
Learning Graphical Models Using Multiplicative Weights

Chongyang Bai, Chao Chen, Rui Liu

November 12, 2018

1 Background

Probabilistic graphical model have numerous real-world applications. It’s used in Image Generation, Im-
age Denoising, Language Translation, Speech Recognition etc.

A Markov Random Field (MRF) is a probability distribution p over variables x1, ..., xn defined by an undi-
rected graph G in which nodes correspond to variables xi. The probability p has the form

p(x1, ..., xn) =
1

Z

∏
c∈C

φc(xc)

, where C denotes the set of cliques (i.e. fully connected subgraphs) of G.
The value

Z =
∑

x1,...,xn

∏
c∈C

φc(xc)

is a normalizing constant that ensures that the distribution sums to one.

t-wise Markov random field denotes that all cliques of size is at most t. Ising model is a special case of
MRF where t=2. For a graph G = (V,E), define a binary Ising model on to be a distribution D on {1,−1}n.
We have

Pr
Z∼D

[Z = z] ∝ exp(
∑

i6=j∈[n]

Aijzizj +
∑
i

θizi) (1)

Interesting problems related to probabilistic graphical model:

• Inference Problem: Given a probabilistic model (such as an MRF), we wanna used it to do prediction
on particular problems.

• Learning Problem: A graphical model has two components: the graph structure, and the parameters
of the factors induced by this graph. These components lead to two different learning tasks:

– Parameter learning, where the graph structure is known and we want to estimate the factors.

– Structure learning, where we want to estimate the graph, i.e. determine from data how the
variables depend on each other.

This paper focuses on structure learning and parameter learning. It gives a simple multiplicative-weight
update algorithm for learning undirected graphical models or Markov random fields (MRFs) with nearly
optimal sample complexity and running time.
(Attribution: all things above are referenced from the notes [1])

1

2 Main Problem

This paper mainly talks about developing efficient algorithms for inferring the structure of the underlying
graph from random samples from a distribution D. First, it describes Sparsitron algorithm for learning
Sparse Generalized Linear Models. Second, it applies Sparsitron algorithm to recover the parameters of
an binary Ising model. And then, it generalizes the Sparsitron algorithm for learning structure as well as
parameters of t-wise binary Markov Random Fields. Last, it extends the results for the Ising model from
binary to work over general alphabet.

Learning Sparse Generalized Linear Models (GLM) Let D be a distribution on [−1, 1]n × {0, 1} where
for (X,Y) ∼ D, E[Y |X = x] = u(w · x) for a non-decreasing 1-Lipschitz function u: R −→[0,1]. Suppose
that ‖w‖1 ≤ λ for a known λ ≥ 0. Given enough independent examples from D, we want to learn the
parameters w. In other words, we want an algorithm that could learn from the examples and return a v
which is a close approximation of w.

This paper gives an algorithm that for all ε, δ ∈ [0, 1] given T = O(λ2 ln(nδε)

ε2) independent examples from D,
produces a vector v ∈ Rn such that with probability at least 1− δ, E(X,Y)←D[(u(w · x)− u(v · x))2] ≤ ε. The
run-time of the algorithm is O(nT). Moreover, the algorithm can be run in an online manner.

Learning binary Ising Models Let A ∈ Rn×n be a weight matrix and θ be a mean-field vector. The associ-
ated n-variable Ising model is a distribution D(A, θ) on {1,−1}n given by the equation 1. The dependency
graph of D(A, θ) is the graph G of all pairs {i, j}with |Aij | 6= 0. Given enough independent examples from
D, we want to learn the parameters and structure of the Ising model. In other words, we want an algorithm
that is able to return a close approximation of A and θ.

This paper gives a simple, sample-efficient, and online algorithm for recovering the parameters of Ising
models. The idea is: run Sparsitron algorithm to recover weights {Aij : j 6= i} for every i ∈ {1, 2, ..., n}.
Given λ, ε, ρ ∈ (0, 1), and N = O(λ2 expO(λ)

ε4) · (log(nρε)) independent samples from D, the algorithm pro-
duces Â such that with probability at least 1− ρ, ‖A− Â‖∞ ≤ ε. The run-time of the algorithm is O(n2N).
Moreover, the algorithm can be run in an online manner.

Learning t-wise binary Markov Random Fields Given a graph G = (V,E) on n vertices, let Ct(G) de-
notes all cliques of size at most t in G. A binary t-wise MRF with dependency graph G is a distribution D on
{1,−1}n where the probability density function of D can be writen as PrZ∼D[Z = x] ∝ exp(

∑
I∈S ψI(x)),

where S ⊆ Ct(G) and each ψI : Rn → R is a function that only depends on variables in I . Given enough
independent examples from D, we want to learn the parameters and structure of the MRF. In other words,
we want an algorithm that is able to return a close approximation of dependency graph G and factorization
polynomial ϕ(x) =

∑
I∈Ct(G) ϕI(x).

