 24       -- William’s leftedge, rightedge
GROUP BY child.nodeID;
+------------------------+------------+
| Descendants of William | Generation |
+------------------------+------------+
| Susana Shakespeare     |          1 |
| Hamnet Shakespeare     |          1 |
| Judith Shakespeare     |          1 |
| Elizabeth Hall         |          2 |
| Shakespeare Quiney     |          2 |
| Richard Quiney         |          2 |
| Thomas Quiney          |          2 |
| John Bernard           |          3 |
+------------------------+------------+

Therefore HAVING COUNT(t2.nodeID)=1 scopes listed descendants to the children:

Listing 11a
SELECT PersonName(child.nodeID) AS 'Children of William'
FROM nestedsettree AS parent
JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
WHERE parent.leftedge > 7 AND parent.rightedge < 24
GROUP BY child.nodeID
HAVING COUNT(child.nodeID)=1
+---------------------+
| Children of William |
+---------------------+
| Susana Shakespeare  |
| Hamnet Shakespeare  |
| Judith Shakespeare  |
+---------------------+

Retrieving a subtree or a subset of parents requires yet another join:

Listing 11b
SELECT Parent, Group_Concat(Child ORDER BY Child) AS Children
FROM (
  SELECT master.nodeID AS Parent, child.nodeID AS Child
  FROM nestedsettree AS master
  JOIN nestedsettree AS parent
  JOIN nestedsettree AS child ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge

http://www.artfulsoftware.com/infotree/queries.php


  WHERE parent.leftedge > master.leftedge AND parent.rightedge < master.rightedge
  GROUP BY master.nodeID, child.nodeID
  HAVING COUNT(*)=1
) AS tmp
WHERE parent in(6,8,12,14)
GROUP BY Parent;
+--------+-------------------+
| Parent | Children          |
+--------+-------------------+
|      6 | 12,13,14          |
|      8 | 15,16,17,18       |
|     12 | 19                |
|     14 | 20,21,22          |
+--------+-------------------+

This takes hundreds of times longer than a query for the same info from an edge list!
An aggregating version of Listing 19 is easier to write, but is an even worse performer:

Listing 11c
SELECT p.nodeID AS Parent, Group_Concat(c.nodeID) AS Children
FROM nestedsettree AS p
JOIN nestedsettree AS c
  ON p.leftedge = (SELECT MAX(s.leftedge) FROM nestedsettree AS s
                   WHERE c.leftedge > s.leftedge AND c.leftedge < s.rightedge)
GROUP BY Parent;
+--------+-------------------+
| Parent | Children          |
+--------+-------------------+
|      1 | 2,3               |
|      2 | 5,6,7,8,9,10,11,4 |
|      6 | 12,13,14          |
|      8 | 15,16,17,18       |
|     12 | 19                |
|     14 | 20,21,22          |
|     19 | 23                |
+--------+-------------------+

Logic that is reciprocal to that of Listing 11a gets us the parent of a node:

1. retrieve its leftedge and rightedge values,
2. compute its level,
3. find the node which is one level up and has edge values outside the node's

leftedge and rightedge values.
Listing 12
DROP PROCEDURE IF EXISTS ShowNestedSetParent;
DELIMITER go
CREATE PROCEDURE ShowNestedSetParent( node SMALLINT )
BEGIN
  DECLARE level, thisleft, thisright SMALLINT DEFAULT 0;
  -- find node edges
  SELECT leftedge, rightedge
    INTO thisleft, thisright
  FROM nestedsettree
  WHERE nodeID = node;
  -- find node level
  SELECT COUNT(n1.nodeid)
    INTO level
  FROM nestedsettree AS n1
    INNER JOIN nestedsettree AS n2
    ON n2.leftedge BETWEEN n1.leftedge AND n1.rightedge
  WHERE n2.nodeid = node
  GROUP BY n2.nodeid;
  -- find parent
  SELECT
    PersonName(n2.nodeid) AS Parent
  FROM nestedsettree AS n1
    INNER JOIN nestedsettree AS n2

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Listing_19


    ON n2.leftedge BETWEEN n1.leftedge AND n1.rightedge
  WHERE n2.leftedge < thisleft AND n2.rightedge > thisright
  GROUP BY n2.nodeid
  HAVING COUNT(n1.nodeid)=level-1;
END;
go
DELIMITER ;
CALL ShowNestedSetParent(6);
+-------------------+
| Parent            |
+-------------------+
| Henry Shakespeare |
+-------------------+

Other queries

For some query problems, edge list and nested sets queries are equivalently simple.
For example to find the tree root and leaves, compare Listing 6 with:

Listing 13
SELECT
  name AS Paterfamilias,
  IFNULL(born,'?') AS Born,
  IFNULL(died,'?') AS Died
FROM nestedsettree AS t
INNER JOIN family AS f ON t.nodeID=f.ID
WHERE leftedge = 1;
+---------------------+------+------+
| Paterfamilias       | Born | Died |
+---------------------+------+------+
| Richard Shakespeare | ?    | 1561 |
+---------------------+------+------+

SELECT
  name AS 'Childless Shakespeares',
  IFNULL(born,'?') AS Born,
  IFNULL(died,'?') AS Died
FROM nestedsettree AS t
INNER JOIN family AS f ON t.nodeID=f.ID
WHERE rightedge = leftedge + 1;
+------------------------+------+------+
| Childless Shakespeares | Born | Died |
+------------------------+------+------+
| Joan Shakespeare       | 1558 | ?    |
| Margaret Shakespeare   | 1562 | 1563 |
| John Bernard           | ?    | 1674 |
| Hamnet Shakespeare     | 1585 | 1596 |
| Shakespeare Quiney     | 1616 | 1617 |
| Richard Quiney         | 1618 | 1639 |
| Thomas Quiney          | 1620 | 1639 |
| Gilbert Shakespeare    | 1566 | 1612 |
| William Hart           | 1600 | 1639 |
| Mary Hart              | 1603 | 1607 |
| Thomas Hart            | 1605 | 1670 |
| Michael Hart           | 1608 | 1618 |
| Anne Shakespeare       | 1571 | 1579 |
| Richard Shakespeare    | 1574 | 1613 |
| Edmond Shakespeare     | 1580 | 1607 |
| John Shakespeare       | 1530 | 1601 |
+------------------------+------+------+

Finding subtrees in a nested sets model requires no twisted code, no stored procedure.
To retrieve the nestedsettree nodes in William's subtree, just ask for nodes whose
leftedge values are greater, and whose rightedge values are smaller than William's:

Listing 14

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Listing_6


SELECT PersonName(t.nodeID) AS Descendant
FROM nestedsettree AS s
  JOIN nestedsettree AS t ON s.leftedge < t.leftedge AND s.rightedge > t.rightedge
  JOIN family f ON s.nodeID = f.ID
WHERE f.name = 'William Shakespeare';

Finding a single path in the nested sets model is about as complicated as edge list path
enumeration (Listings 8, 9):

Listing 15
SELECT
  t2.nodeID AS Node,
  PersonName(t2.nodeID) AS Person,
  (SELECT COUNT(*)
   FROM nestedsettree AS t4
   WHERE t4.leftedge BETWEEN t1.leftedge AND t1.rightedge
     AND t2.leftedge BETWEEN t4.leftedge AND t4.rightedge
   ) AS Path
FROM nestedsettree AS t1
  INNER JOIN nestedsettree AS t2 ON t2.leftedge BETWEEN t1.leftedge AND t1.rightedge
  INNER JOIN nestedsettree AS t3 ON t3.leftedge BETWEEN t2.leftedge AND t2.rightedge
WHERE t1.nodeID=(SELECT ID FROM family WHERE name='William Shakespeare')
  AND t3.nodeID=(SELECT ID FROM family WHERE name='John Bernard');
+------+---------------------+------+
| Node | Person              | Path |
+------+---------------------+------+
|    6 | William Shakespeare |    1 |
|   12 | Susana Shakespeare  |    2 |
|   19 | Elizabeth Hall      |    3 |
|   23 | John Bernard        |    4 |
+------+---------------------+------+

