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1 ”Smooth” functions and gradient descent

It turns out that with stronger assumptions on the objective functions we are optimizing with
respect to, we can obtain stronger bounds on the rates of convergence of the gradient descent
algorithm we explored last time in class. In the analysis last class, we showed that we could
obtain a an error under ¢ with gradient descent (for a reminder, see the appendix) if we ran the
algorithm for 7' = 21— §*||2*p time (where z; is the initial point the gradient descent starts at and
x4 is the optimum point minimizing the objective function). We will now investigate one such
example where we can make a stronger assumption on the objective function, which will enable

us to obtain a faster rate of convergence for gradient descent.

Definition: L-smooth in the euclidean norm
A function f is L-smooth in the euclidean norm if for all z,y, ||V f(z) — Vf(y)|l2 < L - ||z — y||2.

Theorem 1. If a function f is L-smooth, Vz,y : f(y) < f(z) + (y — )TV f(x) + %||x — 93

Proof. Define function ¢(t) = f(x + t(y — z)) for 0 < ¢t < 1. Observe that because of the way we
have constructed this function, g(0) = f(z), and g(1) = f(y). Then, we can take the derivative
with respect to ¢ of both sides of the equality to get

dg(t)

o == V(@ +iy—2)

We can then begin analysis of our function:
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Question: Show that ||V f(x)|l2 < p <= |f(x) — f(y)| < p- ||z — yl||2 (known as the Lipschitz
condition)

Understanding these properties for smooth functions, let us now turn to analyzing gradient de-
scent in the case where our objective function is a smooth function.

Gradient descent for smooth functions Recall that the update rule for gradient descentis z;11 =
xt —nV f(z). Let us consider several facts that arise from our previous theorem, which shall help
us in our convergence analysis.

1. Setting x = x, (i.e. the optimal value of x that minimizes the objective function) and y = z;
(i.e. the value of x which gradient descent holds at time ¢), we know that f(z;) < f(z.) +
%th — x4||, written another way as error(t) < %Df, where (D; is ||x; — x|, i.e. the distance
from our current point to the optimum at time ¢).

2. Setting * = z, and y = 441, we get that

Flaen) < f(@e) + (zea1 — 20) TV F(2e) + g”xtﬂ — zelf3

2, L
= f(a) = nllVF @B + 5=V f a3
2.
= @)~ IV FElB ~ )
= (@)~ 57 193 (setting 1 = )

Note that ||V f(z)||3 is a measure of distance to a saddle point (since the gradient of a vector
function being zero does not guarantee local optimality).

With these two equations in our hands, we can now turn to analysis of of gradient descent. In
particular, we would like to find how many steps are needed until our algorithm reaches a local
optimum/saddle point. Adding together two equations we get from properties of convexity and
smoothness,

fae) = f(za) = error(t) < (v — 2.) "V (f (1)) (convexity)

+  flzer) = ) < (@1 — 2) TV () + ngtH — z4||3 (smoothness)

L
err(t +1) < (w1 — 24) TV f (@) + et = 4[5



Now, analyzing the last equation that came from the addition of the smoothness and convexity
properties,

L
err(t+1) < (w1 — )"V f(2) + §|\$t+1 — 243

1 L .

= E(xtﬂ —z) (@ — 2ep1) + §\|xt+1 — x4)3 (gradient descent)
1 L . .

= o (o= 2l3 = lloeer = 23 = [leee = 2l[3) + S ([[ve1 — 2[]3) (cosine identity)
1 1 L

= %(Df - Dt2+1) — [t — @3 - (% ‘ 5)
L .

= E(D? - D§+1> (if n = %)

If we run this algorithm for T steps, then Y7 err(t + 1) < L(D? - D]%) < LTD2, which implies

that f(z¢) — f(z.) < Z2° where D = ||y — 2*[[3.

Recall that we also know for smooth functions that f(z,41) < f(2;) — 5|V f(2)]|3. Plugging in

T = LD we get that f(x¢) — f(zy) <e. #

2e 7/

Question: We have shown in this analysis that the value of the objective function drops to under ¢.
Show that Dy, i.e. ||z — x||, is also dropping over time.

