
CS 49/149: 21st Century Algorithms (Fall 2018): Lecture 11
Date: 18th October, 2018

Topic: DNFs and Perfect Hashing
Scribe: Benedikt Bitterli

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please email
errors to deeparnab@dartmouth.edu.

1 Randomized DNF counting

Suppose that you are given a formula φ in Disjunctive Normal Form (DNF). These formulas take
the form:

φ = x1x2x3 + x1x3x4 + x4x5x6 + · · ·

A DNF formula consists of n variables xi ∈ {T, F} that can take on either true or false. These
variables are arranged into m clauses, where each clause consists of a subset of the variables xi (or
their negation xi) combined using logical and (multiplication in the formula above). All clauses
are combined using logical or (+ in the formula above).

A particular setting of all variables to true or false is called an assignment. If φ evaluates to true
for a given assignment, we say that the assignment satisfies φ. There are 2n possible assignments
to the variables. You are now tasked with counting how many of these assignments satisfy the
formula. How would you do it?

Call the number of assignments for which φ is satisfied N∗. A naive algorithm would simply
iterate over all possible assignments and take exponential (2n) time. But maybe we can do better
using a randomized algorithm!

Try 1: Let’s first try the straightforward randomized algorithm for this problem:

• Randomly set each xi to true or false

• Check if x satisfies φ

• If φ is satisfied, return 2n; else return 0

The return value of this algorithm is a random variable (call it X). What is the expected value of
X?

E[X] = 2n · P[x satisfies φ] + 0 · P[x does not satisfy φ] (1)

Our randomized algorithm samples an assignment uniformly at random. Therefore, the probabil-
ity of obtaining a satisfying assignment is simply the number of satisfying assignments divided
by the total number of assignments:

E[X] = 2n · N
∗

2n
= N∗ (2)

1

The expected value of this estimator is exactly the number of satisfying assignments! This means
our simple algorithm is unbiased.

However, what will its variance be? Consider

Var[X] = E[X2]− E[X]2 (3)

=

(
22n · N

∗

2n

)
− (N∗)2 (4)

= N∗ · (2n −N∗) (5)

If N∗ is large, then this estimator is not terrible, since we are likely to sample a satisfying assign-
ment. However, if there are few satisfying assignments, we are unlikely to sample one of them,
and the variance becomes huge!

MULTIPLICATIVE BOUNDS

In the last lecture, we formulated the ε, δ bound in the form

P[|Z − E[Z]| > ε] ≤ δ

We will refer to this as an additive bound, because we measure the absolute distance between
Z and its expected value.

A different formulation is the multiplicative bound

P[|Z − E[Z]| > ε · E[Z]] ≤ δ

This measures the relative error of Z to its expected value, which is more useful in some cases.
Following the same proof as in the previous lecture, we can see that if Z is the average of t
calls to a randomized algorithm X , then we need

Var[X]

(E[X])2
1

ε2
ln

1

δ
(6)

calls to X to achieve the multiplicative ε, δ bound.

For the algorithm above, we can see that we need

N∗ · (2n −N∗)
(N∗)2

1

ε2
1

δ
=

(
2n

N∗
− 1

)
1

ε2
1

δ

calls to the algorithm to achieve the desired bound. Even if N∗ is big (say, 1.99n), the runtime is
still exponential in n.

Our first algorithm sampled the space of possible assignments uniformly at random, which
does poorly when the set of satisfying assignments is small. This means that we may be able to do
better if we do a more “targeted” sampling of the space.