This paper gives an algorithm that given λ and ε, ρ ∈ (0, 1
2), and N = (2t)O(t)eO(λt)

ε4 ·n4t · log(nρε) independent
samples Z1,, ZN from D, produces a t-wise MRF D′ with dependency graph H and a factorization poly-
nomial ϕ(x) =

∑
I∈Ct(H) ϕI(x) such that with probability 1−ρ: ∀x,PrZ∼D[Z = x] = (1±ε)PrZ∼D′ [Z = x].

The algorithm run in time O(Nnt).

Learning non-binary Ising model Let W = (Wij ∈ Rk×k : i 6= j ∈ [n]) be a collection of matrices and
θ ∈ R[n]×[k]. Then the non-binary Ising model D ≡ D(W, θ) is the distribution on [k]n where PrX∼D[X =
x] ∝ exp(

∑
i 6=jWij(xi, xj)+

∑
i θi(xi)). The dependency graphG ofD is formed by pairs such thatWij 6= 0.

The goal here is to learn the structure and parameters of a general alphabet Ising model. The paper give a
sample-efficient, online algorithm for learning the structure and parameters.

2

3 Problem Importance

Probabilistic graphical modeling can be used to solve problems in fields as diverse as medicine, language
processing, vision, and many others. Developing efficient algorithms for inferring the structure of the
underlying graph from random samples from a distribution D is one of the critical problem in probabilistic
graphical modeling. The algorithm proposed by the authors starts from learning GLMs, extends to learning
Ising models, and further contributes to learning general RMF models. The core idea of the algorithm can
be extend to a set of probabilistic graphical models.

4 Previous work

The current frontier of MRF learning has focused on the Ising model on bounded-degree graphs, a special
class of graphical models with only pairwise interactions and vertices having degreee at most d in the
underlying dependency graph [5].

Previous work on learning t − wise MRFs runs in time of nΩ(d) and does not output a function f that
could generate an approximation to the distribution in statistical distance, even for the special case where
t = 3. The authors of this paper give a nearly optimal by applying a simple reduction from the problem of
learning sparse parties with noise on t variables to learning t− wise MRFs.

Bresler observes that even for the simplest possible Ising model where the graph has a single edge,
beating O(n2) run-time corresponds to fast algorithms for the well-studied light bulb problem, and thus the
run-time is bounded by O(n1.62) [2].

5 Results

The paper talks about a multiplicative-weight update algorithm for learning GLMs, Ising models, and
MRFs. The authors claim that they obtain the following new results (contributions):

• The proposed algorithm is an efficient online algorithm for learning Ising models on arbitrary graphs
with nearly optimal sample complexity and running time Õ(n2). Particularly, they achieve a run-time
of Õ(n2) with nearly optimal sample complexity for bounded degree graphs. This improves all prior
works.

• The algorithm is the first that works for unbounded-degree graphs as long as the l1 norm of the weight
vector of each neighborhood is bounded.

• It is an algorithm for learning the dependency graph of binary t− wise Markove random fields with
nearly optimal sample complexity and run-time nO(t). Given access to nO(t) samples, the algorithm
could reconstruct the parameters of the models and output a t − wise MRF that gives a point-wise
approximation to the original distribution.

• The algorithm is easy to implement, which has only one tunable parameter, and works in an online
fashion. The Sparsitron algorithm solves the problem of learning a sparse Generalized Linear Model.
Given (X,Y) ∈ [−1, 1]n×[0, 1] drawn from a distributionDwith the property that E[Y |X = x] = σ(w ·
x) for some monotonic, where Lipschitz σ and unknown w with ||w||1 ≤ λ, the Sparsitron efficiently
outputs aw′ such that σ(w′ ·x) is close to σ(w ·x) in squared-loss and has sample complexityO(λ2 log n).

6 Interesting Parts

There are several interesting points in the paper which impressed us, or became more clear and intuitive
after our discussion.

3

• For a graph G((v1, ..., vn), E) with n and a binary t-wise MRF on G, how to turn the unsupervised
learning problem into a supervised manner?

Assume
Pr(Z = z)

Z∼D
∝ exp(

∑
I∈Ct(G)

ϕI(z)) (2)

where ϕI : Rn → R is a multilinear polynomial depends only on the variables of clique I , the un-
supervised task is to learn ϕI(z) given m observed samples Z1, Z2, ..., Zm, (∀i, Zi = (Zi1, Z

i
2, ..., Z

i
n)).

Let’s see how to learn
∑
ϕI(z) for any I that contains node Zn.