Displaying the tree

Here the nested sets model shines. The arithmetic that was used to build the tree
makes short work of summary queries. For example to retrieve a node list which
preserves all parent-child relations, we need just two facts:

listing order is the order taken in the node walk that created
the tree, i.e. leftedge,
a node's indentation depth is simply the JOIN (edge) count
from root to node:

Listing 16
SELECT
  CONCAT( SPACE(2*COUNT(parent.nodeid)-2), PersonName(child.nodeid) )
  AS 'The Shakespeare Family Tree'
FROM nestedsettree AS parent
  INNER JOIN nestedsettree AS child
  ON child.leftedge BETWEEN parent.leftedge AND parent.rightedge
GROUP BY child.nodeid
ORDER BY child.leftedge;
+-----------------------------+
| The Shakespeare Family Tree |
+-----------------------------+
| Richard Shakespeare         |
|   Henry Shakespeare         |
|     Joan Shakespeare        |
|     Margaret Shakespeare    |
|     William Shakespeare     |
|       Susana Shakespeare    |
|         Elizabeth Hall      |
|           John Bernard      |
|       Hamnet Shakespeare    |

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Listing_8
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Listing_9


|       Judith Shakespeare    |
|         Shakespeare Quiney  |
|         Richard Quiney      |
|         Thomas Quiney       |
|     Gilbert Shakespeare     |
|     Joan Shakespeare        |
|       William Hart          |
|       Mary Hart             |
|       Thomas Hart           |
|       Michael Hart          |
|     Anne Shakespeare        |
|     Richard Shakespeare     |
|     Edmond Shakespeare      |
|   John Shakespeare          |
+-----------------------------+

To retrieve only a subtree, add a query clause which restricts nodes to those whose
edges are within the range of the parent node's left and right edge values, for example
for William and his descendants...

WHERE parent.leftedge >= 7 AND parent.rightedge <=24

Node insertions, updates and deletions

Nested sets arithmetic also helps with insertions, updates and deletions, but the
problem remains that changing just one node can require changing much of the tree.

Inserting a node in the tree requires at least two pieces of information: the nodeID to
insert, and the nodeID of its parent. The model is normalised so the nodeID first must
have been added to the parent (family) table. The algorithm for adding the node to the
tree is:

1. increment leftedge by 2 in nodes where the rightedge value is greater than
the parent's rightedge,

2. increment rightedge by 2 in nodes where the leftedge value is greater than
the parent's leftedge,

3. insert a row with the given nodeID, leftedge = 1 + parent's leftedge, rightedge =
2 + parent's leftedge.

That's not difficult, but all rows will have to be updated!

Listing 17
DROP PROCEDURE IF EXISTS InsertNestedSetNode;
DELIMITER go
CREATE PROCEDURE InsertNestedSetNode( IN node SMALLINT, IN parent SMALLINT )
BEGIN
  DECLARE parentleft, parentright SMALLINT DEFAULT 0;
  SELECT leftedge, rightedge
    INTO parentleft, parentright
  FROM nestedsettree
  WHERE nodeID = parent;
  IF FOUND_ROWS() = 1 THEN
    BEGIN
      UPDATE nestedsettree
        SET rightedge = rightedge + 2
      WHERE rightedge > parentleft;
      UPDATE nestedsettree
        SET leftedge = leftedge + 2
      WHERE leftedge > parentleft;
      INSERT INTO nestedsettree
        VALUES ( 0, node, parentleft + 1, parentleft + 2 );



    END;
  END IF;
END;
go
DELIMITER ;

"Sibline" or horizontal order is obviously significant in family trees, but may not be
significant in other trees. Listing 17 adds the new node at the left edge of the sibline.
To specify another position, modify the procedure to accept a third parameter for the
nodeID which is to be to the left or right of the insertion point.

Updating a node in place requires nothing more than editing nodeID to point at a
different parent row.

Deleting a node raises the problem of how to repair links severed by the deletion. In
tree models of parts explosions, the item to be deleted is often replaced by a new item,
so it can be treated like a simple nodeID update. In organisational boss-employee charts,
though, does a colleague move over, does a subordinate get promoted, does everybody
in the subtree move up a level, or does something else happen? No formula can catch
all the possibilities. Listing 18 illustrates how to handle two common scenarios, move
everyone up, and move someone over. All possibilities except simple replacement of
the nodeID involve changes elsewhere in the tree.

Listing 18
DROP PROCEDURE IF EXISTS DeleteNestedSetNode;
DELIMITER go
CREATE PROCEDURE DeleteNestedSetNode( IN mode CHAR(7), IN node SMALLINT )
BEGIN
  DECLARE thisleft, thisright SMALLINT DEFAULT 0;
  SELECT leftedge, rightedge
    INTO thisleft, thisright
  FROM nestedsettree
  WHERE nodeID = node;
  IF mode = 'PROMOTE' THEN
    BEGIN                                                         -- Ian Holsman found these two bugs
      DELETE FROM nestedsettree
      WHERE nodeID = node;
      UPDATE nestedsettree
        SET leftedge = leftedge - 1, rightedge = rightedge - 1    -- rather than = thisleft
      WHERE leftedge BETWEEN thisleft AND thisright;
      UPDATE nestedsettree
        SET rightedge = rightedge - 2
      WHERE rightedge > thisright;
      UPDATE nestedsettree
        SET leftedge = leftedge - 2
      WHERE leftedge > thisright;                                 -- rather than > thisleft
    END;
  ELSEIF mode = 'REPLACE' THEN
    BEGIN
      UPDATE nestedsettree
        SET leftedge = thisleft - 1, rightedge = thisright
      WHERE leftedge = thisleft + 1;
      UPDATE nestedsettree
        SET rightedge = rightedge - 2
      WHERE rightedge > thisleft;
      UPDATE nestedsettree
        SET leftedge = leftedge - 2
      WHERE leftedge > thisleft;
      DELETE FROM nestedsettree
      WHERE nodeID = node;
    END;
  END IF;
END;
go
DELIMITER ;



Nesteds set model summary

Some nested sets queries are quicker than their edge list counterparts, some aren't.
Given the concurrency nightmare which nested sets impose for inserts and deletions,
it is reasonable to reserve the nested sets model for fairly static trees whose users are
mostly interested in querying subtrees. You could think of the nested sets model as a
specialised OLAP tool: maintain an OLTP tree in an edge list representation, and build a
nested sets OLAP table when certain reports are needed.

If you will be using the nested sets model, you may be converting back and forth with
edge list models, so here is a simple query which generates an edge list from a nested
sets tree:

Listing 19
SELECT
  p.nodeID AS parentID,
  c.nodeID AS childID
FROM nestedsettree AS p
  INNER JOIN nestedsettree AS c
  ON p.leftedge = (SELECT MAX(s.leftedge)
                   FROM nestedsettree AS s
                   WHERE c.leftedge > s.leftedge
                     AND c.leftedge < s.rightedge)
ORDER BY p.nodeID;

Edge list model of a non-tree graph

Many graphs are not trees. Imagine a small airline which has just acquired licences for
flights no longer than 6,000 km between Los Angeles (LAX), New York (JFK),
Heathrow in London, Charles de Gaulle in Paris, Amsterdam-Schiphol, Arlanda in
Sweden, and Helsinki-Vantaa. You have been asked to compute the shortest possible
one-way routes that do not deviate more than 90° from the direction of the first hop—
roughly, one-way routes and no circuits.

