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1 (1fprec| Y- w;Cj)

To recall, in the (1|prec| ) w;C;) problem, we are given n jobs, one machine, a digraph D
which captures the precedence constraints; if (j — k) is an arc in D then job j must be
completed before job k.

We start with the following lemma which will be crucial to obtain the linear program-
ming relaxation for the above problem. The lemma, however, holds for any single machine
problem (precedence constraints are not necessary). We need the following definitions.

Given a feasible schedule on a single machine, let C1, Cs, ..., C, be the completion times
of the n jobs. Given a subset S of jobs, let p(S) := E]esp] and let p%(S) := E]esp] We
also use the shorthand p(S)? to denote (p(S5))>2.

Lemma 1.1. The C;’s satisfy the following inequality
S 0iCs 2 5 (8) +p(S)) 1)
jES

Proof. Assume the jobs are labelled so that C; < Cy < --- < Cp and let S C J. For
any job j, C; > Zkg ;j Pr because the jobs must be feasibly scheduled. So certainly, C; >
Zkgj,kespk and p;C; > p; Zkgj,kespk' Summing over all j € S,

Y opiCi=> pi > =5 0°(S) +p(S)?)
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We can now state an LP relaxation for (1|prec| Y w;C}). We have variables C; to denote
the completion time of job j. The LP relaxation is as follows

min E w;C}

Cy > Cj +px for each j, k such that j — k
ij > 2(p*(S) +p(S)?) foreach SCJ
JES

C; > pj fork=1,...,n

Note the LP has a constraint for every subset of jobs, and therefore has exponentially
many constraints. In the end of this section, we will tell how this LP can still be solved.



For the time being assume we can solve the LP, and let CJL s be the completion times
returned by the LP. Note that we are not guaranteed that these are feasible completion
times. However, these do imply the following algorithm.

Let the jobs be numbered {1,2,...,n} such that C¥ < ... < CL. Schedule the
jobs in this order.

Theorem 1.2. The above algorithm is a 2-approzimation for 1|prec|y  w;C;

Proof. Let C]‘-4 be completion time of job j in the above algorithm. We claim that C’J‘-4 < 2CjL.

This will prove the theorem.
To see this look at the set of jobs S = {1,2,...,7}. Note that CJA = Zjespj = p(9).

Now since C’f < ... < CE we have

where the last inequality follows from the LP constraint. The above implies, CjL >
Lp(s;) = b 0

1.1 Solving the LP

We now discuss how the above LP can be solved. The reason is the following theorem due
to Grotschel, Lovasz and Schrijver (GLS). Suppose given a solution = to an LP we can
check, in polynomial time, if x satisfies all the constraints of the LP. Then GLS theorem
states that the LP can be solved in polynomial time as well.

Thus, if given Cj’s for all the jobs, one can check that for all subset S of jobs the
constraint

ij )—|—p(S) )>0
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then we are done. Define a function which takes a subset and returns a value.

=Y piCj— 5(P*(S) + p(5)*)
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Then we need to check if f(S) > 0 for all subsets S. This is equivalent to checking if the
minimum value of f(.5) over all subsets is at least 0.

Here comes the second important idea, and in fact by the same trio (GLS), who showed
that if f had a certain property, then the minimum value of f(S) can be found in polynomial
time. This property is called submodularity.

Definition 1.3. A function f : 2/ — reals is submodular if for any two subsets S and T'
of J, the following property is satisfied

F)+F(T) = f(SUT)+ f(SNT)

In the final homework, in the bonus section, we will explore how the function f defined
above is submodular, and hence can be minimized.