We know that multilinear polynomial
∑
I∈Ct(G) ϕI(z) := p(z) = zn∂np+p

′ where ∂np, p′ don’t depend
on zn, so

Pr(Zn = −1|Z−n = x) =
Pr(Zn = −1, Z−n = x)

Pr(Z−n = x)
:= K exp(−∂np(x) + p′(x)) (3)

and for the same reason Pr(Zn = 1|Z−n = x) = K exp(∂np(x) + p′(x)). So

Pr(Zn = −1|Z−n = x) =
Pr(Zn = −1|Z−n = x)

Pr(Zn = −1|Z−n = x) + Pr(Zn = 1|Z−n = x)
= σ(−2∂np(x)) (4)

where σ(s) = 1/(1 + e−s) is the sigmoid function. Let Yn = Zn−1
2 , we get

E(Y |Z−n = x) = 1 · Pr(Zn = 1|Z−n = x) = σ(−2∂np(x)) (5)

Now the problem becomes supervised: given observed samples Z−n, labels Y and E(Y |Z−n), learn
∂np. This is the well-known significant Generalized Linear Model (GLM) [4] problem in machine learn-
ing. As such, Sparsitron provides a way to learn GLM using fewer data with faster convergence,
which might be inspiring to our research.

The same thing can be done for each Zi, i ∈ [n], finally we can combine learned parameters to get the
final p(z). In particular, when t = 2, the model becomes Ising model and ∂ip is exactly the weights
and bias between connected nodes.

• What is the intuition of Sparsitron for learning GLM?

The algorithm is in Figure 1. We want to estimate the vector w in the function u(w · x) given training
samples and labels (x1, y1), (x2, y2), ..., (xn, yn). From an online expert voting perspective, the coordi-
nates of a data point can be seen as actions of experts, and Sparsitron learns p as weights to combine
the votes of experts.

The first key is to define penalty lti for each expert i at time t. Recall that algt =
∑
i λp

t
il
t
i and we want

to update pt according to lt. Let’s check s := (u(λpt · xt)− yt)λpt · xt, taking u as the sigmoid function
(i.e., Logistic Regression). If the model misclassifies a data point x∗, for the case of y = 1, we must
get p · x∗ ≤ 0 and 0 ≤ u(p · x∗) ≤ 1

2 , so 1
2 ≤ s ≤ 1. In the case of y = 0, we must get p · x∗ ≥ 0 and

1
2 ≤ u(p ·x∗) ≤ 1, we still get 1

2 ≤ s ≤ 1. On the other hand, we get − 1
2 ≤ s ≤ 0 whenever a data point

is classified correctly. As such, we can define (u(λpt · xt) − yt)xt as the penalty and further shift and
scale it to [0, 1]n.

The second key is to update p, i.e., when a data point is misclassified, li < 0, we want to decrease
(penalize) pi, so wti = wtiβ

lti satisfies it with the learning rate β < 1. Note that the exponential update
scheme is called Hedge algorithm [3], which is different from wti = wt−1

i (1− βlti).
Intuitively, the penalty li for pi is determined by two terms: the closeness of prediction (u(λpt ·xt)−yt
and the scale of the ith entry of x. If the expert i votes a high score xi and vote far from the true value
y, he gets penalized heavily.

4

• How does the paper prove that the underlying graph structure of t-wise MRF can be uncovered v.s.
the distribution parameters can be learned?

Basically, learning the distribution parameters implies uncovering the graph structures. Specifically,

for a t-wise MRF, the paper proves that the sample complexity for the former is (2t)O(t)eO(λt)

ε4 · log(nρε)

while the one for the latter is smaller, (e)O(t)eO(λt)

ε4 · log(nρε).
To estimate the distribution, Sparsitron actually constructs a mutilinear polynomial function which
approximates the real multilinear polynomial by l1 form, and this implies that the constructed func-
tion uniformly approximates the real one given that all variables are within [−1, 1]. In contrast, the
graph structure can be fully determined by all maximal monomials of the distribution polynomial.
This is because in order to know if any node v1, v2 are connected, we only need to check the max
clique containing v1, v2, which corresponds to the maximal monomial of x1, x2. In other words, sup-
pose the real distribution function of the MRF is 3x1x2x3x4 + x1x2, once we construct a polynomial
ax1x2x3x4, (a 6= 0), we uncover the graph structure. Note that for a 2-wise MRF, i.e., Ising model,
running Sparsitron for the latter already infers all monomials of the real distribution polynomial.