Airports are nodes, flights are edges, routes are paths. We will need three tables.

Airports (nodes)

To identify an airport we need its code, location name, latitude and longitude. Latitude
and longitude are usually given as degrees, minutes and seconds, north or south of the
equator, east or west of Greenwich. To hide details that aren't directly relevant to
nodes and edges, code latitude and longitude as simple reals where longitudes west of
Greenwich and latitudes south of the equator are negative, whilst longitudes east of
Greenwich and latitudes north of the equator are positive:

Listing 20
CREATE TABLE airports (
  code char(3) NOT NULL,
  city char(100) default NULL,
  latitude float NOT NULL,
  longitude float NOT NULL,
  PRIMARY KEY (code)
) ENGINE=MyISAM;

INSERT INTO airports VALUES ('JFK', 'New York, NY', 40.75, -73.97);



INSERT INTO airports VALUES ('LAX', 'Los Angeles, CA', 34.05, -118.22);
INSERT INTO airports VALUES ('LHR', 'London, England', 51.5, -0.45);
INSERT INTO airports VALUES ('HEL', 'Helsinki, Finland', 60.17, 24.97);
INSERT INTO airports VALUES ('CDG', 'Paris, France', 48.86, 2.33);
INSERT INTO airports VALUES ('STL', 'St Louis, MO', 38.63, -90.2);
INSERT INTO airports VALUES ('ARN', 'Stockholm, Sweden', 59.33, 18.05);

Flights (edges)

The model attaches two weights to flights: distance and direction.

We need a method of calculating the Great Circle Distance—the geographical distance
between any two cities - another natural job for a stored function. The distance
calculation

converts to radians the degree coordinates of any two points
on the earth's surface,
calculates the angle of the arc subtended by the two points,
and
converts the result, also in radians, to surface (circumferential)
kilometres (1 radian=6,378.388 km).

Listing 21
SET GLOBAL log_bin_trust_function_creators=TRUE;   -- since 5.0.16
DROP FUNCTION IF EXISTS GeoDistKM;
DELIMITER go
CREATE FUNCTION GeoDistKM( lat1 FLOAT, lon1 FLOAT, lat2 FLOAT, lon2 FLOAT ) RETURNS float
BEGIN
  DECLARE pi, q1, q2, q3 FLOAT;
  SET pi = PI();
  SET lat1 = lat1 * pi / 180;
  SET lon1 = lon1 * pi / 180;
  SET lat2 = lat2 * pi / 180;
  SET lon2 = lon2 * pi / 180;
  SET q1 = COS(lon1-lon2);
  SET q2 = COS(lat1-lat2);
  SET q3 = COS(lat1+lat2);
  SET rads = ACOS( 0.5*((1.0+q1)*q2 - (1.0-q1)*q3) );
  RETURN 6378.388 * rads;
END;
go
DELIMITER ;

That takes care of flight distances. Flight direction is, approximately, the arctangent
(ATAN) of the difference between flights.depart and flights.arrive latitudes and
longitudes. Now we can seed the airline's flights table with one-hop flights up to
6,000 km long:

Listing 22
CREATE TABLE flights (
  id INT PRIMARY KEY AUTO_INCREMENT,
  depart CHAR(3),
  arrive CHAR(3),
  distance DECIMAL(10,2),
  direction DECIMAL(10,2)
) ENGINE=MYISAM;

INSERT INTO flights
  SELECT
    NULL,
    depart.code,
    arrive.code,



    ROUND(GeoDistKM(depart.latitude,depart.longitude,arrive.latitude,arrive.longitude),2),
    ROUND(DEGREES(ATAN(arrive.latitude-depart.latitude,arrive.longitude-depart.longitude)),2)
  FROM airports AS depart
  INNER JOIN airports AS arrive ON depart.code <> arrive.code
  HAVING Km <= 6000;

SELECT * FROM flights;
+----+--------+--------+----------+-----------+
| id | depart | arrive | distance | direction |
+----+--------+--------+----------+-----------+
|  1 | LAX    | JFK    | 3941.18  | 8.61      |
|  2 | LHR    | JFK    | 5550.77  | -171.68   |
|  3 | CDG    | JFK    | 5837.46  | -173.93   |
|  4 | STL    | JFK    | 1408.11  | 7.44      |
|  5 | JFK    | LAX    | 3941.18  | -171.39   |
|  6 | STL    | LAX    | 2553.37  | -170.72   |
|  7 | JFK    | LHR    | 5550.77  | 8.32      |
|  8 | HEL    | LHR    | 1841.91  | -161.17   |
|  9 | CDG    | LHR    | 354.41   | 136.48    |
| 10 | ARN    | LHR    | 1450.12  | -157.06   |
| 11 | LHR    | HEL    | 1841.91  | 18.83     |
| 12 | CDG    | HEL    | 1912.96  | 26.54     |
| 13 | ARN    | HEL    | 398.99   | 6.92      |
| 14 | JFK    | CDG    | 5837.46  | 6.07      |
| 15 | LHR    | CDG    | 354.41   | -43.52    |
| 16 | HEL    | CDG    | 1912.96  | -153.46   |
| 17 | ARN    | CDG    | 1545.23  | -146.34   |
| 18 | JFK    | STL    | 1408.11  | -172.56   |
| 19 | LAX    | STL    | 2553.37  | 9.28      |
| 20 | LHR    | ARN    | 1450.12  | 22.94     |
| 21 | HEL    | ARN    | 398.99   | -173.08   |
| 22 | CDG    | ARN    | 1545.23  | 33.66     |
+----+--------+--------+----------+-----------+

The distances agree approximately with public information sources for flight lengths.
For a pair of airports A and B not very near the poles, the error in calculating direction
using ATAN(), is small. To remove that error, instead of ATAN() use a formula from
spherical trigonometry (for example one of the formulas at
http://www.dynagen.co.za/eugene/where/formula.html).

Routes (paths)

A route is a path along one or more of these edges, so flights:routes is a 1:many
relationship. For simplicity, though, we denormalise our representation of routes with
a variation of the materialised path model to store all the hops of one route as a list of
flights in one routes column. The column routes.route is the sequence of airports, from
first departure to final arrival, the column routes.hops is the number of hops in that
route, and the column routes.direction is the direction:

Listing 23
CREATE TABLE routes (
  id INT PRIMARY KEY AUTO_INCREMENT,
  depart CHAR(3),
  arrive CHAR(3),
  hops SMALLINT,
  route CHAR(50),
  distance DECIMAL(10,2),
  direction DECIMAL(10,2)
) ENGINE=MYISAM;

Starting with an empty routes table, how do we populate it with the shortest routes
between all ordered pairs of airports?

http://www.dynagen.co.za/eugene/where/formula.html
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#materialised_path


1. Insert all 1-hop flights from the flights table.
2. Add in the set of shortest multi-hop routes for all pairs of airports which

don't have rows in the flights table.

For 1-hop flights we just write

Listing 24
INSERT INTO routes
  SELECT
    NULL,
    depart,
    arrive,
    1,
    CONCAT(depart,',',arrive),
    distance,
    direction
  FROM flights;

NULL being the placeholder for the auto-incrementing id column.

For multi-hop routes, we iteratively add in sets of all allowed 2-hop, 3-hop, ... n-hop
routes, replacing longer routes by shorter routes as we find them, until there is
nothing more to add or replace. That also breaks down to two logical steps: add hops
to build the set of next allowed routes, and update longer routes with shorter ones.