A DNF formula φ is satisfied when any one of its clauses are satisfied. For a given clause, how
many assignments are there that satisfy it? Any variable that does not appear in the clause does
not influence the outcome, and can take on true or false; on the other hand, any variable that does

2

appear in the clause must take on a fixed value (0 if it is negated, 1 if it is not). Therefore, if there
appear k variables a clause, we can pick only the other n − k variables freely, and there are 2n−k

satisfying assignments to the clause.
Let Si be the set of satisfying assignments for clause i (as shown above, we can easily compute

its size, |Si|). Let U be the set of assignments that satisy φ. It is

U = ∪mi=1Si and N∗ = |U |

We might be tempted to simply sum up all the |Si| (which we can compute easily) to get N∗, but
this is incorrect: An assignment x that satisfies φ might satisfy multiple clauses (e.g. clause i and
j), and thus it appears in both Si and Sj . Therefore, summing the sizes of all the sets might count
some assignments multiple times, and we get an incorrect result.

However, this gives us an idea for an improved randomized algorithm: What if we assume
the |Si| mostly don’t overlap and return

∑
i |Si|, but compensate for the overcounting using a

randomized algorithm?

Try 2: Let S = |
∑

i |Si|, and N(x) be the number of clauses that a particular assignment x satis-
fies. Then our randomized algorithm works as follows:

1. Pick a clause i at random from {1, . . . ,m}with some probability pi

2. Pick an assignment x uniformly at random from Si.

3. Calculate N(x)

4. Return Z = S/N(x)

This algorithm returns the naive sum of the sizes of |Si|, but compensates for overcounting by
downweighting the sum when we find an assignment x that satisfies multiple clauses (and is
therefore overcounted).

Is this estimator unbiased? Let’s compute its expected value:

E[Z] =
∑
x∈U

S

N(x)
P[x is sampled]

=
∑
x∈U

S

N(x)

∑
Si:x∈Si

P[Si is sampled in step 1] · P[x is sampled in step 2]

=
∑
x∈U

S

N(x)

∑
Si:x∈Si

pi ·
1

|Si|

So far, we have not specified what pi should be. However, looking at the above equation, we can
see that we are summing over all elements in U . Remember that N∗ = |U |; therefore, we want to
cancel all inner terms so that the sum simply counts the size of U . Therefore, we set pi = |Si|/S,
i.e. we pick sets with probability proportional to their size.

3

This gives us

E[Z] =
∑
x∈U

S

N(x)

∑
Si:x∈Si

|Si|
S
· 1

|Si|

=
∑
x∈U

1

N(x)

∑
Si:x∈Si

1

=
∑
x∈U

1

N(x)
N(x)

=
∑
x∈U

1

= |U | = N∗

This makes our algorithm an unbiased estimator!
To compute the variance of this estimator, we make use of the following fact: b

Fact 1: For a random variable Z that never exceeds maxZ, it holds that Var[Z] ≤ (maxZ)E[Z]

We know that N(x) ≥ 1, and thus Z ≤ S =
∑

i |Si| ≤ m · | ∪i Si| = m · E[Z]. Then

Var[Z] ≤ (maxZ)E[Z] ≤ m · (E[Z])2

If we want to achieve a multiplicative ε, δ bound with this algorithm, then we need to average

Var[Z]
(E[Z])2

1

ε2
1

δ
≤ m · 1

ε2
1

δ

calls to this algorithm. This bound only depends onm, the number of clauses, and is a tremendous
improvement over our first algorithm.

SAMPLING A POINT IN Si

The algorithm we just saw relies on the ability to sample a valid assignment to clause i
uniformly at random. But we can easily do this: Variables that don’t appear in the clause
don’t influence its result, and we can randomly set them to true or false. Variables that do
appear in the clause can only take on one possible value if the clause is to be satisfied, and we
simply set them to that value (0 if they appear negated, 1 otherwise).

2 Perfect Hashing

Suppose we are given a universe U of words, and a static dictionary D ⊆ U (i.e. it is fixed at the
beginning and does not change) of size s = |D|. The size of the universe is much larger than that
of the dictionary, i.e. |U | � s.

Further, suppose we need to answer queries of the form “Is x ∈ D?” for any x ∈ U . How can
we answer such queries efficiently?