Figure 1: Sparsitron for learning Generalized Linear Models (GLM)

7 New Questions

We come up with several questions to this paper:

• Since it works for Ising models, we are wondering how it works in the context of deep learning, for
example Deep Belief Network (stacked Restricted Boltzman Machines). Since Sparsitron is a multi-
plicative update method which requires less training samples and provides faster convergence, it will
be powerful if we could find a way to apply it to current scheme of training a deep neural network.
For example, current deep learning methods require huge training data (ImageNet as an example)
to learn, and the training tasks usually cost several weeks without GPU. To apply Sparsitron as a re-
placement of stochastic gradient descent strategy (additive update method), we might address two
challenges:

– Find a way to combine losses for all layers of a neural network. In particular, overcome the
vanish or explosion of losses while propogating between layers.

– ’stochastic’ weights update of Sparsitron with some theoretical promise of the convergence, to
make the training faster.

8 Experiment

In this section, we validate the claims made by the authors of this paper. Figure 2 shows the structure of the
Ising model used to evaluate the algorithm. The weight of each edge is a random number from [0, 1]. For

5

simplicity, we only inspect the structure of Node n, since the structure of the whole graph is based on the
neighbors of each node in the graph.

1

2

3

n-2

n-1

n

w

w

w

w w

w

w

w

Figure 2: The diamond structure of Ising model. The Ising model include n nodes.

8.1 Number of samples

The authors claim that ‘the algorithm works with nearly optimal sample complexity’. To validate this claim,
we fix the structure and the size of the Ising model, then evaluate how different sample sizes affect the error
by the algorithm. Specifically, we use the exact structure of the Ising model in Figure 2, which include 6
nodes. Thus, the ground truth of the weights iswtrue = [0, w2,n, ..., wn−1,n], because, Node 1 doesn’t connect
to Node n. Suppose the weights learned by the algorithm is wpred = [w1, ..., wn−1], we use the l2-norm to
measure the error, which is error = ||wtrue − wpred||2. For each sample size, we run the algorithm 20 times
and report the average l2-norm error of each run. Figure 3 shows how the sample size affect the error. We
learn from the figure that the algorithm works even for small sample size, which validates their claim that
‘the algorithm works with nearly optimal sample complexity’.

8.2 Size of network

We also evaluate how the size of Ising model affects the performance of the algorithm. In this experiment,
we vary the number of nodes in the Ising models. Each network is trained with 10 ∗ n2 samples, because
we see from the previous experiment small number of samples still achieve good performance. As with the
previous experiment, we also run the algorithm 20 times and report the average l2-norm for each network
size. Figure 4 plots the l2 prediction error against network sizes. We found for network size larger than 7,
the prediction error is significantly higher than the error when network size is 5. This may be caused by
insufficient samples fed into the algorithm.

8.3 Importance of the parameter

The authors claim that the algorithm is easy to implement, because the algorithm has only one parameter.
To show how the parameter affect the performance of the algorithm, we fix the network size and number
of samples, but vary the parameter and evaluate the prediction error. Specifically, we use the network size
of 6 and sample size of 200. Figure 5 shows the performance of the algorithm under different parameter
factors. We found the parameter factor is critical for a good performance of the algorithm. It is almost the
factor of the error.

6

0 20 40 60 80 100

0.35

0.40

0.45

0.50

0.55

0.60
sample size 10
sample size 100
sample size 200
sample size 500
sample size 1000

Figure 3: Sample size vs. prediction error. The x-axis represents the iteration numbers. The y-axis represents
the average l2-norm error.

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
network size 5
network size 6
network size 7
network size 8
network size 9
network size 10

Figure 4: Network size vs. prediction error. The x-axis represents the iteration numbers. The y-axis repre-
sents the average l2-norm error.

7

0 20 40 60 80 100

0.4

0.6

0.8

1.0

1.2 pram factor 0.5
pram factor 0.8
pram factor 0.9
pram factor 1.0
pram factor 1.1
pram factor 1.2
pram factor 1.5
pram factor 2.0

Figure 5: Prameter factor vs. prediction error. The x-axis represents the iteration numbers. The y-axis
represents the average l2-norm error.

References

[1] Probabilistic graphical models notes. https://ermongroup.github.io/cs228-notes/. 1

[2] Guy Bresler. Efficiently learning ising models on arbitrary graphs. In Proceedings of the annual ACM
Symposium on Theory of Computing (SOTC’15), pages 771–782, 2015. 3

[3] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997. 4

[4] John Ashworth Nelder and R Jacob Baker. Generalized linear models. Encyclopedia of statistical sciences,
4, 2004. 4

[5] Marc Vuffray, Sidhant Misra, Andrey Lokhov, and Michael Chertkov. Interaction screening: Efficient
and sample-optimal learning of ising models. In Advances in Neural Information Processing Systems
(NIPS’16), pages 2595–2603, 2016. 3

8

https://ermongroup.github.io/cs228-notes/

	Background
	Main Problem
	Problem Importance
	Previous work
	Results
	Interesting Parts
	New Questions
	Experiment
	Number of samples
	Size of network
	Importance of the parameter