Next allowed routes

The set of next allowed routes is the set of shortest routes that can be built by adding,
to existing routes, flights which leave from the last arrival airport of an existing route,
which arrive at an airport which is not yet in the given route, and which stay within ±
90° of the route's initial compass direction. That is, every new route is a JOIN between
routes and flights in which

depart = routes.depart,
arrive = flights.arrive,
flights.depart = routes.arrive,
distance = MIN(routes.distance + flights.distance),
LOCATE( flights.arrive,routes.route) = 0,
flights.direction+360 > routes.direction+270 AND

flights.direction+360 < routes.direction+450

This is a natural logical unit of work for a VIEW:

Listing 25
CREATE OR REPLACE VIEW nextroutes AS
  SELECT
    routes.depart,
    flights.arrive,
    routes.hops+1 AS hops,
    CONCAT(routes.route, ',', flights.arrive) AS route,
    MIN(routes.distance + flights.distance) AS distance,
    routes.direction
  FROM routes INNER JOIN flights
    ON routes.arrive = flights.depart
    AND LOCATE(flights.arrive,routes.route) = 0
  WHERE flights.direction+360>routes.direction+270
    AND flights.direction+360<routes.direction+450
  GROUP BY depart,arrive;



How to add these new hops to routes? In standard SQL, this variant on a query by Scott
Stephens should do it...

Listing 26
INSERT INTO routes
  SELECT NULL,depart,arrive,hops,route,distance,direction FROM nextroutes
  WHERE (nextroutes.depart,nextroutes.arrive) NOT IN (
    SELECT depart,arrive FROM routes
  );

but MySQL does not yet support subqueries on the table being updated. We have to
use a subquery-less (and faster) version of that logic:

Listing 27
INSERT INTO routes
  SELECT
    NULL,
    nextroutes.depart,
    nextroutes.arrive,
    nextroutes.hops,
    nextroutes.route,
    nextroutes.distance,
    nextroutes.direction
  FROM nextroutes
  LEFT JOIN routes ON nextroutes.depart = routes.depart
        AND nextroutes.arrive = routes.arrive
  WHERE routes.depart IS NULL AND routes.arrive IS NULL;

Running that code right after the initial seeding from flights gives ...

SELECT * FROM routes;
+----+--------+--------+------+-------------+----------+-----------+
| id | depart | arrive | hops | route       | distance | direction |
+----+--------+--------+------+-------------+----------+-----------+
|  1 | LAX    | JFK    |    1 | LAX,JFK     | 3941.18  | 8.61      |
|  2 | LHR    | JFK    |    1 | LHR,JFK     | 5550.77  | -171.68   |
|  3 | CDG    | JFK    |    1 | CDG,JFK     | 5837.46  | -173.93   |
|  4 | STL    | JFK    |    1 | STL,JFK     | 1408.11  | 7.44      |
|  5 | JFK    | LAX    |    1 | JFK,LAX     | 3941.18  | -171.39   |
|  6 | STL    | LAX    |    1 | STL,LAX     | 2553.37  | -170.72   |
|  7 | JFK    | LHR    |    1 | JFK,LHR     | 5550.77  | 8.32      |
|  8 | HEL    | LHR    |    1 | HEL,LHR     | 1841.91  | -161.17   |
|  9 | CDG    | LHR    |    1 | CDG,LHR     | 354.41   | 136.48    |
| 10 | ARN    | LHR    |    1 | ARN,LHR     | 1450.12  | -157.06   |
| 11 | LHR    | HEL    |    1 | LHR,HEL     | 1841.91  | 18.83     |
| 12 | CDG    | HEL    |    1 | CDG,HEL     | 1912.96  | 26.54     |
| 13 | ARN    | HEL    |    1 | ARN,HEL     | 398.99   | 6.92      |
| 14 | JFK    | CDG    |    1 | JFK,CDG     | 5837.46  | 6.07      |
| 15 | LHR    | CDG    |    1 | LHR,CDG     | 354.41   | -43.52    |
| 16 | HEL    | CDG    |    1 | HEL,CDG     | 1912.96  | -153.46   |
| 17 | ARN    | CDG    |    1 | ARN,CDG     | 1545.23  | -146.34   |
| 18 | JFK    | STL    |    1 | JFK,STL     | 1408.11  | -172.56   |
| 19 | LAX    | STL    |    1 | LAX,STL     | 2553.37  | 9.28      |
| 20 | LHR    | ARN    |    1 | LHR,ARN     | 1450.12  | 22.94     |
| 21 | HEL    | ARN    |    1 | HEL,ARN     | 398.99   | -173.08   |
| 22 | CDG    | ARN    |    1 | CDG,ARN     | 1545.23  | 33.66     |
| 23 | ARN    | JFK    |    2 | ARN,LHR,JFK | 7000.89  | -157.06   |
| 24 | CDG    | LAX    |    2 | CDG,JFK,LAX | 9778.64  | -173.93   |
| 25 | CDG    | STL    |    2 | CDG,JFK,STL | 7245.57  | -173.93   |
| 26 | HEL    | JFK    |    2 | HEL,LHR,JFK | 7392.68  | -161.17   |
| 27 | JFK    | ARN    |    2 | JFK,LHR,ARN | 7000.89  | 8.32      |
| 28 | JFK    | HEL    |    2 | JFK,LHR,HEL | 7392.68  | 8.32      |
| 29 | LAX    | CDG    |    2 | LAX,JFK,CDG | 9778.64  | 8.61      |
| 30 | LAX    | LHR    |    2 | LAX,JFK,LHR | 9491.95  | 8.61      |
| 31 | LHR    | LAX    |    2 | LHR,JFK,LAX | 9491.95  | -171.68   |
| 32 | LHR    | STL    |    2 | LHR,JFK,STL | 6958.88  | -171.68   |
| 33 | STL    | CDG    |    2 | STL,JFK,CDG | 7245.57  | 7.44      |
| 34 | STL    | LHR    |    2 | STL,JFK,LHR | 6958.88  | 7.44      |



+----+--------+--------+------+-------------+----------+-----------+

... adding 12 two-hop rows.

Replace longer routes with shorter ones

As we build routes with more hops, it is logically possible that the nextroutes view will
find shorter routes for an existing routes pair of depart and arrive. Standard SQL for
replacing existing routes rows with nextroutes rows which match (depart, arrive) and
have shorter distance values would be:

Listing 28
UPDATE routes SET (hops,route,distance,direction) = (
  SELECT hops, route, distance, direction
  FROM nextroutes
  WHERE nextroutes.depart = routes.depart AND nextroutes.arrive = routes.arrive
)
WHERE (depart,arrive) IN (
  SELECT depart,arrive FROM nextroutes
  WHERE nextroutes.distance < routes.distance
);

but MySQL does not support SET(col1,...) syntax, and as with Listing 7, MySQL does
not yet accept subqueries referencing the table being updated, so we have to write
more literal SQL:

Listing 29
UPDATE routes, nextroutes
SET
  routes.hops=nextroutes.hops,
  routes.route=nextroutes.route,
  routes.distance=nextroutes.distance,
  routes.direction=nextroutes.direction
WHERE routes.arrive=nextroutes.arrive
  AND routes.depart=nextroutes.depart
  AND nextroutes.distance < routes.distance;

Running this code right after the first run of Listing 27 updates no rows. To test the
logic of iteration, continue running Listings 27 and 29 until no rows are being added
or changed. The final result is:

