
Scheduling Theory CO 454, Spring 2009

Lecture 3: Reductions among Scheduling Problems; Single Machine Environments

May 12th, 2009

1 Reductions among Scheduling Problems

We say a scheduling problem (α | β | γ) can be reduced to another scheduling problem
(α′ | β′ | γ′) if an algorithm for the latter problem can be used to solve the former problem.
We denote this using the following notation

(α | β | γ) E (α′ | β′ | γ′)

The reduction is efficient if a polynomial time algorithm for the latter problem leads to a
polynomial time algorithm for the former problem.

Sometimes these reductions are easy. For instance, it is easy to see that (α | β |
∑
Cj) E

(α | β |
∑
wjCj), or any other non-weighted to weighted reduction. Or, (P | β | γ) E

(Q | β | γ) E (R | β | γ). However sometimes these reductions can be tricky.

Theorem 1.1. (α | β | Lmax) E (α | β |
∑
Uj)

Proof. Suppose we have an algorithm to solve any instance of (α | β |
∑
Uj). Consider an

instance of (α | β | Lmax) with due dates (d1, . . . , dn) for the jobs. The crux of the theorem
is in the following claim.

Claim 1.2. Let z be the minimum value such that the instance (α | β |
∑
Uj) with due

dates (d1 + z, . . . , dn + z) has a schedule S with optimum
∑
Uj = 0. Then S is an optimal

schedule for (α | β | Lmax) with maximum lateness z.

Proof. Since S is such that no job is late with due dates (d1 +z, . . . , dn +z), the completion
time of every job is Cj ≤ dj + z. Furthermore, since z is the minimum, there must be a job
j with Cj = dj + z. Therefore, when the due dates are (d1, . . . , dn), the maximum lateness
of S is Lmax = z.

Now consider any schedule S′ for the instance (α | β | Lmax) with due dates (d1, . . . , dn).
Suppose the lateness is z′ < z. By a similar argument as above, the same schedule S′ with
due dates (d1 +z′, . . . , dn +z′) has no late job. But this contradicts the minimality of z.

Thus, assuming that all processing times are integers, the algorithm for (α | β | Lmax)
is to solve Lmax instances of the (α | β |

∑
Uj) problem with due dates (d1 + z, . . . , dn + z),

z varying from 1 to Lmax.

Exercise 1.3. The above reduction is not a polynomial time reduction since the number
of iterations is Lmax which is not necessarily polynomial. How would you make the above
reduction polynomial? (Hint: Binary Search).

1

Reduction is a very important tool in the study of complexity of any type of problems.
As we will see in a few lectures from now, we can classify problems into “easy” and “hard”
problems. If a problem A can be reduced to problem B, and problem A is “hard”, then we
automatically get that problem B is “hard”. Conversely, if problem B is “easy”, then we
automatically get that problem A is “easy”.

2 Single Machine Environment

The single machine environment is the easiest machine environment. However, that doesn’t
mean all scheduling problems in this environment is easy! Moreover, the design of algorithms
for the single machine environment gives insight on how to design algorithms for more
complicate multiple machine environments. In the next few lectures we will be concentrating
on algorithms for the single machine environment, in particular, exact algorithms.

2.1 Minimizing Average Completion Time (1 | |
∑

Cj), (1 | |
∑

wjCj)

We need to come up with a permutation {1, 2, . . . , n} of the jobs in J such that
∑

j Cj is
minimized. Note that in the sum

∑
j Cj , the processing time of the job which arrives first

is added n times, the second job n−1 times and so on. Thus, intuitively, we should process
the jobs in increasing order of processing times. This rule is called the Shortest Processing
Time rule, or simply the SPT rule. The next theorem shows that the intuition above is
correct.

Definition 2.1. (SPT): Process the jobs in increasing order of processing time.

Theorem 2.2. The SPT rule gives an optimal schedule (1 | |
∑
Cj).

Proof. Suppose the optimal schedule S is not SPT. Then note that there must be a job k
and a job ` such that pk > p` and the machine processes k before `. It is not too hard to see
that one can assume k and ` are consecutive in the schedule. Now consider the schedule S′

which is the same as S′ except the order of k and ` are switched. Note that the completion
time of all jobs j 6= k, ` remains unchanged. Assume that the processing of job k starts at
time t in schedule S. Therefore,∑

j

(CS
j − CS′

j) = [(t+ pk) + (t+ pk + p`)]− [(t+ p`) + (t+ p` + pk)] = pk − p` > 0

which is a contradiction since S was the optimal schedule.

The above argument where we interchanged two jobs which did not satisfy our rule of
scheduling to argue about optimality is called the interchange argument. A similar argument
can be used to show that a generalization of the SPT is optimal for minimizing the weighted
completion time.

Definition 2.3. (WSPT): Process the jobs in decreasing order of wj/pj .

Theorem 2.4. The WSPT rule gives an optimal schedule (1 | |
∑
wjCj).

2

Proof. Suppose the optimal schedule S is not WSPT. Then there must be two jobs k and
` such that S processes ` right after k but

wk/pk < w`/pl

Consider the schedule which is the same as S but interchanges the order of k and `. Note
that any job other than k and ` doesn’t change its completion time. Therefore,∑

j

(wjC
S
j −wjC

S′
j) = [wk(t+pk)+w`(t+pk+p`)]−[wl(t+p`)+wk(t+p`+pk)] = w`pk−wkp` > 0

which is a contradiction since S is the optimal schedule.

3