Question: This analysis was done in the context of unconstrained gradient descent. Show also that
the same bounds hold for projected gradient descent.

Examples of smoothness: Let us examine the function f(z) = %IL‘TQZ', where () € R™ "™, Then,

ge can see tt}}lla'lt i:f(fx))Jt: % = QjjTj + D Qiji = (2TQ) = Vf(z) = QT
ow smooth is this function?

1QT2 — QT yll2 < Lz — yl|2
— IQ" (= —y)ll2 < Lllz — yll2 (u=z—y)

L= max 7HQTUH2 - )\max(QQT)

u#0,ucR” HUQ | ‘2 N

To see this, we can expand out the numerator above:

1Q" ull2 = u" QQu



If QQT had a largest value ),

Ju,QQTv < \v
T (QQTv) < Mwlw

T, 112
HQ UQHQ <
[vl[3

According to gradient descent rules, for an objective function f(z) = 327 Qz, our update rule

should look like x4+ = x; — %xtTQ, where § = \/Amax(QQT). If we run this algorithm for about
O(1) iterations, we can get about e-close to the global optimum (since this is a convex function).

Question: How smooth is f(x) = ||Az — b||3, where A € R™*" b € R™, 2« € R"?
2

2 Strongly convex functions

We saw in the previous section that if we know that our objective function is not only convex
but also L—smooth, we can run the algorithm for a time that scales linearly with L, instead of
quadratically with p. Another way that we can guarantee faster convergence than just on normal
convex function is if we know the objective function is strongly convex and it is smooth.

Definition: Strongly Convex
A function f : R® — R is [—strongly convex if Vz,y : f(y) > f(z) + (y — )TV f(z) + %HZ/ — |3

The motivation for examining strong convexity is as follows: if a function f is both {—strongly
convex and L—smooth, we can bound it between two quantities based on the properties of the
functions, i.e.

l L
F@) + = 2)" V@) + Slle = ylls < fy) < f@@)+ (v —2) V@) + Slle -yl
which should help our analysis.

We now move to the analysis of f such that f is [— strongly convex and L—smooth. From the
definition of [—strongly convex, err(t) = f(z) — f(z.) < (24 — )TV f (1) — §||2¢ — 24][3. Much

the same as in the analysis of the smooth function, we add the two properties from f being strongly
convex and f being smooth together:

error(t) < (z; — z.) TV f(x) — éDf (strong convexity)
L
+ flo) = fze) < @ — ) V(@) + 5 llee - i[5 (smoothness)
err(t +1) < Z(D} — Diy) — 317
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We know that this above quantity is lower bounded by 0 while the algorithm is still running. Thus,
Lo 2 L e
L L—1
= §D752+1 = (2> - Df
l
= D <(1-4)- D

If we run gradient descent on this function for 7 stepsm we can see that D2 < (1 — +)TD2.
Combine this with the fact that f(x;) — f(z.) < £D? for L— smooth functions, and we get that
err(T) = f(zr) — f(z:) < L£(1— £)T'- D? = e. Solving this for T', we get T' scales with the log(2),
which means this function has “linear convergence” (though the mathematical form has a log in
it).

The results here make sense - with even stronger restrictions on the objective functions, we get an
even tighter bound on the number of steps needed for gradient descent to converge to within ¢ of
the optimum objective function value.

In practice, we care a lot about the quantity +, which we call the condition number. Also note that
for these bounds to even work, I < L. Otherwise, intuitively, the sandwiching we are doing of the
function between two quantities cannot happen because the top bound may be smaller than the
bottom bound.

3 Appendix: Useful Reminders

Cauchy-Shwartz inequality:
a’b < lallz - [[b]]2

Cosine identity:
1
a’b= 5 (lla+blI3 = llall3 — [0113)

UNCONSTRAINED GRADIENT DESCENT

e 1 := arbitrary point
e run for iterationst =1,...,T:

- Ty = x — eV f (1)
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