SELECT * FROM ROUTES;
+----+--------+--------+------+-----------------+----------+-----------+
| id | depart | arrive | hops | route           | distance | direction |
+----+--------+--------+------+-----------------+----------+-----------+
|  1 | LAX    | JFK    |    1 | LAX,JFK         | 3941.18  | 8.61      |
|  2 | LHR    | JFK    |    1 | LHR,JFK         | 5550.77  | -171.68   |
|  3 | CDG    | JFK    |    1 | CDG,JFK         | 5837.46  | -173.93   |
|  4 | STL    | JFK    |    1 | STL,JFK         | 1408.11  | 7.44      |
|  5 | JFK    | LAX    |    1 | JFK,LAX         | 3941.18  | -171.39   |
|  6 | STL    | LAX    |    1 | STL,LAX         | 2553.37  | -170.72   |
|  7 | JFK    | LHR    |    1 | JFK,LHR         | 5550.77  | 8.32      |
|  8 | HEL    | LHR    |    1 | HEL,LHR         | 1841.91  | -161.17   |
|  9 | CDG    | LHR    |    1 | CDG,LHR         | 354.41   | 136.48    |
| 10 | ARN    | LHR    |    1 | ARN,LHR         | 1450.12  | -157.06   |
| 11 | LHR    | HEL    |    1 | LHR,HEL         | 1841.91  | 18.83     |
| 12 | CDG    | HEL    |    1 | CDG,HEL         | 1912.96  | 26.54     |
| 13 | ARN    | HEL    |    1 | ARN,HEL         | 398.99   | 6.92      |
| 14 | JFK    | CDG    |    1 | JFK,CDG         | 5837.46  | 6.07      |
| 15 | LHR    | CDG    |    1 | LHR,CDG         | 354.41   | -43.52    |
| 16 | HEL    | CDG    |    1 | HEL,CDG         | 1912.96  | -153.46   |
| 17 | ARN    | CDG    |    1 | ARN,CDG         | 1545.23  | -146.34   |
| 18 | JFK    | STL    |    1 | JFK,STL         | 1408.11  | -172.56   |

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Listing_7


| 19 | LAX    | STL    |    1 | LAX,STL         | 2553.37  | 9.28      |
| 20 | LHR    | ARN    |    1 | LHR,ARN         | 1450.12  | 22.94     |
| 21 | HEL    | ARN    |    1 | HEL,ARN         | 398.99   | -173.08   |
| 22 | CDG    | ARN    |    1 | CDG,ARN         | 1545.23  | 33.66     |
| 23 | ARN    | JFK    |    2 | ARN,LHR,JFK     | 7000.89  | -157.06   |
| 24 | CDG    | LAX    |    2 | CDG,JFK,LAX     | 9778.64  | -173.93   |
| 25 | CDG    | STL    |    2 | CDG,JFK,STL     | 7245.57  | -173.93   |
| 26 | HEL    | JFK    |    2 | HEL,LHR,JFK     | 7392.68  | -161.17   |
| 27 | JFK    | ARN    |    2 | JFK,LHR,ARN     | 7000.89  | 8.32      |
| 28 | JFK    | HEL    |    2 | JFK,LHR,HEL     | 7392.68  | 8.32      |
| 29 | LAX    | CDG    |    2 | LAX,JFK,CDG     | 9778.64  | 8.61      |
| 30 | LAX    | LHR    |    2 | LAX,JFK,LHR     | 9491.95  | 8.61      |
| 31 | LHR    | LAX    |    2 | LHR,JFK,LAX     | 9491.95  | -171.68   |
| 32 | LHR    | STL    |    2 | LHR,JFK,STL     | 6958.88  | -171.68   |
| 33 | STL    | CDG    |    2 | STL,JFK,CDG     | 7245.57  | 7.44      |
| 34 | STL    | LHR    |    2 | STL,JFK,LHR     | 6958.88  | 7.44      |
| 35 | ARN    | LAX    |    3 | ARN,LHR,JFK,LAX | 10942.07 | -157.06   |
| 36 | ARN    | STL    |    3 | ARN,LHR,JFK,STL | 8409.00  | -157.06   |
| 37 | HEL    | LAX    |    3 | HEL,LHR,JFK,LAX | 11333.86 | -161.17   |
| 38 | HEL    | STL    |    3 | HEL,LHR,JFK,STL | 8800.79  | -161.17   |
| 39 | LAX    | ARN    |    3 | LAX,JFK,CDG,ARN | 10942.07 | 8.61      |
| 40 | LAX    | HEL    |    3 | LAX,JFK,CDG,HEL | 11333.86 | 8.61      |
| 41 | STL    | ARN    |    3 | STL,JFK,CDG,ARN | 8409.00  | 7.44      |
| 42 | STL    | HEL    |    3 | STL,JFK,CDG,HEL | 8800.79  | 7.44      |
+----+--------+--------+------+-----------------+----------+-----------+

All that's left to do is to assemble the code in a stored procedure:

Listing 30
DROP PROCEDURE IF EXISTS BuildRoutes;
DELIMITER go
CREATE PROCEDURE BuildRoutes()
BEGIN
  DECLARE rows INT DEFAULT 0;
  TRUNCATE routes;
  -- STEP 1, LISTING 24: SEED ROUTES WITH 1-HOP FLIGHTS
  INSERT INTO routes
    SELECT
      NULL,
      depart,
      arrive,
      1,
      CONCAT(depart,',',arrive),
      distance,
      direction
  FROM flights;
  SET rows = ROW_COUNT();
  WHILE (rows > 0) DO
    -- STEP 2, LISTINGS 25, 27: ADD NEXT SET OF ROUTES
    INSERT INTO routes
      SELECT
        NULL,
        nextroutes.depart,
        nextroutes.arrive,
        nextroutes.hops,
        nextroutes.route,
        nextroutes.distance,
        nextroutes.direction
      FROM nextroutes
      LEFT JOIN routes ON nextroutes.depart = routes.depart AND nextroutes.arrive = routes.arrive
      WHERE routes.depart IS NULL AND routes.arrive IS NULL;
    SET rows = ROW_COUNT();
  END WHILE;
END;
go
DELIMITER ;

In MySQL 5.0.6 or 5.0.7, BuildRoutes() fails to insert four rows:

+--------+--------+-----------------+------+----------+-----------+



| depart | arrive | route           | hops | distance | direction |
+--------+--------+-----------------+------+----------+-----------+
| ARN    | LAX    | ARN,LHR,JFK,LAX |    3 | 10942.07 | -157.06   |
| ARN    | STL    | ARN,LHR,JFK,STL |    3 | 8409.00  | -157.06   |
| HEL    | LAX    | HEL,LHR,JFK,LAX |    3 | 11333.86 | -161.17   |
| HEL    | STL    | HEL,LHR,JFK,STL |    3 | 8800.79  | -161.17   |
+--------+--------+-----------------+------+----------+-----------+

That MySQL bug (#11302) was corrected in 5.0.9.

Route queries

Route queries are straightforward. How do we check that the algorithm produced no
duplicate depart-arrive pairs? The following query should yield zero rows,

Listing 31
SELECT depart, arrive, COUNT(*)
FROM routes
GROUP BY depart,arrive
HAVING COUNT(*) > 1;

and does. Reachability queries are just as simple, for example where can we fly to
from Helsinki?

Listing 32
SELECT *
FROM routes
WHERE depart='HEL'
ORDER BY distance;
+----+--------+--------+------+-----------------+----------+-----------+
| id | depart | arrive | hops | route           | distance | direction |
+----+--------+--------+------+-----------------+----------+-----------+
| 21 | HEL    | ARN    |    1 | HEL,ARN         | 398.99   | -173.08   |
|  8 | HEL    | LHR    |    1 | HEL,LHR         | 1841.91  | -161.17   |
| 16 | HEL    | CDG    |    1 | HEL,CDG         | 1912.96  | -153.46   |
| 26 | HEL    | JFK    |    2 | HEL,LHR,JFK     | 7392.68  | -161.17   |
| 38 | HEL    | STL    |    3 | HEL,LHR,JFK,STL | 8800.79  | -161.17   |
| 37 | HEL    | LAX    |    3 | HEL,LHR,JFK,LAX | 11333.86 | -161.17   |
+----+--------+--------+------+-----------------+----------+-----------+

An extended edge list model is simple to implement, gracefully accepts extended
attributes for nodes, edge and paths, does not unduly penalise updates, and responds
to queries with reasonable speed.