4

A hash table is a data structure that solves this problem. A hash table maintains an array of size
n, where each entry (also called “bucket”) stores a linked list of items. Associated with the hash
table is a hash function h : U → {1, . . . , n} that maps points in the universe to buckets in the array.
When we build the hash table, we compute h(x) for each x ∈ D and append x to the list at the
array index h(x). We can also answer queries “Is x ∈ D?” by computing h(x) and checking if x
appears in the list at that index.

Searching a bucket takes linear time, so the runtime of queries depends on how many items
end up in the same bucket. To make hash tables efficient, we need to find a hash function that
prevents too many items being hashed to the same value.

UNIVERSAL HASH FAMILY

A universal hash family (UHF) H is a set of hash functions h s.t. for any x, y ∈ U , x 6= y:

Ph∈H [h(x) = h(y)] ≤ 1

n

PAIRWISE INDEPENDENT HASH FAMILY

A pairwise independent hash family (PIHF) H is a set of hash functions h s.t. for any
x, y ∈ U , x 6= y, and for any i, j ∈ {1, . . . , n}:

Ph∈H [h(x) = i ∧ h(y) = j] ≤ 1

n2
b

Exercise: Prove that a PIHF is also a UHF

2.1 Perfect Hashing

We will now look at an algorithm that finds a hash function for the static dictionary problem that
achieves zero collisions. This is called “perfect” hashing.

Suppose you are given a universal hash family H . We begin by picking a hash function h
uniformly at random fromH , and build the corresponding hash table. Note that the hash function
is picked once and then does not change as new queries come in - that is, all the randomness
happens at the beginning. The queries themselves are deterministic once the hash function is
fixed.

Suppose a query comes along that searches for item q. The time taken to process q (call it
Time(q)) is equivalent to the number of items in D that hash to the same value as h(q). Because
we picked h at random, Time(q) is a random variable. What is its expected value?

Eh∈H [Time(q)] = Eh∈H [#of items in D that collide with q]
= Eh∈H [|{x ∈ D : h(x) = h(q)}|]

Now define an indicator variable for collisions between x and q:

Axq =

{
1 if h(x) = h(q)

0 otherwise

5

Then

Eh∈H [Time(q)] = Eh∈H

[∑
x∈D

Axq

]
=
∑
x∈D

Eh∈H [Axq]

=
∑
x∈D

Ph∈H [h(x) = h(q)] =
|D|
n

We used that fact that h was picked from a UHF to obtain the last step. This result means that if
we set n to be on the order of |D|, we get Eh[Time(q)] = O(1) for any query q!

Is expected constant time enough? It may be that this hash family does well on average, but
there are no guarantees on the worst case time. It may be that we get unlucky and get a hash
function that does poorly.

Let’s try to bound the worst case time. The longest query time is certainly bounded by the total
number of collisions in the hash table, which is

∑
x,y∈D Axy. What can we say about this term?

Eh∈H [#collisions] = Eh∈H

 ∑
x,y∈D,x6=y

Axy


=

∑
x,y∈D,x6=y

Eh∈H [Axy]

=
1

n
· #of pairs in D

=
1

n

(
s

2

)
≤ s2

2n

If we choose n = s2, then we obtain Eh∈H [#collisions] ≤ 1/2.
What is the probability of a hash function generating more than one collision? We can apply

the Markov bound to obtain

Ph∈H [#collisions > 1] ≤ Eh∈H [#collisions]
1

≤ 1

2

This means the probability of having any collision at all is less than 1/2.
This is great! This allows for a trivial algorithm to obtain a hash table with no collisions: Pick

an h from H at random, and generate the hash table. If there is a collision, throw away h and
pick a new one. Because the probability of a “bad” event is at most 1/2, we need to repeat this
procedure only twice on average before obtaining a perfect hash table.

Remark: This hash table is “perfect” in terms of runtime, but very inefficient in space: We need to
pick its size as s2, which is huge. We can do better by hashing twice: First, generate a hash table of size
s with a “low” number of collisions; then hash each bucket into its own (collision-free) hash table with
size set to be the squared sized of the bucket.

6

	Randomized DNF counting
	Perfect Hashing
	Perfect Hashing