Parts explosions

A bill of materials for a house would include the cement block, lumber, shingles,
doors, wallboard, windows, plumbing, electrical system, heating system, and so on.
Each subassembly also has a bill of materials; the heating system has a furnace, ducts,
and so on. A bill of materials implosion links component pieces to a major assembly. A
bill of materials explosion breaks apart assemblies and subassemblies into their
component parts.

Which graph model best handles a parts explosion? Combining edge list and "nested
sets" algorithms seems a natural solution.

Imagine a new company that plans to make variously sized bookcases, either packaged
as do-it-yourself kits of, or assembled from sides, shelves, shelf brackets, backboards,

http://bugs.mysql.com/bug.php?id=11302


feet and screws. Shelves and sides are cut from planks. Backboards are trimmed from
laminated sheeting. Feet are machine-carved from readycut blocks. Screws and shelf
brackets are purchased in bulk. Here are the elements of one bookcase:

  1 backboard, 2 x 1 m
    1 laminate
    8 screws
  2 sides 2m x 30 cm
    1 plank length 4m
    12 screws
  8 shelves 1 m x 30 cm (incl. top and bottom)
    2 planks
    24 shelf brackets
  4 feet 4cm x 4cm
    4 cubes
    16 screws

which may be packaged in a box for sale at one price, or assembled as a finished
product at a different price. At any time we need to be able to answer questions like

Do we have enough parts to make the bookcases on order?
What assemblies or packages would be most profitable to
make given the current inventory?

There is no reason to break the normalising rule that item detail belongs in a nodes
table, and graph logic belongs in an edges table. Edges also require a quantity
attribute, for example a shelf includes four shelf brackets. Nodes and edges may also
have costs and prices:

item purchase cost,
item assembly cost,
assembly cost,
assembly selling price.

In many parts problems like this one, items occur in multiple assemblies and
subassemblies. The graph is not a tree. Also, it is often desirable to model multiple
graphs without the table glut that would arise from giving each graph its own edges
table. A simple way to solve this problem is to represent multiple graphs (assemblies)
in the edges table by giving every row not only childID and parentID pointers, but a
pointer which identifies the root itemID of the graph to which the row belongs.

So the data model is just two tables, for items (nodes) and for product graphs or
assemblies (edges). Assume that the company begins with a plan to sell the 2m x 1m
bookcase in two forms, assembled and kit, and that the purchasing department has
bought quantities of raw materials (laminate, planks, shelf supports, screws, wood
cubes, boxes). Here are the nodes (items) and edges (assemblies):

Listing 33
CREATE TABLE items (
  itemID INT PRIMARY KEY AUTO_INCREMENT,
  name CHAR(20) NOT NULL,
  onhand INT NOT NULL DEFAULT 0,
  reserved INT NOT NULL DEFAULT 0,
  purchasecost DECIMAL(10,2) NOT NULL DEFAULT 0,
  assemblycost DECIMAL(10,2) NOT NULL DEFAULT 0,
  price DECIMAL(10,2) NOT NULL DEFAULT 0
);
CREATE TABLE assemblies (
  assemblyID INT NOT NULL,



  assemblyroot INT NOT NULL,
  childID INT NOT NULL,
  parentID INT NOT NULL,
  quantity DECIMAL(10,2) NOT NULL,
  assemblycost DECIMAL(10,2) NOT NULL,
  PRIMARY KEY(assemblyID,childID,parentID)
);
INSERT INTO items VALUES    -- inventory
  (1,'laminate',40,0,4,0,8),
  (2,'screw',1000,0,0.1,0,.2),
  (3,'plank',200,0,10,0,20),
  (4,'shelf bracket',400,0,0.20,0,.4),
  (5,'wood cube',100,0,0.5,0,1),
  (6,'box',40,0,1,0,2),
  (7,'backboard',0,0,0,3,0),
  (8,'side',0,0,0,8,0),
  (9,'shelf',0,0,0,4,0),
  (10,'foot',0,0,0,1,0),
  (11,'bookcase2x30',0,0,0,10,0),
  (12,'bookcase2x30 kit',0,0,0,2,0);
INSERT INTO assemblies VALUES
  (1,11,1,7,1,0),      -- laminate to backboard
  (2,11,2,7,8,0),      -- screws to backboard
  (3,11,3,8,.5,0),     -- planks to side
  (4,11,2,8,6,0),      -- screws to side
  (5,11,3,9,0.25,0),   -- planks to shelf
  (6,11,4,9,4,0),      -- shelf brackets to shelf
  (7,11,5,10,1,0),     -- wood cubes to foot
  (8,11,2,10,1,0),     -- screws to foot
  (9,11,7,11,1,0),     -- backboard to bookcase
  (10,11,8,11,2,0),    -- sides to bookcase
  (11,11,9,11,8,0),    -- shelves to bookcase
  (12,11,10,11,4,0),   -- feet to bookcase
  (13,12,1,7,1,0),     -- laminate to backboard
  (14,12,2,7,8,0),     -- screws to backboard
  (15,12,3,8,0.5,0),   -- planks to side
  (16,12,2,8,6,0),     -- screws to sides
  (17,12,3,9,0.25,0),  -- planks to shelf
  (18,12,4,9,4,0),     -- shelf brackets to shelves
  (19,12,5,10,1,0),    -- wood cubes to foot
  (20,12,2,10,1,0),    -- screws to foot
  (21,12,7,12,1,0),    -- backboard to bookcase kit
  (22,12,8,12,2,0),    -- sides to bookcase kit
  (23,12,9,12,8,0),    -- shelves to bookcase kit
  (24,12,10,12,4,0),   -- feet to bookcase kit
  (25,12,6,12,1,0);    -- container box to bookcase kit

Now, we want a parts list, a bill of materials, which will list show parent-child
relationships and quantities, and sum the costs. Could we adapt the depth-first
"nested sets" treewalk algorithm (Listing 10) to this problem even though our graph is
not a tree and our sets are not properly nested? Yes indeed. We just have to modify the
treewalk to handle multiple parent nodes for any child node, and add code to percolate
costs and quantities up the graph. Navigation remains simple using leftedge and
rightedge values. This is just the sort of problem the Celko algorithm is good for:
reporting!

Listing 34
DROP PROCEDURE IF EXISTS ShowBOM;
DELIMITER go
CREATE PROCEDURE ShowBOM( IN root INT )
BEGIN
  DECLARE thischild, thisparent, rows, maxrightedge INT DEFAULT 0;
  DECLARE thislevel, nextedgenum INT DEFAULT 1;
  DECLARE thisqty, thiscost DECIMAL(10,2);

  -- Create and seed intermediate table:
  DROP TABLE IF EXISTS edges;
  CREATE TABLE edges (

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#Listing_10


    childID smallint NOT NULL,
    parentID smallint NOT NULL,
    PRIMARY KEY (childID, parentID)
  ) ENGINE=HEAP;
  INSERT INTO edges
    SELECT childID,parentID
    FROM assemblies
    WHERE assemblyRoot = root;
  SET maxrightedge = 2 * (1 + (SELECT COUNT(*) FROM edges));
  -- Create and seed result table:
  DROP TABLE IF EXISTS bom;
  CREATE TABLE bom (
    level SMALLINT,
    nodeID SMALLINT,
    parentID SMALLINT,
    qty DECIMAL(10,2),
    cost DECIMAL(10,2),
    leftedge SMALLINT,
    rightedge SMALLINT
  ) ENGINE=HEAP;
  INSERT INTO bom
    VALUES( thislevel, root, 0, 0, 0, nextedgenum, maxrightedge );
  SET nextedgenum = nextedgenum + 1;
  WHILE nextedgenum < maxrightedge DO
    -- How many children of this node remain in the edges table?
    SET rows = (
      SELECT COUNT(*)
      FROM bom AS s
      INNER JOIN edges AS t ON s.nodeID=t.parentID AND s.level=thislevel
    );
    IF rows > 0 THEN
      -- There is at least one child edge.
      -- Compute qty and cost, insert into bom, delete from edges.
      BEGIN
        -- Alas MySQL nulls MIN(t.childid) when we combine the next two queries
        SET thischild = (
          SELECT MIN(t.childID)
          FROM bom AS s
          INNER JOIN edges AS t ON s.nodeID=t.parentID AND s.level=thislevel
        );
        SET thisparent = (
          SELECT DISTINCT t.parentID
          FROM bom AS s
          INNER JOIN edges AS t ON s.nodeID=t.parentID AND s.level=thislevel
        );
        SET thisqty = (
          SELECT quantity FROM assemblies
          WHERE assemblyroot = root
            AND childID = thischild
            AND parentID = thisparent
        );
        SET thiscost = (
          SELECT a.assemblycost + (thisqty * (i.purchasecost + i.assemblycost ))
          FROM assemblies AS a
          INNER JOIN items AS i ON a.childID = i.itemID
          WHERE assemblyroot = root
            AND a.parentID = thisparent
            AND a.childID = thischild
        );
        INSERT INTO bom
          VALUES(thislevel+1, thischild, thisparent, thisqty, thiscost, nextedgenum, NULL);
        DELETE FROM edges
        WHERE childID = thischild AND parentID=thisparent;
        SET thislevel = thislevel + 1;
        SET nextedgenum = nextedgenum + 1;
      END;
    ELSE
      BEGIN
        -- Set rightedge, remove item from edges
        UPDATE bom
        SET rightedge=nextedgenum, level = -level



        WHERE level = thislevel;
        SET thislevel = thislevel - 1;
        SET nextedgenum = nextedgenum + 1;
      END;
    END IF;
  END WHILE;
  SET rows := ( SELECT COUNT(*) FROM edges );
  IF rows > 0 THEN
    SELECT 'Orphaned rows remain';
  ELSE
    -- Total
    SET thiscost = (SELECT SUM(qty*cost) FROM bom);
    UPDATE bom
    SET qty = 1, cost = thiscost
    WHERE nodeID = root;
    -- Show the result
    SELECT
      CONCAT(Space(Abs(level)*2), ItemName(nodeid,root)) AS Item,
      ROUND(qty,2) AS Qty,
      ROUND(cost, 2) AS Cost
    FROM bom
    ORDER BY leftedge;
  END IF;
END;
go
DELIMITER ;

-- Function used by ShowBOM() to retrieve bom item names:
DROP FUNCTION IF EXISTS ItemName;
SET GLOBAL log_bin_trust_function_creators=TRUE;
DELIMITER go
CREATE FUNCTION ItemName( id INT, root INT ) RETURNS CHAR(20)
BEGIN
  DECLARE s CHAR(20) DEFAULT '';
  SELECT name INTO s FROM items WHERE itemid=id;
  RETURN IF( id = root, UCASE(s), s );
END;
go
DELIMITER ;
CALL ShowBOM(11);
+---------------------+------+--------+
| Item                | Qty  | Cost   |
+---------------------+------+--------+
|   BOOKCASE2X30      |  1.0 | 327.93 |
|     backboard       |  1.0 |   3.00 |
|       laminate      |  1.0 |   4.00 |
|       screw         |  8.0 |   0.80 |
|     side            |  2.0 |  16.00 |
|       screw         |  6.0 |   0.60 |
|       plank         |  0.5 |   5.00 |
|     shelf           |  8.0 |  32.00 |
|       plank         |  0.3 |   2.50 |
|       shelf bracket |  4.0 |   0.80 |
|     foot            |  4.0 |   4.00 |
|       screw         |  1.0 |   0.10 |
|       wood cube     |  1.0 |   0.50 |
+---------------------+------+--------+

 
With ShowBOM() in hand, it's easy to compare costs of assemblies and subassemblies. By
adding price columns, we can do the same for prices and profit margins. And now that
MySQL has re-enabled prepared statements in stored procedures, it will be relatively
easy to write a more general version of ShowBOM(). We leave that to you.

Shorter and sweeter

But ShowBOM() is not the small, efficient bit of nested sets reporting code we were hoping



for. There is a simpler solution: hide graph cycles from the edges table by making them
references to rows in a nodes table, so we can treat the edges table like a tree; then apply a
breadth-first edge-list subtree algorithm to generate the Bill of Materials. Again assume a
cabinetmaking company making bookcases (with a different costing model). For clarity,
skip inventory tracking for now. An items table ww_nodes tracks purchased and assembled
bookcase elements with their individual costs, and an assemblies/edges ww_edges table
tracks sets of edges that combine to make products.

Listing 35: DDL for a simpler parts explosion
DROP TABLE IF EXISTS ww_nodes;
CREATE TABLE ww_nodes (
  nodeID int,
  description CHAR(50),
  cost decimal(10,2)
);
INSERT INTO ww_nodes VALUES (1,'finished bookcase',10);
INSERT INTO ww_nodes VALUES (2,'backboard2x1',1);
INSERT INTO ww_nodes VALUES (3,'laminate2x1',8);
INSERT INTO ww_nodes VALUES (4,'screw',.10);
INSERT INTO ww_nodes VALUES (5,'side',4);
INSERT INTO ww_nodes VALUES (6,'plank',20);
INSERT INTO ww_nodes VALUES (7,'shelf',4);
INSERT INTO ww_nodes VALUES (8,'shelf bracket',.5);
INSERT INTO ww_nodes VALUES (9,'feet',1);
INSERT INTO ww_nodes VALUES (10,'cube4cmx4cm',1);
INSERT INTO ww_nodes VALUES (11,'bookcase kit',2);
INSERT INTO ww_nodes VALUES (12,'carton',1);
 
DROP TABLE IF EXISTS ww_edges;
CREATE TABLE ww_edges (
  rootID INT,
  nodeID int,
  parentnodeID int,
  qty decimal(10,2)
);
INSERT INTO ww_edges VALUES (1,1,null,1);
INSERT INTO ww_edges VALUES (1,2,1,1);
INSERT INTO ww_edges VALUES (1,3,2,1);
INSERT INTO ww_edges VALUES (1,4,2,8);
INSERT INTO ww_edges VALUES (1,5,1,2);
INSERT INTO ww_edges VALUES (1,6,5,1);
INSERT INTO ww_edges VALUES (1,4,5,12);
INSERT INTO ww_edges VALUES (1,7,1,8);
INSERT INTO ww_edges VALUES (1,6,7,.5);
INSERT INTO ww_edges VALUES (1,8,7,4);
INSERT INTO ww_edges VALUES (1,9,1,4);
INSERT INTO ww_edges VALUES (1,10,9,1);
INSERT INTO ww_edges VALUES (1,4,9,1);
 
INSERT INTO ww_edges VALUES (11,11,null,1);
INSERT INTO ww_edges VALUES (11,2,11,1);
INSERT INTO ww_edges VALUES (11,3,2,1);
INSERT INTO ww_edges VALUES (11,4,2,8);
INSERT INTO ww_edges VALUES (11,5,11,2);
INSERT INTO ww_edges VALUES (11,6,5,1);
INSERT INTO ww_edges VALUES (11,4,5,12);
INSERT INTO ww_edges VALUES (11,7,11,8);
INSERT INTO ww_edges VALUES (11,6,7,.5);
INSERT INTO ww_edges VALUES (11,8,7,4);
INSERT INTO ww_edges VALUES (11,9,11,4);
INSERT INTO ww_edges VALUES (11,10,9,1);
INSERT INTO ww_edges VALUES (11,4,9,11);
INSERT INTO ww_edges VALUES (11,12,11,1);

Here is an adaptation of the breadth-first edge list algorithm to retrieve a Bill of Materials
for a product identified by a rootID:

http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch20.html#edge_list_subtrees


·   Initialise a level-tracking variable to zero.

·   Seed a temp reporting table with the rootID of the desired product.

·   While rows are being retrieved, increment the level tracking variable and add rows to the
temp table whose parentnodeIDs are nodes at the current level.

·   Print the BOM ordered by path with indentation proportional to tree level.

Listing 36: A simpler parts explosion
DROP PROCEDURE IF EXISTS ww_bom;
DELIMITER go
CREATE PROCEDURE ww_bom( root INT )
BEGIN
  DECLARE lev INT DEFAULT 0;
  DECLARE totalcost DECIMAL( 10,2);
  DROP TABLE IF EXISTS temp;
  CREATE TABLE temp                                 -- initialise temp table with root node
  SELECT
    e.nodeID AS nodeID,
    n.description AS Item,
    e.parentnodeID,
    e.qty,
    n.cost AS nodecost,
    e.qty * n.cost AS cost,
    0 as level,                                     -- tree level
    CONCAT(e.nodeID,'') AS path                     -- path to this node as a string
  FROM ww_nodes n
  JOIN ww_edges e USING(nodeID)                     -- root node
  WHERE e.nodeID = root AND e.parentnodeID IS NULL;
  WHILE FOUND_ROWS() > 0 DO 
    BEGIN
      SET lev = lev+1;                              -- increment level
      INSERT INTO temp                              -- add children of this level
      SELECT 
        e.nodeID,
        n.description AS Item,
        e.parentnodeID,
        e.qty,
        n.cost AS nodecost,
        e.qty * n.cost AS cost,
        lev,                                
        CONCAT(t.path,',',e.nodeID)
      FROM ww_nodes n
      JOIN ww_edges e USING(nodeID)
      JOIN temp t ON e.parentnodeID = t.nodeID
      WHERE e.rootID = root AND t.level = lev-1;
    END;
  END WHILE;
  WHILE lev > 0 DO                                  -- percolate costs up the graph
    BEGIN
      SET lev = lev - 1;
      DROP TABLE IF EXISTS tempcost;
      CREATE TABLE tempcost                         -- compute child cost
      SELECT p.nodeID, SUM(c.nodecost*c.qty) AS childcost
      FROM temp p 
      JOIN temp c ON p.nodeid=c.parentnodeid
      WHERE c.level=lev
      GROUP by p.nodeid;
      UPDATE temp JOIN tempcost USING(nodeID)       -- update parent item cost
      SET nodecost = nodecost + tempcost.childcost;
      UPDATE temp SET cost = qty * nodecost         -- update parent cost
      WHERE level=lev-1;
    END;
  END WHILE;
  SELECT                                            -- list BoM
    CONCAT(SPACE(level*2),Item) AS Item,
    ROUND(nodecost,2) AS 'Unit Cost',



    ROUND(Qty,0) AS Qty,ROUND(cost,2) AS Cost FROM temp
  ORDER by path;  
END go
DELIMITER ;
CALL ww_bom( 1 );
+-------------------+-----------+------+--------+
| Item              | Unit Cost | Qty  | Cost   |
+-------------------+-----------+------+--------+
| finished bookcase |    206.60 |  1.0 | 206.60 |
|   backboard2x1    |      9.80 |  1.0 |   9.80 |
|     laminate2x1   |      8.00 |  1.0 |   8.00 |
|     screw         |      0.10 |  8.0 |   0.80 |
|   side            |     25.20 |  2.0 |  50.40 |
|     screw         |      0.10 | 12.0 |   1.20 |
|     plank         |     20.00 |  1.0 |  20.00 |
|   shelf           |     16.00 |  8.0 | 128.00 |
|     plank         |     20.00 |  0.5 |  10.00 |
|     shelf bracket |      0.50 |  4.0 |   2.00 |
|   foot            |      2.10 |  4.0 |   8.40 |
|     cube4cmx4cm   |      1.00 |  1.0 |   1.00 |
|     screw         |      0.10 |  1.0 |   0.10 |
+-------------------+-----------+------+--------+

Summary

Stored procedures, stored functions and Views make it possible to implement edge list
graph models, nested sets graph models, and breadth-first and depth-first graph
search algorithms in MySQL 5&6.

Further Reading

Celko J, "Trees and Hierarchies in SQL For Smarties", Morgan Kaufman, San
Francisco, 2004.

Codersource.net, "Branch and Bound Algorithm in C#",
http://www.codersource.net/csharp_branch_and_bound_algorithm_implementation.aspx.

Math Forum, "Euler's Solution: The Degree of a Vertex",
http://mathforum.org/isaac/problems/bridges2.html

Muhammad RB, "Trees",
http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm.

Mullins C, "The Future of SQL", http://www.craigsmullins.com/idug_sql.htm.

Rodrigue J-P, "Graph Theory: Definition and Properties",
http://people.hofstra.edu/geotrans/eng/ch2en/meth2en/ch2m1en.html.

Santry P, "Recursive SQL User Defined Functions",
http://www.wwwcoder.com/main/parentid/191/site/1857/68/default.aspx.

Shasha D, Wang JTL, and Giugno R, "Algorithmics and applications of tree and graph
searching", In Symposium on Principles of Database Systems, 2002, p 39--52.

Stephens S, "Solving directed graph problems with SQL, Part I",
http://builder.com.com/5100-6388_14-5245017.html.

http://www.codersource.net/csharp_branch_and_bound_algorithm_implementation.aspx
http://mathforum.org/isaac/problems/bridges2.html
http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/trees.htm
http://www.craigsmullins.com/idug_sql.htm
http://people.hofstra.edu/geotrans/eng/ch2en/meth2en/ch2m1en.html
http://www.wwwcoder.com/main/parentid/191/site/1857/68/default.aspx
http://builder.com.com/5100-6388_14-5245017.html


Stephens, S, "Solving directed graph problems with SQL, Part II",
http://builder.com.com/5100-6388_14-5253701.html.

Steinbach T, "Migrating Recursive SQL from Oracle to DB2 UDB", http://www-
106.ibm.com/developerworks/db2/library/techarticle/0307steinbach/0307steinbach.html.

Tropashko V, "Nested Intervals Tree Encoding in SQL,
http://www.sigmod.org/sigmod/record/issues/0506/p47-article-tropashko.pdf

Van Tulder G, "Storing Hierarchical Data in a Database",
http://www.sitepoint.com/print/hierarchical-data-database.

Venagalla S, "Expanding Recursive Opportunities with SQL UDFs in DB2 v7.2",
http://www-
106.ibm.com/developerworks/db2/library/techarticle/0203venigalla/0203venigalla.html.

Wikipedia, "Graph Theory", http://en.wikipedia.org/wiki/Graph_theory.

Wikipedia, “Tree traversal”, Wikipedia, “Tree traversal”,
http://en.wikipedia.org/wiki/Tree_traversal.

Willets K, "SQL Graph Algorithms", http://willets.org/sqlgraphs.html.

 

TOC Previous Next  Last updated 21 Feb 2011

http://builder.com.com/5100-6388_14-5253701.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/0307steinbach/0307steinbach.html
http://www.sigmod.org/sigmod/record/issues/0506/p47-article-tropashko.pdf
http://www.sitepoint.com/print/hierarchical-data-database
http://www-106.ibm.com/developerworks/db2/library/techarticle/0203venigalla/0203venigalla.html
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Tree_traversal
http://willets.org/sqlgraphs.html
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1.pdf
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch19.pdf
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1_appa.pdf

